6.5.4. Can a reversible chain be periodic?

Period 2 The Markov chain on $S=\{1,2\}$ with reansition

$$
P=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

i) reversible with

$$
\pi=\left(\begin{array}{ll}
\frac{1}{2} & \frac{1}{2}
\end{array}\right)
$$

If has period $d=2$
Period 3 If x with riansitan P has period 3, it means that
(i) $P_{i_{1} i_{2}} \quad P_{2} i_{1}=0 \quad \forall i_{1} i_{2}$
(ii) Fur all $i_{i} \in S, \exists i_{2}, i_{3}$ j. γ

$$
P_{i_{1} i_{2}} P i_{2} i_{3} P i_{i_{3} i_{1}}>0
$$

Using detailed Valance consider three stares called i_{1}, i_{2}, i_{3}. we can assume $\pi_{i}>0$ furallis. тиеи
$\pi_{i}, P_{i_{1}} i_{2} P_{i_{2}} i_{3} P_{i_{3}} i_{1}$
$=P_{i_{2} i_{1}} \pi_{2} P_{i_{2} i_{3}} P_{i_{3} i_{1}}$
$=P i_{2} i_{1} \quad P_{i_{3} i_{2}} \pi_{i_{3}} P_{i_{3} i_{1}}$
$=P_{i_{2} i_{1}} p_{i_{3} i_{2}} P_{i_{i} i_{3}} \pi_{i_{1}}$
In fact we hove proved that fa a reversible MC and every i_{1}, i_{2}, i_{3} we have
Pili $P i_{i} i_{3} P P_{i 3 i_{1}}=P i_{i i_{3}} P i_{3 i} P i_{2} i_{1}$
contradiction Assume now that $d=3$ and consider i_{1}, i_{2}, i_{3} s.r.

$$
\begin{equation*}
P_{i_{1} i_{2}} P i_{i} i_{3} \quad P i_{3} i_{1}>0 \tag{1}
\end{equation*}
$$

we also have
Pili $P i_{i 2} P_{i 3} i_{i}=P i_{i i_{3}} P i_{3 i 2} P i_{i} i_{1}$
Now if $d=3$, fur all $i, i z$ we have

$$
P_{c_{i} i_{c}} \quad P_{c_{c} i_{i}}=0
$$

Hence $p_{c_{i} i_{L}}=0$ or $p_{i_{2} i_{1}}=0$ Thus in relation (2) we have
Pic $P i_{i} i_{3} P i_{3 i}=P i_{i} P_{3} P i_{3} P_{i} i_{1}=0$
This contradicts (1). Hence d cannot be $=3$

Case $d \geqslant 4$ Ears generalization of the care $d=3$, using the cycle moper ty
$P_{i, i_{2}} P_{i_{2} i_{3}} \cdots P_{i_{n-1} i_{n}}$
$=P c_{1} i_{n} \quad P i_{n} i_{n-1} \cdots P i_{2} i_{1}$
6.5.6. Which of the following (when stationary) are reversible Markov chains? (a) The chain $X=\left\{X_{n}\right\}$ having transition matrix $\mathbf{P}=\left(\begin{array}{cc}1-\alpha & \alpha \\ \beta & 1-\beta\end{array}\right)$ where $\alpha+\beta>0$.
$\frac{\text { General strategy }}{\text { either }}$ one can
(i) Compare the invariant π by solving $\pi P=\pi$, then check derailed balance $\pi_{i} p_{i j}=\pi_{j} \rho_{j i}$
(ii) Directly find π verifying detailed balance.
Finding an invaricent π Note that

$$
\begin{aligned}
& \pi P=\pi \Leftrightarrow P^{t} \pi^{t}=\pi^{t} \\
& \Leftrightarrow\left(P^{t}-I d\right) \pi^{t}=0
\end{aligned}
$$

This sydem looks mus like your usual linear system of equations.

