Outline

- Birth processes and the Poisson process
 - Poisson process
 - Birth processes
- Continuous time Markov chain
 - General definitions and transitions
 - Generators
 - Classification of states

Continuity of standard semigroups

Proposition 25.

Assume

- X Markov chain
- The transition P is standard

Then P is continuous: for all $t \ge 0$ we have

$$\lim_{h\to 0} P_{t+h} = P_t,$$

$$\lim_{h\to 0}p_{ij}(t+h)=p_{ij}(t), \text{ for all } i,j\in S$$

Timble Example of non standard
$$P_{\epsilon}$$

we take $S = \{1\}$ and $p: \{0,\infty\} \rightarrow \{0,1\}$
 $p(0) = 1$
 $p(t) = 0$ if $t > 0$

Then

 $P_{\epsilon} = P_{\epsilon+1}$
 $P_{\epsilon} = P_{\epsilon+2}$
 $P_{\epsilon} = P_{\epsilon+3}$
 $P_{\epsilon} = P_{\epsilon+3}$

Behavior close to 0

Taylor expansions: We have (admitted)

$$p_{ij}(h) = g_{ij}h + o(h)$$

$$p_{ii}(h) = 1 + g_{ii}h + o(h)$$

Signs of g_{ij} : If we want $p_{ij}(h) \in [0,1]$ we need

$$g_{ij} \ge 0$$
, and $g_{ii} \le 0$

Meaning of g_{ij} 's

Interpretation: Starting from X(t) = i,

Nothing happens with probability

$$P(X(t_{ih})=i|X(t)=i) \simeq 1+g_{ii}h+o(h)$$

The chain jumps from i to j with probability

$$P(\times(tch)=jl\times(tl=i) \simeq g_{ij}h+o(h)$$

Terminology:

The matrix $G = (g_{ij})_{i,j \in S}$ is called generator of the Markov chain

Basic property of the generator

Proposition 26.

Assume

- X Markov chain
- There is a generator G

• The transition
$$P$$
 is standard
• There is a generator G

Then for most cases we have

$$\sum_{j \in S} g_{ij} = 0, \quad \text{for all} \quad i \in S$$

Generator for birth process

Proposition 27.

Let

- N birth process
- Intensities $\{\lambda_j; j \geq -1\}$, with $\lambda_{-1} = 0$

Then the generator G of N is given by

$$g_{ii} = -\lambda_i, \quad g_{i,i+1} = \lambda_i, \quad g_{ij} = 0 \text{ otherwise},$$
 (6)

$$G = \begin{bmatrix} -\lambda_0 & \lambda_0 & 0 & 0 & 0 & \cdots \\ 0 & -\lambda_1 & \lambda_1 & 0 & 0 & \cdots \\ 0 & 0 & -\lambda_2 & \lambda_2 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

Expression of G for both process

General expansion for Markov chain

$$P_{ii}(h) = 1 + g_{ii}h + o(h)$$
 $P_{ij}(h) = g_{ij}h + o(h)$
 $P_{ij}(h) = g_{ij}h + o(h)$
 $P_{ij}(h) = 1 - A_ih + o(h)$
 $P_{ij}(h) = A_ih + o(h)$

Proof of Proposition 27

Expansion for birth transitions: We have seen (cf Definition 5)

$$p_{n,n}(t, t+h) = p_{n,n}(h) = 1 - \lambda_n h + o(h)$$

 $p_{n,n+1}(t, t+h) = p_{n,n+1}(h) = \lambda_n h + o(h)$
 $p_{n,j}(t, t+h) = p_{n,j}(h) = o(h)$, if $j \ge n+2$

General expansion: We have also seen the general expression

$$p_{nn}(h) = 1 + g_{nn}h + o(h)$$

$$p_{nj}(h) = g_{nj}h + o(h)$$

Confusion:

We easily get (6) by identification

Matrix form of the generator

Proposition 28.

Assume

- X Markov chain
- The transition P is standard

Then we have

$$\lim_{h\to 0} \frac{1}{h} (P_h - \operatorname{Id}) = G,$$

$$\lim_{h\to 0}\frac{1}{h}\left(p_{ij}(h)-\delta_{ij}\right)=g_{ij}, \text{ for all } i,j\in S$$

Proof

$$Pii(h) = 1 + giih + o(h)$$
 $Pii(h) = giih + o(h)$

Thus

$$\frac{p_{i,j}(h)-1_{(c=\delta)}}{h}=\frac{g_{i,j}(h)+o(h)}{h}$$

$$\lim_{h\to\infty}\frac{1}{h}\left(\operatorname{Pij}(h)-1(i=j)\right)=gij$$

Proof of Proposition 28

Main argument: Rephrasing of

$$p_{ij}(h) = g_{ij}h + o(h)$$

$$p_{ii}(h) = 1 + g_{ii}h + o(h)$$

Transitions from generator: forward equations

Proposition 29.

Assume

- X Markov chain
- The transition P is standard

Then P_t satisfies the differential equation

$$P_t' = P_t G$$
. $p_{ij}'(t) = \sum_{k \in S} p_{ik}(t) p_{ik}'$ for all $i, j \in S$

Phoof Use Chapman-
$$K$$
 $P_{i\dot{\delta}}(t+h) = \sum_{k \in S} P_{ik}(t) P_{k\dot{\delta}}(h)$
 $= Z P_{ik}(t) (g_{k\dot{\delta}} h + o(h))$
 $k \neq \dot{\delta}$
 $+ P_{i\dot{\delta}}(t) (l + g_{i\dot{\delta}} h + o(h))$

Thus

 $P_{i\dot{\delta}}(t \circ h) - P_{i\dot{\delta}}(t) = \sum_{k \in S} P_{ik}(t) g_{k\dot{\delta}} h + o(h)$
 $\lim_{h \to 0} h (P_{i\dot{\delta}}(t \circ h) - P_{i\dot{\delta}}(t)) = \lim_{h \to 0} \sum_{k \in S} P_{ik}(t) g_{k\dot{\delta}} h + o(l)$

Proof of Proposition 29

Application of Chapman-Kolmogorov:

$$egin{array}{lcl}
ho_{ij}(t+h) &=& \displaystyle\sum_{k\in S}
ho_{ik}(t)
ho_{kj}(h) \ &\simeq & \displaystyle p_{ij}(t)\left(1+g_{jj}h
ight) + \displaystyle\sum_{k
eq j}
ho_{ik}(t)g_{kj}h \ &=& \displaystyle p_{ij}(t) + \displaystyle\sum_{k\in S}
ho_{ik}(t)g_{kj}h \end{array}$$

Differentiating:

$$\frac{1}{h}(p_{ij}(t+h)-p_{ij}(t)) \simeq \sum_{k \in S} p_{ik}(t)g_{kj} = (P_tG)_{ij}$$

