Proof of Proposition 31

Properties of exponential random variables: If $Z \sim \mathcal{E}(\mu)$, then

$$
\begin{equation*}
\mathbf{P}(Z>a+b \mid \mathbb{Z}>a)=\mathbf{P}(Z>b)=\exp (-\mu b) \tag{7}
\end{equation*}
$$

Remarks about (7):
(1) Relation (7) can be interpreted as lack of memory
(2) It can also be interpreted as no aging
(3) In fact (7) characterizes the distribution $\mathcal{E}(\mu)$

$$
U=\inf \{t \geqslant 0 ; \times(s+t) \neq i\}
$$

Proof we are going to prove

$$
\begin{aligned}
& \mathbb{P}(U>a+b \quad \\
= & \mathbb{P}(U>b, a, \quad X(J)=i) \\
= & \quad X(J)=i)
\end{aligned}
$$

We have we are vil at i at tine sta

$$
\begin{aligned}
& \mathbb{P}(U>a+b \mid U>a, x(\jmath)=i) \quad X(\stackrel{\rightharpoonup}{ }+a)=i \\
= & \mathbb{P}(U>a+b \mid X(\jmath+a)=i, X())=i) \\
= & \mathbb{P}(U>a+b \mid X(\jmath+a)=i)
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{P}\left(U>a_{+} b \mid U>a, x(\rho)=i\right) \\
= & \mathbb{P}(U>a+b \mid X(1+a)=i, X())=i) \\
= & \mathbb{P}\left(U>a_{+} b \mid X(J+a)=i\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\mathbb{P}\left(U 0 \theta_{a}>b \mid\left[区_{0} \theta_{a}\right](s)=i\right) \\
& =\mathbb{P}(U>6 \mid X(s)=i)
\end{aligned}
$$

Proof of Proposition 31

Main argument: We have

$$
\begin{aligned}
& \mathbf{P}(U>a+b \mid U>a, X(s)=i) \\
& =\mathbf{P}(U>a+b \mid X(s+a)=i, X(s)=i) \\
& =\mathbf{P}\left(a+U \circ \theta_{a}>a+b \mid X(s+a)=i, X(s)=i\right) \\
& =\mathbf{P}\left(U \circ \theta_{a}>b \mid X(s+a)=i\right) \quad \text { (Markov) } \\
& =\mathbf{P}\left(U \circ \theta_{a}>b \mid X(s) \circ \theta_{a}=i\right) \\
& =\mathbf{P}(U>b) \quad \text { (Homogeneity) }
\end{aligned}
$$

Imbedded Markov chain

Proposition 32.

Let

- X Markov chain with standard transition P_{t}
- Assume $X(0)=i$

Then we have

$$
\mathbf{P}(X \text { jumps to } j \mid X(0)=i)=-\frac{g_{i j}}{g_{i i}}
$$

$$
\begin{aligned}
& \sum_{j \neq i} g_{i j}=-g_{i i} \Rightarrow-\sum_{j \neq i} \frac{g_{i j}}{g_{i i}}=1 \\
& \Rightarrow\left(\frac{-g_{i j}}{g_{i i}}\right)_{i \in \partial, j \neq i} \text { monition matrix. fer a Mortar chain }
\end{aligned}
$$

Idea of the poof on a small intraval $[t, t+h)$, if $j \neq i$

$$
\begin{aligned}
& \mathbb{P}(X \text { jumps rn } j, x \text { jumps } 1 x(t)=i) \\
& =\frac{\mathbb{P}(X \text { jumps to } j, X(t)=i)}{\mathbb{P}(X \text { jumps } X(t)=i)} \\
& \left.\simeq \quad \frac{g_{i j} h}{1-\mathbb{P}(X(t-\alpha h)=i} 1 x(t)=i\right) \\
& \simeq \frac{g_{i j} h}{1-\left(1+g_{i i} h\right)} \\
& =-\frac{g_{i j h}}{g_{i i h}}=-\frac{g_{i j}}{g_{i i}}
\end{aligned}
$$

Proof of Proposition 32

Argument on a small interval: On $[t, t+h)$,

$$
\begin{aligned}
\mathbf{P}(X \text { jumps to } j \mid X \text { jumps }) & \simeq \frac{p_{i j}(h)}{1-p_{i j}(h)} \\
& \simeq \frac{g_{i j} h}{\left(-g_{i j} h\right)} \\
& \simeq-\frac{g_{i j}}{g_{i j}}
\end{aligned}
$$

Example with 2 states (1)

Model: We consider

- State space $S=\{1,2\}$
- Generator

$$
G=\left[\begin{array}{cc}
-\alpha & \alpha \\
\beta & -\beta
\end{array}\right]
$$

$$
S=\{1,2\}
$$

Acculding to our decomposition

$$
G=\left(\begin{array}{cc}
-\alpha & \alpha \\
\beta & -\beta
\end{array}\right)
$$

