Laplace transform of transitions

Proposition 11.

Let

- Intensities $\left\{\lambda_{j} ; j \geq-1\right\}$, with $\lambda_{-1}=0$
- Set of indices $\{0 \leq i, j<\infty\}$
- $p_{i j}$ solution to forward system

$$
p_{i, j}^{\prime}(t)=\lambda_{j-1} p_{i, j-1}(t)-\lambda_{j} p_{i, j}(t)
$$

Then for $i \leq j$ the Laplace transform $\hat{p}_{i j}$ satisfies

$$
\hat{p}_{i j}(s)=\frac{1}{\lambda_{j}} \prod_{\ell=i}^{j} \frac{\lambda_{\ell}}{s+\lambda_{\ell}}
$$

Equations $\quad p_{i j}^{\prime}=\lambda_{j-1} p_{i j-1}-\lambda_{j} p_{i j}$
Laplace riansfum

$$
\begin{aligned}
& S \hat{p}_{i j}-p_{i j}(0)=d_{i j}=\lambda_{j-1} \hat{p}_{i, j-1}-\lambda_{j} \hat{p}_{i j} \\
\Leftrightarrow & \left(S_{+} d_{j}\right) \hat{p}_{i j}=\delta_{i j}+d_{j-1} \hat{p}_{i, j-1}
\end{aligned}
$$

Case $j>i$ we get $\delta_{i j}=0$, and has

$$
\begin{aligned}
\hat{p}_{i j} & =\frac{\lambda_{j-1}}{\partial \sigma \lambda_{j}} \hat{p}_{i, j-1} \\
& =\frac{\lambda_{j-1}}{\delta j \lambda_{j}} \frac{d_{j-2}}{S+\lambda_{j-1}} \hat{p}_{i, j-2} \\
& =\frac{1}{\lambda_{j}} \frac{\lambda_{j}}{\partial d \lambda_{j}} \frac{\lambda_{j-1}}{s \lambda_{j-1}} \lambda_{j-2} \hat{p}_{i, j-2} \cdots
\end{aligned}
$$

Proof of Proposition 13 (1)

Laplace transform of the forward equation: The equation

$$
p_{i, j}^{\prime}(t)=\lambda_{j-1} p_{i, j-1}(t)-\lambda_{j} p_{i, j}(t)
$$

becomes

$$
s \hat{p}_{i j}(s)-\delta_{i j}=\lambda_{j-1} \hat{p}_{i, j-1}(s)-\lambda_{j} \hat{p}_{i j}(s)
$$

Rearranging terms: We get

$$
\left(s+\lambda_{j}\right) \hat{p}_{i j}(s)=\delta_{i j}+\lambda_{j-1} \hat{p}_{i, j-1}(s)
$$

Proof of Proposition 13 (2)

Case $j>i$: Since $\delta_{i j}=0$ in that case, we get

$$
\begin{aligned}
\hat{p}_{i j}(s) & =\frac{\lambda_{j-1}}{s+\lambda_{j}} \hat{p}_{i, j-1}(s) \\
& =\frac{\lambda_{j-1}}{s+\lambda_{j}} \frac{\lambda_{j-2}}{s+\lambda_{j-1}} \hat{p}_{i, j-2}(s) \\
& =\frac{1}{\lambda_{j}} \frac{\lambda_{j}}{s+\lambda_{j}} \frac{\lambda_{j-1}}{s+\lambda_{j-1}} \lambda_{j-2} \hat{p}_{i, j-2}(s)
\end{aligned}
$$

Conclusion: Iterating the above computation, we get

$$
\hat{p}_{i j}(s)=\frac{1}{\lambda_{j}} \prod_{\ell=i}^{j} \frac{\lambda_{\ell}}{s+\lambda_{\ell}}
$$

Backward and forward system

Proposition 12.

Consider the backward system

$$
\begin{equation*}
\pi_{i, j}^{\prime}(t)=\lambda_{i} \pi_{i+1, j}(t)-\lambda_{i} \pi_{i, j}(t) \tag{1}
\end{equation*}
$$

Then

> The solution $\left\{p_{i j} ; i, j \geq 0\right\}$ to the forward system also solves the system (1)
"Proof" of Prop 12 Srour from equakiens

$$
\begin{equation*}
\pi_{i j}^{\prime}=d_{i} \pi_{i r, j}-d_{i} \pi_{i j} \tag{2}
\end{equation*}
$$

