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Sum of exponential random variables

Let

{Xn; n � 1} sequence of independent random variables

Each Xn is such that Xn ⇠ E(�n�1)

T1 =
P1

n=1 Xn

Then

P (T1 < 1) =

(
0, if

P1
n=1

1
�n

= 1
1 if

P1
n=1

1
�n

< 1

Proposition 15.
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Proof of Proposition 15 (1)

Case
P

n�1 �
�1
n < 1: Using Fubini-Tonelli we have

E [T1] = E

" 1X

n=1

Xn

#
=

1X

n=1

1

�n�1
< 1

Thus

P (T1 < 1) = 0
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Case n = 0
.
In that case

,
we

consider a kind of Laplace manstum :

EIC-TO]

e-to is a 20 2v. If EJC O =0,
When

P(
- T

0

= 0) = 1

on Eleto] = 0 => e
+0

= 0 a. )

P(To = x) =

Reduction : It is enough to move
#[ e

-

To = 0



computation for EJC-to]
Ele

-To] = E [exptx)]
= El , e

-

x =
,
Ele-x]

= El lime-
dominated/ monotone

-

Convergence
= lin El , e-x

N-> 0

= em
n+
0 Ele-x]

density E(bn)
Next

Ele] = 6 met ge dt
Jn-1 I

= Jn+ 60 e
- (6t

Ct = Dn-14)
=
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Summary
I

#[2
-

To] =
lin It

nN-G

I= Xn= 1 6n-1

I
=

+ jn (
and reduction EUn

E [e
-

to] =0 Ex (j)=
claim If Un 20 ,

when

Un)= [Un = 0



"Proof" of last claim hyp : Un small
↳

In Un - In (1rUn
S Un

(zu < (n((r) < u if u small)



Proof of Proposition 15 (2)

Case
P

n�1 �
�1
n = 1, strategy: We have

E
⇥
e�T1

⇤
= 0 =) P

�
e�T1 = 0

�
= 1

=) P (T1 = 1) = 1

We will thus prove

E
⇥
e�T1

⇤
= 0
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Proof of Proposition 15 (3)

Case
P

n�1 �
�1
n = 1, computation: We have

E
⇥
e�T1

⇤
= E

" 1Y

n=1

e�Xn

#

= lim
N!1

E

"
NY

n=1

e�Xn

#
(monotone convergence)

= lim
N!1

NY

n=1

E
⇥
e�Xn

⇤

= lim
N!1

NY

n=1

1

1 + ��1
n�1

=

 1Y

n=1

✓
1 +

1

�n�1

◆!�1
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Proof of Proposition 15 (4)

Infinite products: If un � 0, then

1Y

n=1

(1 + un) = 1 ()
1X

n=1

un = 1 (3)

Pseudo-proof of (3): We have

ln

 1Y

n=1

(1 + un)

!
=

1X

n=1

ln (1 + un)

⇣
1X

n=1

un
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Proof of Proposition 15 (5)

Recall: We have seen

E
⇥
e�T1

⇤
=

 1Y

n=1

✓
1 +

1

�n�1

◆!�1

Application of (3):

E
⇥
e�T1

⇤
()

1Y

n=1

✓
1 +

1

�n�1

◆
= 1 ()

X

n�1

��1
n = 1

Conclusion:
T1 = 1 ()

X

n�1

��1
n = 1
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Application to birth process

Let

N birth process

Intensities {�j ; j � �1}, with ��1 = 0

{Tn; n � 1} arrival times

Then N is honest i↵
1X

n=1

1

�n
= 1

Proposition 16.
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Final remarks

Notes before next section:
1 Poisson and birth processes are Markov processes

,! Due to (N(t)� N(s)) ?? Past, given N(s) = i

2 They are in fact strong Markov processes
,! Definition to be seen later

3 Problems can occur due to explosions
,! This could not be observed in discrete time
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Outline

1 Birth processes and the Poisson process
Poisson process
Birth processes

2 Continuous time Markov chain
General definitions and transitions
Generators
Classification of states
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Vocabulary

Stochastic process:

Family {X (t); t 2 [0,1)} of random variables

Family evolving in a random but prescribed manner

Here X (t) 2 S , where S countable state space with N = |S |

Markov evolution:

Conditioned on X (t),
the evolution does not depend on the past
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Markov chain

Let

X = {X (t); t � 0} stochastic process

We say that X is a continuous time Markov chain if

P (X (tn) = j |X (t1) = i1, . . . ,X (tn�1) = in�1)

=P (X (tn) = j |X (tn�1) = in�1) ,

for all

0  t1 < · · · < tn < 1
i1, . . . , in, j 2 S

Definition 17.
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Di↵erences with discrete time

Main di↵erence:

No time unit

Therefore no exact analogue of P

Method 1:

Use infinitesimal calculus

This leads to infinitesimal generator

Method 2:

Embedded chain
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2 Xtn ; In arrival times) is

usually a disnere Markov chain



Birth process as Markov process

Let

N birth process

Intensities {�j ; j � �1}, with ��1 = 0

Then

N is a Markov process

Proposition 18.
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