Birth process as Markov process

Proposition 18.

Let

- N birth process
- Intensities $\left\{\lambda_{j} ; j \geq-1\right\}$, with $\lambda_{-1}=0$

Then

N is a Markov process

Hyp: $N(t)-N()) \Perp$ "past" conditioned on N(s)
Proof for Ouith process

we wish

$$
\begin{aligned}
& \left.\mathbb{P}\left(N(t)=j \quad \mid N\left(s_{1}\right)=i_{1}, \ldots, N\left(S_{n}\right)=i_{n}, N()\right)=i\right) \\
= & \mathbb{P}(N(t)=j \mid N(j)=i)
\end{aligned}
$$

Equivalent wish

$$
\begin{aligned}
& \left.\mathbb{P}(N(t)-N())=j-i \mid N()_{1}\right)=i, \\
= & \mathbb{P}(N(t)-N(J))=j-i \mid N(J))=i)
\end{aligned}
$$

Hyp: $N(t)-N(s) \Perp$ "past" conditioned on $N(s)$
wish

$$
\begin{aligned}
& \mathbb{P}\left(\widehat{N(t)-N(s))=j-i} \mid N\left(s_{1}\right)=i, \ldots, N\left(د_{n}\right)=i_{n}, \overparen{N(J)=i}\right) \\
& =\mathbb{P}(N(t)-N())=j-i \mid N(J)=i)
\end{aligned}
$$

we want to prove

$$
\mathbb{P}\left(A_{s t} \mid B_{s_{1}} \cdot s_{n} \cap C_{3}\right)=\mathbb{P}\left(A_{s t} \mid C_{s}\right)
$$

we know
(i) $\mathbb{P}\left(A_{s t} \cap B_{s_{1} \cdots n} \mid C_{s}\right) \quad$ (general furcula) $=\mathbb{P}\left(A_{s t} \mid B_{s, \cdots n} \cap C_{s}\right) \quad \mathbb{P}\left(B_{s, \ldots z_{n}} \mid C_{s}\right)$ definition of conc. \Perp
(ii) $\mathbb{P}\left(A_{s t} \cap B_{s, \cdots h} \mid C_{s}\right) \stackrel{\uparrow}{=} \mathbb{P}\left(A_{s t} \mid C_{s}\right) \mathbb{P}\left(B_{s, \cdots i n} \mid C_{s}\right)$

Concluxin we have reen
(i) $\mathbb{P}\left(A_{s t} \cap B_{s_{1}-n_{n}} \mid C_{s}\right) \quad$ (general fumula)

$$
=\mathbb{P}\left(A_{s t} \mid B_{s, \ldots, n} \cap C_{s}\right) \quad \mathbb{P}\left(B_{s, \cdots, j_{n}} \mid C_{s}\right)
$$

definction of cond. \Perp

$$
\text { (ii) } \begin{aligned}
& \mathbb{P}\left(A_{s t} \cap B_{3, \cdots h} \mid C_{s}\right) \stackrel{\Uparrow}{=} \mathbb{P}\left(A_{s t} \mid C_{3}\right) \mathbb{P}\left(B_{s, \cdots n} \mid C_{s}\right) \\
\Rightarrow & \mathbb{P}\left(A_{s t} \mid B_{s, \cdots n} \cap C_{s}\right) \mathbb{P}\left(B_{s, \cdots n} \mid C_{3}\right) \\
= & \mathbb{P}\left(A_{s t} \mid C_{3}\right) \quad \mathbb{P}\left(B_{1,-m_{t}} \mid C_{3}\right) \\
\Rightarrow & \mathbb{P}\left(A_{s t} \mid B_{1, \cdots n} \cap C_{3}\right)=\mathbb{P}\left(A_{s t} \mid C_{3}\right)
\end{aligned}
$$

Rob If N is Poison process, intensity d. Then
$N(t)-N(s) \mathbb{\Perp}$ post

Fur a birth phoces), we need to condition on $N(s)$. Why? \rightarrow we need to know N(J) to know the intensities fou $N(t)-N(s)$

Indepencence $A \Perp B$ it

$$
\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)
$$

Cond $\Perp: \quad A \Perp B$ condit. on C if

$$
\mathbb{P}(A \cap B \mid C)=\mathbb{P}(A \mid C) \mathbb{P}(B \mid C)
$$

Proof of Proposition 18 (1)

Setting: Consider

- $s_{1}<\cdots<s_{n}<s<t$
- $i_{1}, \ldots, i_{n}, j \in S$

Aim: Prove

$$
\begin{aligned}
& \mathbf{P}\left(N(t)=j \mid N\left(s_{1}\right)=i_{1}, \ldots, N\left(s_{n}\right)=i_{n}, N(s)=i\right) \\
= & \mathbf{P}(N(t)=j \mid N(s)=i)
\end{aligned}
$$

