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Continuity of standard semigroups

,—[Proposition 25.] \

Assume
@ X Markov chain

@ The transition P is standard

Then P is continuous: for all t > 0 we have
lim Piyp = P
b0 t+h tsy

that is

lim pj; h) = pj; for all i, j
hmpu(t+ ) = pi(t), foralli,jeS
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Behavior close to 0

Taylor expansions: We have (admitted)

pi(h) = gzh+o(h)
pii(h) = 14 gih+ o(h)

Signs of gj: If we want p;(h) € [0, 1] we need

gi=>0, and g; <0
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Meaning of gji's

Interpretation: Starting from X(t) = i,
© Nothing happens with probability

PX(ehl=CIx(E)=c ) ~ 1+ gih+ o(h)
@ The chain jumps from i to j with probability

POKEm=5 (<E=C) vy o)

Terminology:

The matrix G = (gj)ijes is called generator of the Markov chain
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Basic property of the generator

,—[Proposition 26.]

Assume
@ X Markov chain

jes

Z p-.(€) = |
&esP”

@ There is a generator G

Then for most cases we have

Zg,-j:O, forall ie€$S

<O

R = .+ .
@ The transition P is standard Jé; A g:‘ (;5 I

20
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Generator for birth process

,—[Proposition 27.]

Let
@ N birth process
o Intensities {)\;; j > —1}, with A_;y =0

Then the generator G of N is given by

gi = —Ai, &ii+t1=Ai, &; =0 otherwise, (6)
that is
—Xo Ao 0 0 0
0O -x A& 0 O
=10 0 —x %O
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Proof of Proposition 27

Expansion for birth transitions: We have seen (cf Definition 5)

Pon(t,t+h) = ppa(h) =1—Xh+ o(h)
pn,n+1(ta t+ h) = pn,n+1(h) = Aph + O(h)
pnj(t,t+h) = puj(h)=o0(h), fj>n+2
General expansion: We have also seen the general expression
pnn(h) = 1+ gnnh + O(h)
poj(h) = gnjh+ o(h)

Conlusion:
We easily get (6) by identification
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Matrix form of the generator

,—[Proposition 28.] \

Assume
@ X Markov chain
@ The transition P is standard

/
Then we have G- ?c /b=o
lim — p (P,7 —1d) =G,

h—0
that is

1
’I7|m h( pii(h) — 6;) = g, foralli,je$

O:s(hl= (x5 | x@1=)
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Proof of Proposition 28

Main argument: Rephrasing of

pii(h)
pii(h)

giih + o(h)
= 1+ gih+ o(h)
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Transitions from generator: forward equations

,—[Proposition 29.] \

Assume
@ X Markov chain
@ The transition P is standard

Then P, satisfies the differential equation

P—HG

pj(t Zp,k %k{fora”IjES

keS

that is
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Proof of Proposition 29

Application of Chapman-Kolmogorov:

pilt+h) = pult)pi(h)

keS
~ py(t) (L + gjh) + Z pik(t)giih
k)
= pi(t) + Z pi(t)gxih
keS
Differentiating:
1
7 (ps(t+h) = py(1)) = > pul(t)gyy = (PeG);
keS
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