Application of (i) we want to solve

$$
\begin{aligned}
& \left(P^{t}-I\right) \pi^{t}=0 \\
& \Leftrightarrow\left(\begin{array}{cc}
-\alpha & \beta \\
\alpha & -\beta
\end{array}\right)\binom{\pi_{1}}{\pi_{2}}=0
\end{aligned}
$$

Hence $\left\{\begin{array}{c}\beta \pi_{2}=\alpha \pi_{1} \\ \pi_{1}+\pi_{2}=1\end{array}\right.$

$$
\Rightarrow \quad \pi_{1}=\frac{\beta}{\alpha+\beta} \quad, \quad \pi_{2}=\frac{\alpha}{\alpha+\beta}
$$

Then we easily ger

$$
\begin{aligned}
\pi_{1} p_{12} & =\frac{\beta}{\alpha+\beta} \cdot \alpha \\
& =\pi_{2} p_{21}
\end{aligned}
$$

Hence X is reversible

Application of (ii) The detailed balance is written as

$$
\begin{aligned}
\pi_{1} p_{12} & =\pi_{2} p_{21} \\
\Leftrightarrow & \pi_{1} \alpha
\end{aligned}=\pi_{2} \beta
$$

we thus get the same system a) befue:

$$
\left\{\begin{array}{l}
\alpha \pi_{1}=\beta \pi_{2} \\
\pi_{1}+\pi_{2}=1
\end{array}\right.
$$

we get that

$$
X \text { is reversible }
$$

(b) The chain $Y=\left\{Y_{n}\right\}$ having transition matrix $\mathbf{P}=\left(\begin{array}{ccc}0 & p & 1-p \\ 1-p & 0 & p \\ p & 1-p & 0\end{array}\right)$ where $0<p<1$.

Intuition: by symmetry, the invariant measure is

$$
\pi=\left(\begin{array}{lll}
\frac{1}{3} & \frac{1}{3} & \frac{1}{3}
\end{array}\right)
$$

Checking invariant measure one easily checks

$$
\pi P=\pi
$$

checking detailed balance the detailed balance has to be written for $\pi=\frac{1}{3}(1,1$,$) . Then we get$

$$
\begin{aligned}
\pi_{1} p_{12} & =\pi_{2} p_{21} \quad \Leftrightarrow \quad p_{12}=p_{21} \\
\Leftrightarrow \quad p & =1-p \quad \Leftrightarrow \quad \frac{1}{2}
\end{aligned}
$$

Thus $P \neq \frac{1}{2} \Rightarrow Y$ not reversible

Care $P=\frac{1}{2}$ we have

$$
\begin{aligned}
P=\frac{1}{2} & \Rightarrow P \text { symmetric } \\
& \Rightarrow \quad Y \text { reversible }
\end{aligned}
$$

6.8.4. Let B be a simple birth process (6.8.11b) with $B(0)=I$; the birth rates are $\lambda_{n}=n \lambda$. Write
down the forward system of equations for the process and deduce that

$$
\mathbb{P}(B(t)=k)=\binom{k-1}{I-1} e^{-I \lambda t}\left(1-e^{-\lambda t}\right)^{k-I}, \quad k \geq I
$$

Show also that $\mathbb{E}(B(t))=I e^{\lambda t}$ and $\operatorname{var}(B(t))=I e^{2 \lambda t}\left(1-e^{-\lambda t}\right)$.
Generator the general expessiar for the generator is

$$
G=\left(\begin{array}{ccc}
-\lambda_{0} & & \lambda_{0} \\
& \\
& \lambda_{2} & \lambda^{2} \\
0 & -\lambda_{n} & \lambda_{n}
\end{array}\right)
$$

Fur the simple birth process we remus the trivial $d_{0}=0$ and

$$
G=\left(\begin{array}{cccc}
-\lambda & \lambda & & 0 \\
-2 \lambda & 2 \lambda & \\
0 & \searrow &
\end{array}\right)
$$

