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1 Birth processes and the Poisson process
Poisson process
Birth processes

2 Continuous time Markov chain
General definitions and transitions
Generators
Classification of states
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Irreducibility of chains

Let X Markov chain with standard transition Pt

Then we have
1 For every pair i , j 2 S , either

pij(t) = 0 for all t > 0
or

pij(t) > 0 for all t > 0

2 Terminology: if pij(t) > 0 for all t > 0
,! X is said to be irreducible

3 In order to know if X is irreducible
,! draw graph related to G

Proposition 33.
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from is one can never
reach j (should be

seen on g(x)



Birth process example

Recall: For the birth process,

G =

2

6664

��0 �0 0 0 0 · · ·
0 ��1 �1 0 0 · · ·
0 0 ��2 �2 0 · · ·
...

...
...

...
...

. . .

3

7775

Nature of states:

All states are transient
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Graph of X

O I 2 3

There is no closed class

=> every state is mansient

imk we already know that

lim N(t) =
t+

=> No invariant measure



2 states example

Recall:

G =


�↵ ↵
� ��

�

Nature of states:

The chain is irreducible
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we have a unique class
I 2 => X ireducible

=> Pijt1 >0 ii E >O



Rmk By solving PF = PEG
,
we have

seen

p. (H)
= (*) - rp(, ) e-epit

Piz (t/

In particular , one can easily see

Pict -0 , Pult) >0 Eso

same thing fr Pe Its, Polt)



Stationary distribution

Let

X Markov chain with transition P

⇡ vector

Then ⇡ is a stationary distribution if
1 ⇡j � 0 for all j 2 S and

P
j2S ⇡j = 1

2 ⇡ satisfies ⇡ = ⇡Pt for all t � 0, that is

⇡j =
X

i2S

⇡ipij(t), for all j 2 S

Definition 34.
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E

, 20

9 can we make thoseconditions impler ?



Rmb If +Pe = i In all t
,
then

#P - TId = 0

= T (0t -ID) = S

t t

Ast 10 we get
TG = O



Interpretation of stationary distribution

Let

X Markov chain with transition P

⇡ invariant distribution

Then
X0 ⇠ ⇡ =) X (t) ⇠ ⇡ for all t � 0

Otherwise stated,

P (X (t) = j |X (0) ⇠ ⇡) = ⇡j

Proposition 35.
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X(0)
X



Stationary distribution and generator

Let

X Markov chain with transition P and generator G

⇡ distribution

Then

⇡ invariant distribution () ⇡ G = 0

Proposition 36.
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Proof of Proposition 36
Basic relation: We have

⇡G = 0 () ⇡G n = 0

Reasoning with matrix exponential: We get

⇡G = 0 ()
1X

n=1

tn

n!
⇡G n = 0, for all t � 0

() ⇡
1X

n=1

tn

n!
G n = 0, for all t � 0

() ⇡
1X

n=0

tn

n!
G n = ⇡, for all t � 0

() ⇡Pt = ⇡, for all t � 0
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Ergodic theorem

Let

X Markov chain with transition P and generator G

Assume X is irreducible

Then
1 If there exists a stationary distribution ⇡, then

⇡ is unique and limt!1 pij(t) = ⇡j for all i , j 2 S

2 If there is no stationary distribution ⇡, then

limt!1 pij(t) = 0 for all i , j 2 S

Proposition 37.
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2 states example (1)

Recall:

G =


�↵ ↵
� ��

�

Invariant distribution: The chain is irreducible and we have

⇡ =


�

↵ + �

↵

↵ + �

�
=) ⇡G = 0
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=> Pij(t) < its fr i = 1
,
2

lengodic theem)



2 states example (2)

Recall: We have seen


p11(t)
p12(t)

�
=

1

↵ + �


�
↵

�
� ↵

↵ + �


�1
1

�
exp (�(↵ + �)t)

Verifying the ergodic theorem: We get

lim
t!0


p11(t)
p12(t)

�
=

1

↵ + �


�
↵

�
=


⇡1

⇡2

�
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&

G = -3 - 4

X
N

Elgodic theorem is( satisfied on this simple
example


