Notation (1)

Return time to 0 : We set $T_{0}=\infty$ if there is no return to 0 , and

$$
T_{0}=\inf \left\{n>0 ; S_{n}=0\right\}
$$

Probability to be at origin after n steps: We set

$$
p_{0}(n)=\mathbf{P}\left(S_{n}=0\right)
$$

Probability that 1 st return occurs after n steps: Define

$$
f_{0}(n)=\mathbf{P}\left(T_{0}=n\right)=\mathbf{P}\left(S_{1} \neq 0, \ldots, S_{n-1} \neq 0, S_{n}=0\right)
$$

Rok Ir is easier to compute

$$
P_{0}(n)=P\left(S_{n}=0\right) \longrightarrow \begin{aligned}
& \text { involves } s \text { ar } \\
& \text { rime } n \text { oulu }
\end{aligned}
$$ rime n only

than

$$
f_{0}(n) \equiv P\left(T_{0}=n\right)=P\left(S_{1} \neq 0, S_{2} \neq 0, \ldots, S_{n-1} \neq 0, S_{n}=0\right)
$$

\rightarrow involves the whole past of $\left(J_{k}\right)$ up
 to rome n

Notation (2)
 $$
\left.p_{0}(n)=P()_{n}=0\right)
$$
 $$
f_{0}(n)=P\left(T_{0}=n\right)
$$

Generating functions: We set
generating function fa

$$
P_{0}(s)=\sum_{n=0}^{\infty} p_{0}(n) s^{n}, \quad F_{0}(s)=\sum_{n=1}^{\infty} f_{0}(n) s^{n}
$$

$$
F_{0}(s)=\mathbf{E}\left[s^{T_{0}}\right] \not \bigwedge
$$

Warning: T_{0} is a defective random variable. Thus we have - $s^{T_{0}}=0$ if $T_{0}=\infty$ if $s \in[0,1)$

- This is also valid as $s \ngtr 1 \quad$ (hence " $1^{\infty}=0$ " here))
- Thus $F_{0}(1)=\mathbf{P}\left(T_{0}<\infty\right)$

$$
\begin{aligned}
\lim _{s \rightarrow 1} F_{0}(s) & =1-P\left(T_{0}=\infty\right) \\
& =P\left(T_{0}<\infty\right)
\end{aligned}
$$

Jusrification fu $F_{0}(1)=P\left(T_{0}<\infty\right)$

$$
F_{0}(s)=\sum_{n=1}^{\infty} f_{0}(n) s^{n}
$$

Thus by Abel's thm

$$
\begin{aligned}
F_{0}(1) & =\lim _{s \rightarrow 1} F_{0}(s)=\lim _{s \rightarrow 1} \sum_{n=1}^{\infty} f_{0}(n) s^{n} \\
& =\sum_{n=1}^{\infty} f_{0}(n)=\sum_{n=1}^{\infty} P\left(T_{0}=n\right) \\
& =P\left(T_{0} \in\{1,2,3, \ldots S)\right. \\
F_{0}(1) & =P\left(T_{0}<\infty\right)
\end{aligned}
$$

To is a defective random variable: means that $T_{0} \in\{1,2, \ldots,\} \quad \cup\{\infty\}$

Computing P_{0} and F_{0}

Theorem 11.

Let S_{n} be the random walk with parameters p and $q=1-p$. Then
(1) P_{0} and F_{0} satisfy

$$
P_{0}(s)=1+P_{0}(s) F_{0}(s)
$$

(2) P_{0} verifies

$$
P_{0}(s)=\frac{1}{\left(1-4 p q s^{2}\right)^{1 / 2}}
$$

(3) F_{0} is given by

$$
F_{0}(s)=1-\left(1-4 p q s^{2}\right)^{1 / 2}
$$

$\operatorname{set} A=\left(L_{h}=0\right)$
we have $P\left(S_{n}=0\right)=P\left(\left(J_{n}=0\right) \cap \bigcup_{n=1}^{n}\left(T_{0}=k\right)\right)$
If $\left(S_{n}=0\right) \Rightarrow\left(T_{0} \leq n\right)$
Thas $\left(S_{n}=0\right) \subset\left(T_{0} \leqslant n\right)$

$$
\begin{aligned}
\Rightarrow P\left(S_{n}=0\right) & =P\left(\left(S_{n}=0\right) \cap\left(T_{0} \leq n\right)\right) \\
A \subset B \Rightarrow P(A) & =P(A \cap B)
\end{aligned}
$$