Faward equation written as $P_{t}^{\prime}=P_{t} G$ or

$$
\begin{equation*}
p_{i j}^{\prime}(t)=\sum_{k \in \mathbb{N}^{*}} p_{i k}(t) g_{k j} \tag{1}
\end{equation*}
$$

we have

$$
g_{j-1, j}=(j-1) d, \quad g_{j j}=-j \lambda
$$

and $g_{k j}=0$ otherwise. Hence equation (1) becomes

$$
\begin{equation*}
p_{i j}^{\prime}=(j-1) \lambda p_{i, j-1}-j \lambda p_{i j} \tag{2}
\end{equation*}
$$

Generating function Fur a given i we et

$$
\begin{equation*}
G_{i}(\nu, t)=\sum_{j \in \mathbb{N}^{*}} p_{i j}(t) s^{j} \tag{3}
\end{equation*}
$$

Plugging (2) into (3) we get

$$
\partial_{t} G_{i}(\nu, t)=\sum_{j \in \mathbb{N}}\left(\lambda(j-1) P_{i j-1}-\lambda j p_{i j}\right) s^{j}
$$

Differential equation we have obtained

$$
\begin{aligned}
& O_{t} G_{i}(s, t)=\sum_{j \in \mathbb{N}}\left(\lambda(j-1) p_{j-1}-\lambda j p_{i j}\right) s^{j} \\
& =\lambda s \sum_{j \in N^{*}}(j-1) p_{i j-1} s^{j-1} \\
& -\lambda \sum_{j \in N}^{j} P_{i j} s^{j} \\
& =\lambda(s-1) s \sum_{j \in \mathbb{N}^{*}} j p_{i j} s^{j-1} \\
& =\lambda(j-1) s \partial_{s} G_{i}(s, t)
\end{aligned}
$$

Hence G_{i} satisfies the pale

$$
\left\{\begin{aligned}
\partial_{t} G_{i}(s, t) & =\lambda(J-1) s \partial_{s} G_{i}(s, t) \\
G_{i}(s, 0) & =s^{i}
\end{aligned}\right.
$$

Is nader linear PDE (Evans).

$$
\left\{\begin{array}{ccc}
b(x) \cdot D u+c(x) u & =0 \quad \text { in } u \tag{4}\\
u & =9 \text { on } d u
\end{array}\right.
$$

$E q: b(x) \cdot \Delta u+c(x) u=0, u_{1} \partial u=g$
Our case Fa our pgf we have

$$
\left\{\begin{aligned}
\lambda(s-1) s \partial_{s} G_{i}-\partial_{t} G_{i} & =0 \\
G_{i}(s, 0) & =\frac{s^{i}}{9}
\end{aligned}\right.
$$

so that refering to (4) ${ }^{9}$ we get

$$
b(\lambda, t)=\binom{\lambda(J-1) s}{-1}, \quad c=0
$$

Characteristic curve of the fum

$$
(s(\sigma), t(\sigma)) \equiv \bar{x}^{\prime}(\sigma) .
$$

Then we ret

$$
z(\sigma)=G_{i}(\vec{x}(\sigma))
$$

We want z to solve a 1^{t} adder ode.

Equation fin the characteristics in Evans P. 100 , the linear care i) reduced to a couple of ode's for the characteristics:

$$
\vec{x}^{\prime \prime}(\sigma)=b\left(\bar{x}^{\prime}(\sigma)\right), z^{\prime}(\sigma)=-c\left(\bar{x}^{\prime}(\sigma)\right) z(\sigma),
$$

which can be expressed for G_{i} as

$$
\vec{x}^{\prime}(\sigma)=\binom{s^{\prime}(\sigma)}{t^{\prime}(\sigma)}=\left(\begin{array}{cc}
\lambda & s(\sigma)(s(\sigma)-1) \\
-1
\end{array}\right)
$$

and gives the value of G_{i}

$$
z^{\prime}(\sigma)=0 \Rightarrow G_{i}\left(\vec{x}^{\prime}(\sigma)\right)=C
$$