Laplace riansfum

$$
\begin{equation*}
\overline{s \hat{\pi}_{i j}(s)-\delta_{i j}}=d_{i} \hat{\pi}_{i+, j, j}(s)-d_{i} \hat{\pi}_{i j} \tag{1}
\end{equation*}
$$

Then we can check Hhar

$$
\hat{p}_{i j}(\rho)=\frac{1}{\lambda_{j}} \prod_{\ell=i}^{j} \frac{d e}{s o d l}
$$

satisfies relation (1)
$\Rightarrow\left(p_{i j}\right)_{i \leq j}$ sariofies backwand equations Rmk $\left(R_{i j}\right)_{i c j} i$ one whiker to (2). There mighr be an ∞ number of shutions

Proof of Proposition 15

Backward equation in Laplace mode: We get

$$
\begin{equation*}
\left(s+\lambda_{i}\right) \hat{\pi}_{i j}(s)=\delta_{i j}+\lambda_{i} \hat{\pi}_{i+1, j}(s) \tag{2}
\end{equation*}
$$

Forward solves backward: Take

$$
\hat{\pi}_{i j}(s)=\hat{p}_{i j}(s)=\frac{1}{\lambda_{j}} \prod_{\ell=i}^{j} \frac{\lambda_{\ell}}{s+\lambda_{\ell}}
$$

This solves (2)

Problem with the backward system

Main problem:
Backward system may not have a unique solution
Minimal solution:
The unique solution of the forward system is a minimal solution of the backward system

Minimal solution of the backward system

Proposition 13.

Let

- Intensities $\left\{\lambda_{j} ; j \geq-1\right\}$, with $\lambda_{-1}=0$
- Set of indices $\{0 \leq i, j<\infty\}$
- $p_{i j}$ solution to forward system

$$
p_{i, j}^{\prime}(t)=\lambda_{j-1} p_{i, j-1}(t)-\lambda_{j} p_{i, j}(t)
$$

Then
$\pi_{i j}$ solution of the backward system
\Longrightarrow We have $p_{i, j}(t) \leq \pi_{i, j}(t)$ for all $i, j \in S$ and $t \geq 0$

Backward system and explosion
Then $\left(p_{i j}\right)$ is also the largest passible ideation to the backward system
Relating explosion/time and uniqueness: \Rightarrow the smaller solution is
(1) If $\sum_{j \in S} p_{i, j}(t)=1$, then abs the langer
$\hookrightarrow p_{i, j}$ is the unique solution of the backward system $\Rightarrow f$! solution to buck weed
(2) Problem: $\left\{p_{i, j}(t) ; j \in S\right\}$ is not always a distribution
(- This is related to explosion time: we might have

$$
\left.\mathbf{P}\left(T_{\infty}<\infty\right)>0, \quad \text { where } \quad T_{\infty}=\lim _{n \rightarrow \infty} T_{n}\right)
$$

$T_{n}=n$-th arrival rime Then solution to tacked system is nor unique
Next question: Dove have $P\left(T_{\infty}<\infty\right)=0$?

The x_{i} 's are $\mathbb{1}$, and $x_{i} \sim \varepsilon\left(\lambda_{i-1}\right)$

Honest birth process

Definition 14.

Let

- N birth process
- Intensities $\left\{\lambda_{j} ; j \geq-1\right\}$, with $\lambda_{-1}=0$
- $\left\{T_{n} ; n \geq 1\right\}$ arrival times

Then N is said to be honest if
(no explosion in finite

$$
\left.\mathbf{P}\left(T_{\infty}=\infty\right)=1 \quad \text { rime }\right)
$$

Sum of exponential random variables

Proposition 15.

Let Applicakm: $x_{n} \equiv$ inter-anival rome

- $\left\{\widehat{X}_{n} ; n \geq 1\right\}$ sequence of independent random variables
- Each X_{n} is such that $X_{n} \sim \mathcal{E}\left(\lambda_{n-1}\right)$
- $T_{\infty}=\sum_{n=1}^{\infty} X_{n}$

Then

$$
\mathbf{P}\left(T_{\infty}<\infty\right)= \begin{cases}0, & \text { if } \sum_{n=1}^{\infty} \frac{1}{\lambda_{n}}=\infty \\ 1 & \text { if } \sum_{n=1}^{\infty} \frac{1}{\lambda_{n}}<\infty\end{cases}
$$