Equivalent statement: Prove that

$$
\left.\left.\begin{array}{rl}
& \mathbf{P}(N(t)-N(s)
\end{array}=j-i \right\rvert\, N\left(s_{1}\right)=i_{1}, \ldots, N\left(s_{n}\right)=i_{n}, N(s)=i\right) ~=~=~ P(N(t)-N(s)=j-i \mid N(s)=i)
$$

Proof of Proposition 18 (2)

Recall: We wish to prove

$$
\begin{aligned}
& \mathbf{P}\left(N(t)-N(s)=j-i \mid N\left(s_{1}\right)=i_{1}, \ldots, N\left(s_{n}\right)=i_{n}, N(s)=i\right) \\
& =\mathbf{P}(N(t)-N(s)=j-i \mid N(s)=i)
\end{aligned}
$$

Defining some sets: Consider

- $A_{s t}=(N(t)-N(s)=j-i)$
- $B_{s_{1}, \ldots, s_{n}}=N\left(s_{1}\right)=i_{1}, \ldots, N\left(s_{n}\right)=i_{n}$
- $C_{s}=(N(s)=i)$

Rephrasing our claim: Now we wish to prove

$$
\mathbf{P}\left(A_{s t} \mid B_{s_{1}, \ldots, s_{n}} \cap C_{s}\right)=\mathbf{P}\left(A_{s t} \mid C_{s}\right)
$$

Proof of Proposition 18 (3)

General formula: We have

$$
\begin{equation*}
\mathbf{P}\left(A_{s t} \cap B_{s_{1}, \ldots, s_{n}} \mid C_{s}\right)=\mathbf{P}\left(A_{s t} \mid B_{s_{1}, \ldots, s_{n}} \cap C_{s}\right) \mathbf{P}\left(B_{s_{1}, \ldots, s_{n}} \mid C_{s}\right) \tag{4}
\end{equation*}
$$

Conditional independence: In Definition 5 we had the assumption
Conditional on $N(s), N(t)-N(s) \Perp$ values of N on $[0, s]$
This reads

$$
\begin{equation*}
\mathbf{P}\left(A_{s t} \cap B_{s_{1}, \ldots, s_{n}} \mid C_{s}\right)=\mathbf{P}\left(A_{s t} \mid C_{s}\right) \mathbf{P}\left(B_{s_{1}, \ldots, s_{n}} \mid C_{s}\right) \tag{5}
\end{equation*}
$$

Conclusion: Combining (4) and (5) we end up with

$$
\mathbf{P}\left(A_{s t} \mid B_{s_{1}, \ldots, s_{n}} \cap C_{s}\right)=\mathbf{P}\left(A_{s t} \mid C_{s}\right)
$$

Transition probabilities

Definition 19.

Let X be a continuous-time Markov chain. Then
(1) The transition probabilities are given by

$$
p_{i j}(s, t)=\mathbf{P}(X(t)=j \mid X(s)=i) \quad \text { for } \quad s<t, i, j \in S
$$

$$
s, t
$$

(2) X is homogeneous if for all $贝, i, j$ we have

$$
p_{i j}(s, t)=p_{i j}(0, t-s) \equiv p_{i j}(t-s)
$$

Hypothesis 20.
In the chapter we always assume that X is homogeneous

Transitions for the Poisson process

Proposition 21.

Let

- N Poisson process
- Intensity λ

Then N is homogeneous and

$$
p_{i j}(s, t)=p_{i j}(t-s)=\exp (-\lambda(t-s)) \frac{(\lambda(t-s))^{j-i}}{(j-i)!}
$$

Tranikior far Poison

$$
\begin{aligned}
& P_{i j}(1, t)=\mathbb{P}(N(t)=j \mid N(s)=i) \\
& =\mathbb{P}(N(t)-N())=j-i \mid N(s)=i) \\
& =\mathbb{P}(N(t)-N())=j-i) \quad(N(t)-N(s) \nVdash N(s))
\end{aligned}
$$

We know: $N(t)-N(s)=\hat{N}(t-s)$ is also a PP with intensity d. We have

$$
\begin{aligned}
& \hat{N}(t-\jmath) \stackrel{(d)}{ } \quad P(\lambda(t-\jmath)) \\
= & e^{-\lambda(t-))} \frac{(\lambda(t-)))^{j-i}}{(j-i)!}
\end{aligned}
$$

