Outline

(1) Birth processes and the Poisson process

- Poisson process
- Birth processes
(2) Continuous time Markov chain
- General definitions and transitions
- Generators
- Classification of states

Continuity of standard semigroups

Proposition 25.

Assume

- X Markov chain
- The transition P is standard

Then P is continuous: for all $t \geq 0$ we have

$$
\lim _{h \rightarrow 0} P_{t+h}=P_{t}
$$

that is

$$
\lim _{h \rightarrow 0} p_{i j}(t+h)=p_{i j}(t), \text { for all } i, j \in S
$$

Rumk Example of non standerd P_{t} we rohe $S=\{1\}$ and $p:[0, \infty) \rightarrow[0,1]$

$$
\begin{aligned}
& p(0)=1 \\
& p(t)=0 \text { if } t>0
\end{aligned}
$$

$$
P_{t} P_{s}=P_{t+د}
$$

In genaal.

Behavior close to 0

Taylor expansions: We have (admitted)

$$
\begin{aligned}
& p_{i j}(h)=g_{i j} h+o(h) \\
& p_{i i}(h)=1+g_{i i} h+o(h)
\end{aligned}
$$

Signs of $g_{i j}$: If we want $p_{i j}(h) \in[0,1]$ we need

$$
g_{i j} \geq 0, \quad \text { and } \quad g_{i i} \leq 0
$$

Meaning of $g_{i j}$'s

Interpretation: Starting from $X(t)=i$,
(1) Nothing happens with probability
$\mathbb{P}(X(t-h)=i \mid X(t)=i) \simeq 1+g_{i i} h+o(h)$
(2) The chain jumps from i to j with probability
$\mathbb{P}\left(x(t-h)=j(x(t)=i) \simeq g_{i j} h+o(h)\right.$
Terminology:
The matrix $G=\left(g_{i j}\right)_{i, j \in S}$ is called generator of the Markov chain

Basic property of the generator

Proposition 26.

Assume

$$
\sum_{j \in S} p_{i j}(t)=1
$$

- X Markov chain
$\begin{aligned} & \text { - The transition } P \text { is standard } \\ & \text { - There is a generator } G\end{aligned} \quad \sum_{j \in J} g_{i j}=\underbrace{g_{i i}}_{i 0} \frac{\sum_{j \nless i} g_{i j}}{\geqslant 0}$
Then for most cases we have

$$
\sum_{j \in S} g_{i j}=0, \quad \text { for all } \quad i \in S
$$

Generator for birth process

Proposition 27.

Let

- N birth process
- Intensities $\left\{\lambda_{j} ; j \geq-1\right\}$, with $\lambda_{-1}=0$

Then the generator G of N is given by

$$
\begin{equation*}
g_{i i}=-\lambda_{i}, \quad g_{i, i+1}=\lambda_{i}, \quad g_{i j}=0 \text { otherwise } \tag{6}
\end{equation*}
$$

that is

$$
G=\left[\begin{array}{cccccc}
-\lambda_{0} & \lambda_{0} & 0 & 0 & 0 & \cdots \\
0 & -\lambda_{1} & \lambda_{1} & 0 & 0 & \cdots \\
0 & 0 & -\lambda_{2} & \lambda_{2} & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Exprestion of G fu boith process
General expanver for Morkow chain

$$
\begin{aligned}
& P_{i i}(h)=1+g_{i i} h+o(h) \\
& P_{i j}(h)=g_{i j} h+o(h) \quad j \neq i
\end{aligned}
$$

Fn buith poceses, we have cen

$$
\begin{aligned}
& p_{i i}(h)=1-\lambda_{i} h+o(h) \\
& P_{i, j_{1}}(h)=\lambda_{i} h+o(h) \\
& p_{i, j}(h)=0(h) \quad \text { if } j \neq i, i+1
\end{aligned}
$$

we identify:

$$
\begin{array}{lr}
g_{i i}=-\lambda_{i} & g_{i j}=0 \text { if } \\
g_{i, i 1}=\lambda_{i} &
\end{array}
$$