$$
\begin{aligned}
& P(A \cap B)=P(A(B) P(B) \\
& P\left(S_{n}=0\right)=P\left(\left(J_{n}=0\right) \cap \bigcup_{k=1}^{n}\left(T_{0}=k\right)\right) \\
& =\sum_{k=1}^{n} P\left(\left(S_{n}=0\right) \cap\left(T_{0}=k\right)\right) \\
& \left.\left.=\sum_{k=1}^{n} \frac{P\left(J_{n} j_{0}+i n t ~ s e t s ~\right.}{P_{0}(n-k)} \right\rvert\, T_{0}=k\right)
\end{aligned}
$$

We have oflached: $p_{0}(n)=\sum_{k=1}^{n} p_{0}(n-k) f_{0}(k)$
 almost a convolution ($k=0$ is mis)ing) new rondom walk stouting fion 0

Summary

$$
p_{0}(n)=\sum_{k=1}^{n} p_{0}(n-k) f_{0}(k)+p_{0}(0)=1
$$

Taking

$$
\sum p_{0}(n) s^{n}=\sum\left(\sum_{k=1}^{n} p_{0}(n-k) f_{0}(k)\right) s^{n}
$$

+ same computations as far the convolution we get

$$
P_{0}(\jmath)=1+P_{0}(\jmath) F_{0}(s)
$$

Rok The step) for the ru are x_{i} x_{i} is not exactly a $B(p)$ 1.v. However, one can wite $x_{i}=2 y_{i}-1$, with $Y_{i} \sim B(p)$
Indeed, if $y_{i}=0$, then $X_{1}=-1$ (pact)
if $y_{i}=1$, then $x_{i}=1 \quad($ prod $p)$
Compute $P_{0}(n)$.
$\operatorname{Bin}(n, p)$

$$
\begin{aligned}
& P_{0}(n)=P\left(J_{n}=0\right)=P\left(\sum_{k=1}^{n} x_{k}=0\right) \hat{} \\
& =P\left(\sum_{k=1}^{n}\left(2 Y_{k}-1\right)=0\right)=P\left(2\left(\sum_{k=1}^{n} y_{k}\right)-n=0\right) \\
& =P\left(\sum_{k=1}^{n} Y_{k}=\frac{n}{2}\right)=\left\{\begin{array}{l}
n \\
n k
\end{array} P_{0}^{n / k} q^{n / 2}\right. \text { ifnevea }
\end{aligned}
$$

Proof of Theorem 11 (1)

Events: We set

$$
A=\left(S_{n}=0\right), \quad B_{k}=\left(T_{0}=k\right)
$$

Decomposition for A : We have

$$
A=A \cap\left(\bigcup_{k=1}^{n} B_{k}\right)=\bigcup_{k=1}^{n}\left(A \cap B_{k}\right)
$$

Decomposition for $\mathbf{P}(A)$: We get

$$
\begin{equation*}
\mathbf{P}(A)=\sum_{k=1}^{n} \mathbf{P}\left(A \cap B_{k}\right)=\sum_{k=1}^{n} \mathbf{P}\left(A \mid B_{k}\right) \mathbf{P}\left(B_{k}\right) \tag{1}
\end{equation*}
$$

Proof of Theorem 11 (2)

Convolution relation: Equation (1) can be read as

$$
p_{0}(n)=\sum_{k=1}^{n} p_{0}(n-k) f_{0}(k), \quad \text { for } \quad n \geq 1, \quad \text { and } \quad p_{0}(0)=1
$$

Expression with generating functions: We get

$$
P_{0}(s)=1+P_{0}(s) F_{0}(s)
$$

Proof of Theorem 11 (3)

Computing $p_{0}(n)$: We have
(1) For n odd,

$$
p_{0}(n)=0
$$

(2) For n even, one argue that

- $\left(S_{n}=0\right) \Longleftrightarrow$ equal \# steps up and steps down
- There is $\binom{n}{n / 2}$ ways to choose the up steps
- Probability of each sequence leading to $0:(p q)^{n / 2}$

Thus for n even we have

$$
p_{0}(n)=\mathbf{P}\left(S_{n}=0\right)=\binom{n}{n / 2}(p q)^{n / 2}
$$

