Quertion: Is To < 00? (Explorin in finde time) Relation: Two = Z X: X_2 We know that Xi's are II, Xi ~ E(Li-1)

Sum of exponential random variables

Proof of Proposition 15 (1)

Case $\sum_{n\geq 1} \lambda_n^{-1} < \infty$: Using Fubini-Tonelli we have

$$\mathsf{E}\left[T_{\infty}\right] = \mathsf{E}\left[\sum_{n=1}^{\infty} X_n\right] = \sum_{n=1}^{\infty} \frac{1}{\lambda_{n-1}} < \infty$$

Thus

 $\mathbf{P}(T_{\infty} < \infty) = 0$

3

イロト 不得 トイヨト イヨト

Case $\overline{Z}_{n=1}^{\perp} = \infty$. In that are, we consider a kind of Laplace transform: HI e-103 To is a ≥ 0 r.v. If $E[e^{-b}]=0$, $P(e^{-\tau_0} = 0) = 1$ $ON [E[e^{-T_o}] = O => e^{-T_o} = O Q.S$ $P(T_{\infty} = \infty) = 1$ Reduction: It is enough to more Ele-70]=0

Computation for ETC-Too] $E[C^{-\tau_{\infty}}] = E[CP(-\tilde{Z} \times n)]$? _____ = ____ N=1 $E[\prod_{n=1}^{n} e^{-\chi_n}]$ EIe-xn7 = E[lim TI e^{-x}n] dominated/monotone anvergence lin EI TT e-xn7 lim TI E [C N->>> n=1 - ×n (Cleasity E(In.,) Nex - 2n-1 C $\int e^{-(d_{n-1}+1)t} dt = \frac{d_{n-1}}{d_{n-1}+1}$

Summary $E[C^{-T_{o}}] = \lim_{N \to \infty} \prod_{n=1} \frac{1+V_{n-1}}{1+V_{n-1}}$ 1+ / $(1 + \frac{1}{4n-1})$ 2nd reduction 0 $E[e^{-\tau_0}] = 0 \iff TT(1+$ 5 N Claim If Un 20, then

 $\widetilde{\Pi}(\forall Un) = \mathcal{D} \iff \mathbb{Z} Un = \mathcal{D}$

"Proof" of last claim hyp: un small $ln\left(\prod_{n=1}^{\infty} (l+U_n)\right) = \sum_{n=1}^{\infty} ln(l+U_n)$ $\simeq \sum_{n=1}^{\infty} U_n$ $\left(\frac{1}{2}u \leq ln(1+u) \leq u \quad i \neq u \quad small\right)$

Proof of Proposition 15 (2)

Case
$$\sum_{n\geq 1} \lambda_n^{-1} = \infty$$
, strategy: We have
 $\mathbf{E} \left[e^{-T_{\infty}} \right] = 0 \implies \mathbf{P} \left(e^{-T_{\infty}} = 0 \right) = 1$
 $\implies \mathbf{P} \left(T_{\infty} = \infty \right) = 1$

We will thus prove

$$\mathbf{E}\left[e^{-t_{\infty}}\right]=0$$

э

イロト イポト イヨト イヨト

Proof of Proposition 15 (3)

Case $\sum_{n\geq 1} \lambda_n^{-1} = \infty$, computation: We have $\mathbf{E}\left[e^{-T_{\infty}}\right] = \mathbf{E}\left[\prod_{n=1}^{\infty}e^{-X_n}\right]$ $= \lim_{N \to \infty} \mathbf{E} \left[\prod_{n=1}^{N} e^{-X_n} \right] \quad (\text{monotone convergence})$ $= \lim_{N \to \infty} \prod \mathbf{E} \left[e^{-X_n} \right]$ $= \lim_{N \to \infty} \prod_{n=1}^{N} \frac{1}{1 + \lambda_{n-1}^{-1}} = \left(\prod_{n=1}^{\infty} \left(1 + \frac{1}{\lambda_{n-1}} \right) \right)^{-1}$

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ● ○○○

Proof of Proposition 15 (4)

Infinite products: If $u_n \ge 0$, then

$$\prod_{n=1}^{\infty} (1+u_n) = \infty \quad \Longleftrightarrow \quad \sum_{n=1}^{\infty} u_n = \infty$$
(3)

Pseudo-proof of (3): We have

$$\ln\left(\prod_{n=1}^{\infty} (1+u_n)\right) = \sum_{n=1}^{\infty} \ln(1+u_n)$$
$$\asymp \sum_{n=1}^{\infty} u_n$$

Samy T. (Purdue)

Stochastic processes

글 에 에 글 어

< □ > < 同 >

э

Proof of Proposition 15 (5)

Recall: We have seen

$$\mathbf{E}\left[e^{-\mathcal{T}_{\infty}}\right] = \left(\prod_{n=1}^{\infty} \left(1 + \frac{1}{\lambda_{n-1}}\right)\right)^{-1}$$

Application of (3):

$$\mathsf{E}\left[e^{-T_{\infty}}\right] \iff \prod_{n=1}^{\infty} \left(1 + \frac{1}{\lambda_{n-1}}\right) = \infty \iff \sum_{n \ge 1} \lambda_n^{-1} = \infty$$

Conclusion:

$$T_{\infty} = \infty \quad \Longleftrightarrow \quad \sum_{n \ge 1} \lambda_n^{-1} = \infty$$

Image: A matrix

э

Application to birth process

Proposition 16.

Let

- N birth process
- Intensities $\{\lambda_j; j \ge -1\}$, with $\lambda_{-1} = 0$
- $\{T_n; n \ge 1\}$ arrival times

Then N is honest iff

 $\sum_{n=1}^{\infty} \frac{1}{\lambda_n} = \infty$

~		
Same		Purduel
Jann	v I . I	I uluuel

Final remarks

Notes before next section:

- Poisson and birth processes are Markov processes \hookrightarrow Due to $(N(t) - N(s)) \perp$ Past, given N(s) = i
- Objective
 Objectiv
- Solution Problems can occur due to explosions → This could not be observed in discrete time

Outline

1 Birth processes and the Poisson process

- Poisson process
- Birth processes

2 Continuous time Markov chain

- General definitions and transitions
- Generators
- Classification of states

Outline

1 Birth processes and the Poisson process

- Poisson process
- Birth processes

2 Continuous time Markov chain

- General definitions and transitions
- Generators
- Classification of states

Vocabulary

Stochastic process:

- Family $\{X(t); t \in [0,\infty)\}$ of random variables
- Family evolving in a random but prescribed manner
- Here $X(t) \in S$, where S countable state space with N = |S|

Markov evolution:

Conditioned on X(t), the evolution does not depend on the past

Markov chain

Differences with discrete time

Main difference:

- No time unit
- Therefore no exact analogue of P

Method 1:

- Use infinitesimal calculus
- This leads to infinitesimal generator

Method 2:

• Embedded chain $\{X_{T_n}; T_n \text{ arrival times}\}$ is usually a disuete Markar chain

Birth process as Markov process

N is a Markov process

E 6 4 E 6

< □ > < 凸