Interpretation G_{i} is constant along $\overline{\left(\bar{x}^{\prime}(\sigma) b\right.}$ and we have to find a proper $(\vec{x}(\sigma))_{\sigma}$ sit $\vec{x}(0)=\left(S_{0}, 0\right)$ and $\bar{x}^{\prime}(\bar{G})=(S, t)$ for a given σ_{0}

Solving fur x we have

$$
\text { (i) } \begin{aligned}
\frac{d s}{s(s-1)} & =\lambda d \sigma \\
\frac{1}{s-1}-\frac{1}{s} & =\lambda d \sigma
\end{aligned}
$$

$$
\ln \left|\frac{s-1}{s}\right|=\lambda \sigma+c_{1}
$$

$$
\frac{s-1}{s}=c_{2} e^{d \sigma} \quad \text { Note: here } c_{1}, c_{2} \in \mathbb{R}
$$

$$
S=\frac{1}{1-c_{2} e^{d \sigma}} \left\lvert\, \begin{aligned}
& \frac{s}{s}=a \Leftrightarrow(1-a) s=1 \\
& \Leftrightarrow \\
& \Leftrightarrow
\end{aligned}\right.
$$

(ic) $\quad t^{\prime}(\sigma)=-1 \Rightarrow t=c_{3}-\sigma$
Hence $\quad \vec{x}^{\prime}(\sigma)=\binom{\frac{1}{1-c_{2} e^{+\sigma}}}{c_{3}-\sigma}$
$\partial_{t} G_{i}(s, t)=\lambda(s-1) s \partial_{j} G_{i}(s, t) \quad G(s, 0)=s^{i}$
Initial condition fou \vec{x} we have found

$$
\vec{x}(\sigma)=\binom{\frac{1}{1-c_{2} e^{a} \sigma}}{c_{3}-\sigma}
$$

At rime $\sigma=0$ we went to be on the boundary $\{s \in[0,1], t=0\}$, so that $c_{3}=0$. Therefue

$$
\left\{\begin{array}{l}
\bar{x}^{\prime}(\sigma)=\binom{\frac{1}{1+c_{4} e^{\lambda} \sigma}}{-\sigma} \\
G_{i}\left(\bar{x}^{\prime}(\sigma)\right)=G_{i}\left(\bar{x}^{\prime}(0)\right)=\left(\frac{1}{1+c_{4}}\right)^{i}
\end{array}\right.
$$

G_{i} contour along $\vec{x}(\sigma)$
$\vec{x}(\sigma)=\binom{\frac{1}{1+c c_{e} e^{x}}}{-\sigma} \quad u(\vec{x}(\sigma))=u(\vec{x}(0))=\left(\frac{1}{1+C_{4}}\right)^{i}$
value at s Take $J \in[0,1), t \geqslant 0$ and invert: $\sigma=-t$ and

$$
\begin{aligned}
& \frac{1}{1+c_{4} e^{-\lambda t}}=s \Leftrightarrow \frac{1}{s}=1+c_{4} e^{-\lambda t} \\
& \Leftrightarrow c_{4} e^{-\lambda t}=\frac{1-s}{s} \\
& \Leftrightarrow c_{4}=\frac{1-s}{s} e^{\lambda t} \\
& \Leftrightarrow 1+c_{4}=\frac{(1-s) e^{\lambda t}+s}{s} \\
& =\frac{(1-s)+s e^{-\lambda t}}{s e^{-\lambda t}} \\
& =\frac{1-s\left(1-e^{-\lambda t}\right)}{s e^{-\lambda t}}
\end{aligned}
$$

value for $G_{i}(s, t)$ we get

$$
\begin{aligned}
& G_{i}(S, t)=\left(\frac{1}{1 \sigma C_{4}}\right)^{i} \\
& G_{i}(S, t)=\left(\frac{S e^{-\lambda t}}{1-J\left(1-e^{-\lambda t}\right)}\right)^{2}
\end{aligned}
$$