If $x(t)=1$, then

$$
\begin{aligned}
& \text { If } x(t)=1 \text {, then } \\
& T_{1} \equiv \inf \{s ; x(t+s) \neq 1\} \sim \varepsilon(\alpha)
\end{aligned}
$$

Example with 2 states (2)

Pathwise description: Applying Propositions 31 and 32 we get
(1) If X is in state 1 then

- X stays at 1 an amount of time $\sim \mathcal{E}(\alpha)$
- Next X jumps to 2
(2) If X is in state 2 then
- X stays at 2 an amount of time $\sim \mathcal{E}(\beta)$
- Next X jumps to 1

Next step
(1) Can we compute $p_{i j}(t) \quad \forall t, \forall i, j \in\{1,2\}$?
(2) can we compute

$$
\lim _{t \rightarrow \infty} p_{i j}(t) ?
$$

(3) Invariant measure

Maun tool: use

$$
\begin{aligned}
\text { rook: use } & P_{t}=\left(\begin{array}{ll}
p_{11}(t) & p_{12}(t) \\
P_{t}^{\prime}=G P_{t}(t) & \beta_{22}(t)
\end{array}\right) \\
& G\left(\begin{array}{cc}
-\alpha & \alpha \\
\beta & -\beta
\end{array}\right)
\end{aligned}
$$

Example with 2 states (3)

Forward equation: Can be read as

$$
\left[\begin{array}{ll}
p_{11}^{\prime}(t) & p_{12}^{\prime}(t) \\
p_{21}^{\prime}(t) & p_{22}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
p_{11}(t) & p_{12}(t) \\
p_{21}(t) & p_{22}(t)
\end{array}\right]\left[\begin{array}{cc}
-\alpha & \alpha \\
\beta & -\beta
\end{array}\right]
$$

Sub-system for p_{11}, p_{12} : We get a separate system of the form

$$
\left[\begin{array}{l}
p_{11}^{\prime}(t) \\
p_{12}^{\prime}(t)
\end{array}\right]=A\left[\begin{array}{l}
p_{11}(t) \\
p_{12}(t)
\end{array}\right], \quad \text { with } \quad A=\left[\begin{array}{cc}
-\alpha & \beta \\
\alpha & -\beta
\end{array}\right]=G^{\top}
$$

Example with 2 states (3)

Eigenvalue decomposition for A : We get

$$
\begin{aligned}
& \lambda_{1}=0, \quad \text { with } \quad \mathbf{v}_{1}=\left[\begin{array}{l}
\beta \\
\alpha
\end{array}\right] \\
& \lambda_{2}=-(\alpha+\beta), \quad \text { with } \quad \mathbf{v}_{2}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
\end{aligned}
$$

gen solution: $c_{1} e^{-d_{1} t} v_{1}+c_{2} e^{-d_{2} t} v_{2}$
General form of the solution: We get

$$
\left[\begin{array}{l}
p_{11}(t) \\
p_{12}(t)
\end{array}\right]=c_{1}\left[\begin{array}{l}
\beta \\
\alpha
\end{array}\right]+c_{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \exp (-(\alpha+\beta) t)
$$

Example with 2 states (4)

Computation of constants: We use

$$
\lim _{t \rightarrow \infty}\left(p_{11}(t)+p_{12}(t)\right)=1, \quad \text { and } \quad p_{12}(0)=0
$$

and we get

$$
c_{1}=\frac{1}{\alpha+\beta}, \quad \text { and } \quad c_{2}=-\frac{\alpha}{\alpha+\beta}
$$

Unique solution: We end up with

$$
\begin{aligned}
& {\left[\begin{array}{l}
p_{11}(t) \\
p_{12}(t)
\end{array}\right]=\frac{1}{\alpha+\beta}\left[\begin{array}{l}
\beta \\
\alpha
\end{array}\right]-\frac{\alpha}{\alpha+\beta}\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \exp (-(\alpha+\beta) t)} \\
& \xrightarrow{t \rightarrow \infty}\binom{\beta / \alpha \beta}{\alpha / \alpha+\beta} \quad \text { inveriant measure }
\end{aligned}
$$

Example with 2 states (5)

Sub-system for p_{21}, p_{22} : We get a separate system of the form

$$
\left[\begin{array}{l}
p_{21}^{\prime}(t) \\
p_{22}^{\prime}(t)
\end{array}\right]=A\left[\begin{array}{l}
p_{21}(t) \\
p_{22}(t)
\end{array}\right], \quad \text { with } \quad A=\left[\begin{array}{cc}
-\alpha & \beta \\
\alpha & -\beta
\end{array}\right]
$$

Unique solution: We end up with

$$
\left[\begin{array}{l}
p_{21}(t) \\
p_{22}(t)
\end{array}\right]=\frac{1}{\alpha+\beta}\left[\begin{array}{l}
\beta \\
\alpha
\end{array}\right]-\frac{\beta}{\alpha+\beta}\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \exp (-(\alpha+\beta) t)
$$