Setting $\left(x_{n}\right)_{n \geqslant 1}, \Perp, x_{n} \sim \varepsilon\left(d_{n-1}\right)$
Easy case: $\sum_{n=0}^{\infty} \frac{1}{\lambda_{n}}<\infty$
In that case one can prove that

$$
\mathbb{E}\left[\sum_{n=1}^{\infty} x_{n}\right] \quad<\infty \quad \underset{\substack{x_{n} \geqslant 0}}{\text { Here }} \Rightarrow \mathbb{P}\left(\sum_{n=1}^{\infty} x_{n}<\infty\right)=1
$$

Неле
Futons- Tonellico

$$
\begin{aligned}
& \mathbb{E}\left[\sum_{n=1}^{\infty} x_{n}\right]=\sum_{n=1}^{\infty} \mathbb{E}\left[x_{n}\right] \\
&=\sum_{n=1}^{\infty} \frac{1}{\lambda_{n-1}}<\infty \text { by } \\
& \text { axum }
\end{aligned}
$$ assumption

conclusion If $\sum_{n=0}^{\infty} \frac{1}{\lambda_{n}}<\infty$, then

Proof of Proposition 15 (1)

Case $\sum_{n \geq 1} \lambda_{n}^{-1}<\infty$: Using Fubini-Tonelli we have

$$
\mathbf{E}\left[T_{\infty}\right]=\mathbf{E}\left[\sum_{n=1}^{\infty} X_{n}\right]=\sum_{n=1}^{\infty} \frac{1}{\lambda_{n-1}}<\infty
$$

Thus

$$
\mathbf{P}\left(T_{\infty}<\infty\right)=0
$$

Proof of Proposition 15 (2)

Case $\sum_{n \geq 1} \lambda_{n}^{-1}=\infty$, strategy: We have

$$
\begin{aligned}
\mathbf{E}\left[e^{-T_{\infty}}\right]=0 & \Longrightarrow \mathbf{P}\left(e^{-T_{\infty}}=0\right)=1 \\
& \Longrightarrow \mathbf{P}\left(T_{\infty}=\infty\right)=1
\end{aligned}
$$

We will thus prove

$$
\mathbf{E}\left[e^{-T_{\infty}}\right]=0
$$

Proof of Proposition 15 (3)

Case $\sum_{n \geq 1} \lambda_{n}^{-1}=\infty$, computation: We have

$$
\begin{aligned}
\mathbf{E}\left[e^{-T_{\infty}}\right] & =\mathbf{E}\left[\prod_{n=1}^{\infty} e^{-X_{n}}\right] \\
& =\lim _{N \rightarrow \infty} \mathbf{E}\left[\prod_{n=1}^{N} e^{-X_{n}}\right] \quad \text { (monotone convergenc } \\
& =\lim _{N \rightarrow \infty} \prod_{n=1}^{N} \mathbf{E}\left[e^{-X_{n}}\right] \\
& =\lim _{N \rightarrow \infty} \prod_{n=1}^{N} \frac{1}{1+\lambda_{n-1}^{-1}}=\left(\prod_{n=1}^{\infty}\left(1+\frac{1}{\lambda_{n-1}}\right)\right)^{-1}
\end{aligned}
$$

Proof of Proposition 15 (4)

Infinite products: If $u_{n} \geq 0$, then

$$
\begin{equation*}
\prod_{n=1}^{\infty}\left(1+u_{n}\right)=\infty \quad \Longleftrightarrow \quad \sum_{n=1}^{\infty} u_{n}=\infty \tag{3}
\end{equation*}
$$

Pseudo-proof of (3): We have

$$
\begin{aligned}
\ln \left(\prod_{n=1}^{\infty}\left(1+u_{n}\right)\right) & =\sum_{n=1}^{\infty} \ln \left(1+u_{n}\right) \\
& \asymp \sum_{n=1}^{\infty} u_{n}
\end{aligned}
$$

Proof of Proposition 15 (5)

Recall: We have seen

$$
\mathbf{E}\left[e^{-T_{\infty}}\right]=\left(\prod_{n=1}^{\infty}\left(1+\frac{1}{\lambda_{n-1}}\right)\right)^{-1}
$$

Application of (3):

$$
\mathbf{E}\left[e^{-T_{\infty}}\right] \Longleftrightarrow \prod_{n=1}^{\infty}\left(1+\frac{1}{\lambda_{n-1}}\right)=\infty \Longleftrightarrow \sum_{n \geq 1} \lambda_{n}^{-1}=\infty
$$

Conclusion:

$$
T_{\infty}=\infty \quad \Longleftrightarrow \quad \sum_{n \geq 1} \lambda_{n}^{-1}=\infty
$$