value of $p_{i j}(t)$ we have

$$
G_{i}(s, t)=\sum_{j=i}^{\infty} p_{i j}(t) j j
$$

Instead of obtaining $p_{i j}(t)$ as $\left.\frac{1}{j!} \partial_{s} G_{i}^{(i)}(s, t)\right|_{s=0}$, one can expend G_{i} directly and prove by induction that

$$
\begin{equation*}
p_{i j}(t)=e^{-i \lambda t}\binom{j-1}{i-1}\left(1-e^{-\lambda t}\right)^{j-i} \tag{5}
\end{equation*}
$$

That is assume (5) holds rue for i. Then

$$
\begin{aligned}
& G_{i+1}(s, t)=G_{i}(s, t) \frac{s e^{-\lambda t}}{1-s\left(1-e^{-\lambda t}\right)} \\
& =\left(\sum_{j=i}^{\infty} p_{i j}(t) s^{j}\right) s e^{-\lambda t} \sum_{k=0}^{\infty}\left(1-e^{-\lambda t}\right)^{k} s^{k} \\
& =e^{-i \lambda t} \sum_{j=i}^{\infty}\binom{j-1}{c-1}\left(1-e^{-\lambda t}\right)^{j-i} s j \\
& \quad x \quad s e^{-\lambda t} \sum_{k=0}^{\infty}\left(1-e^{-\lambda t}\right)^{k} s^{k}
\end{aligned}
$$

Induckiar mocedure summarizing, we have

$$
\begin{aligned}
& G_{i+1}(j, t)=e^{-i \Delta t} \sum_{j=i}^{\infty}\binom{j-1}{c-1}\left(1-e^{-\lambda t}\right)^{j-i} s j \\
& \text { arizicirl } \quad x \quad s e^{-\lambda t} \sum_{k=0}^{\infty}\left(1-e^{-\lambda t}\right)^{k} s^{k} \\
& =e^{-(i+1) d t} \mathrm{~s}^{i+1} \sum_{l=0}^{\infty}\binom{i-1+l}{i-1}\left(1-e^{-\lambda t}\right)^{l} s^{l}{ }^{l} \\
& \times \sum_{k=0}^{k}\left(1-e^{x t}\right)^{k} s^{k} \\
& =e^{-(i+1) \Delta t} s^{i+1} \sum_{m=0}^{\infty}\left(\sum_{n=0}^{m} a_{n} b_{m-n}\right) s^{m}
\end{aligned}
$$

compuing $\sum_{n=0}^{m} a_{n} b_{m-n}$ we obticin $G_{i+1}(j, t)=\sum_{j=i+1}^{\infty} p_{i+1, j}(t) s^{j}$, with

$$
p_{i, j}=e^{-(i-1) t}\binom{j-1}{i}\left(1-e^{-\lambda t}\right)^{j-i-1}
$$

Expected value Recall the value

$$
G_{i}(s, t)=\left(\frac{e^{-\lambda t} J}{-\left(1-e^{-\lambda t}\right) \rho \alpha 1}\right)^{i}
$$

Then

$$
\begin{aligned}
& \partial_{\perp} G_{i}(1, t) \\
& =i\left(\frac{S e^{-\lambda t}}{1-s\left(1 e^{-\lambda t}\right)}\right)^{i-1} \frac{e^{-\lambda t}}{\left(1-s\left(1-e^{-\lambda t}\right)\right)^{2}} \\
& =i \frac{e^{-\lambda i t}}{\left(1-S\left(1-e^{-\lambda t}\right)\right)^{i-1}} S^{i-1}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \mathbb{E}[B(t) \mid B(0)=i] \\
= & \left.\partial_{s} G_{i}(0, t)\right|_{s=1} \\
= & i \frac{e^{-\lambda i t}}{e^{-\lambda(i-1) t}}=i e^{\lambda t}
\end{aligned}
$$