Proof of Proposition 27

Expansion for birth transitions: We have seen (cf Definition 5)

$$
\begin{aligned}
p_{n, n}(t, t+h) & =p_{n, n}(h)=1-\lambda_{n} h+o(h) \\
p_{n, n+1}(t, t+h) & =p_{n, n+1}(h)=\lambda_{n} h+o(h) \\
p_{n, j}(t, t+h) & =p_{n, j}(h)=o(h), \quad \text { if } j \geq n+2
\end{aligned}
$$

General expansion: We have also seen the general expression

$$
\begin{aligned}
p_{n n}(h) & =1+g_{n n} h+o(h) \\
p_{n j}(h) & =g_{n j} h+o(h)
\end{aligned}
$$

Conlusion:
We easily get (6) by identification

Matrix form of the generator

Proposition 28.

Assume

- X Markov chain
- The transition P is standard

Then we have

$$
\lim _{h \rightarrow 0} \frac{1}{h}\left(P_{h}-\mathrm{Id}\right)=G
$$

$$
G=\left.P_{t}^{\prime}\right|_{t=0}
$$

that is

$$
\lim _{h \rightarrow 0} \frac{1}{h}\left(p_{i j}(h)-\delta_{i j}\right)=g_{i j}, \text { for all } i, j \in S
$$

$P_{i j}(h)=\mathbb{P}(X(h)=j \mid x(0)=i)$

Proof

$$
\begin{array}{lr}
P_{i i}(h)=1+g_{i i} h \text { to }(h) \\
P_{i j}(h)= & g_{i j} h+o(h)
\end{array}
$$

Thas

$$
\begin{aligned}
& \frac{p_{i j}(h)-\mathbb{1}_{(i-j)}}{h}=\frac{g_{i j} h+o(h)}{h} \\
& \lim _{h \rightarrow 0} \frac{1}{h}\left(p_{i j}(h)-\mathbb{1}_{(i=j)}\right)=g_{i j}
\end{aligned}
$$

Proof of Proposition 28

Main argument: Rephrasing of

$$
\begin{aligned}
& p_{i j}(h)=g_{i j} h+o(h) \\
& p_{i i}(h)=1+g_{i i} h+o(h)
\end{aligned}
$$

Transitions from generator: forward equations

Proposition 29.

Assume

- X Markov chain
- The transition P is standard

Then P_{t} satisfies the differential equation

$$
P_{t}^{\prime}=P_{t} G .
$$

that is

$$
p_{i j}^{\prime}(t)=\sum_{k \in S} p_{i k}(t) q \text { for all } i, j \in S
$$

Proof Use Chapman-K

$$
\begin{aligned}
& p_{i j}(t+h)=\sum_{k \in S} p_{i k}(t) p_{k j}(h) \\
& =\sum_{k \neq j} p_{i k}(t)\left(g_{k j} h+o(h)\right) \\
& +p_{i j}(t)\left(1+g_{j j} h+o(h)\right)
\end{aligned}
$$

Thas

$$
\begin{gathered}
p_{i j}(t \sigma h)-p_{i j}(t)=\sum_{k \in S} p_{i j}(t) g_{k j} h+o(h) \\
\lim _{h \rightarrow 0} \frac{1}{h}\left(p_{i j}(t-h)-p_{i j}(t)\right)=\lim _{h \rightarrow 0} \sum_{k \in S} p_{i k}(t) g_{k j}+0(1) \\
p_{i j}^{\prime}(t)=\sum_{k \in S} p_{i k}(t) g_{k j}
\end{gathered}
$$

Proof of Proposition 29

Application of Chapman-Kolmogorov:

$$
\begin{aligned}
p_{i j}(t+h) & =\sum_{k \in S} p_{i k}(t) p_{k j}(h) \\
& \simeq p_{i j}(t)\left(1+g_{j j} h\right)+\sum_{k \neq j} p_{i k}(t) g_{k j} h \\
& =p_{i j}(t)+\sum_{k \in S} p_{i k}(t) g_{k j} h
\end{aligned}
$$

Differentiating:

$$
\frac{1}{h}\left(p_{i j}(t+h)-p_{i j}(t)\right) \simeq \sum_{k \in S} p_{i k}(t) g_{k j}=\left(P_{t} G\right)_{i j}
$$

