Aim Get an expression fer $f_{0}(n)=P\left(T_{0}=n\right) \quad P_{0}(n)=P\left(S_{n}=0\right)$
We have proved
(i) $P_{0}(s)=1+P_{0}(s) F_{0}(s)$
(ii) $p_{0}(n)=\left\{\begin{array}{ll}n \\ n / 2\end{array}\right)(p q)^{n / 2} \quad$ if n even

Strategy (i) Compute $P_{0}(3)$
(ii) From there, compute $F_{0}(s)$

$$
p_{0}(n)=\left\{\begin{array}{cc}
n \\
n / 2
\end{array}\right)(p q)^{n / 2} \quad \text { if } n \text { even }
$$

Thus

$$
\begin{aligned}
P_{0}(s) & =\sum_{n=0}^{\infty} p_{0}(n) s^{n} \\
& =\sum_{m=0}^{\infty}\binom{2 m}{m}(p q)^{m} s^{2 m} \\
P_{0}(s) & =\sum_{m=0}^{\infty} \frac{(2 m)!}{(m!)^{2}}\left(p q s^{2}\right)^{m}
\end{aligned}
$$

$$
\begin{equation*}
P_{0}(\Delta)=\sum_{m=0}^{\infty} \frac{(2 m)!}{(m!)^{2}}\left(p q s^{2}\right)^{m} \tag{1}
\end{equation*}
$$

Tayla identity

$$
\frac{1}{(1+x)^{2}}=\sum_{m=0}^{\infty} \frac{(2 m)!}{(m!)^{2}}\left(\frac{-x}{4}\right)^{m}
$$

Identifying with (1): $\frac{-x}{4}=p q s^{2} \Leftrightarrow x=-4 p q s^{2}$

$$
P_{0}(s)=\frac{1}{\left(1-4 p q s^{2}\right)^{\frac{1}{2}}}
$$

$$
P_{0}(1)=\frac{1}{\left(1-4 p q s^{2}\right)^{\frac{1}{2}}}
$$

Computation of $F_{0}(\mathrm{~s})$: we have seen

$$
\begin{aligned}
& P_{0}(s)=1+P_{0}(s) F_{0}(s) \\
& \Leftrightarrow F_{0}(s)=\frac{P_{0}(s)-1}{P_{0}(s)}=\frac{\frac{1}{\left(1-4 p q s^{2} \tau^{2}\right.}-1}{\frac{1}{\left(1-4 p q s^{2}\right)^{\frac{1}{2}}}} \\
& F_{0}(s)=1-\left(1-4 p q s^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

Rok From $F_{0}(J)$, we could derive all the values by differentiating

$$
f_{0}(n)=P\left(T_{0}=n\right),
$$

$$
F_{0}(s)
$$

Proof of Theorem 11 (4)

First expression for P_{0} : We have found

$$
P_{0}(n)=\sum_{m=0}^{\infty}\binom{2 m}{m}(p q)^{m} s^{2 m}=\sum_{m=0}^{\infty} \frac{(2 m)!}{(m!)^{2}}\left(p q s^{2}\right)^{m}
$$

A binomial series: We have

$$
\frac{1}{(1+x)^{1 / 2}}=\sum_{m=0}^{\infty} \frac{(-1)^{m}(2 m)!}{4^{m}(m!)^{2}} x^{m}=\sum_{m=0}^{\infty} \frac{(2 m)!}{(m!)^{2}}\left(-\frac{x}{4}\right)^{m}
$$

Second expression for P_{0} : We get

$$
P_{0}(s)=\frac{1}{\left(1-4 p q s^{2}\right)^{1 / 2}}
$$

Proof of Theorem 11 (5)

Summary: We have obtained

$$
\begin{aligned}
P_{0}(s) & =1+P_{0}(s) F_{0}(s) \\
P_{0}(s) & =\frac{1}{\left(1-4 p q s^{2}\right)^{1 / 2}}
\end{aligned}
$$

Conclusion: We easily get

$$
F_{0}(s)=1-\left(1-4 p q s^{2}\right)^{1 / 2}
$$

$$
f_{0}(s)=1-\left(1-4 p q s^{2}\right)^{\frac{1}{2}}
$$

Expression fur $P\left(T_{0}<\infty\right)$ in reams of F_{0}
we have seen, fa defective $\Omega \cdot v$, that

$$
\begin{aligned}
P\left(T_{0}<\infty\right) & =F_{0}(1) \\
& =1-(1-4 p q)^{\frac{1}{2}}
\end{aligned}
$$

Thus

$$
\begin{aligned}
P\left(T_{0}<\infty\right) & =1-(1-4 p(1-p))^{\frac{1}{2}} \\
& =1-\left(1-4 p+4 p^{2}\right)^{\frac{1}{2}} \\
& =1-\left((2 p-1)^{2}\right)^{\frac{1}{2}} \sqrt{a^{2}}=|a| \\
& =1-|2 p-1| \\
P\left(T_{0}<\infty\right) & =1-|p-q|
\end{aligned}
$$

$$
P\left(T_{0}<\infty\right)=1-|p-a|<1 \text { if } p \neq q
$$

Rok $T_{0} \geqslant 0$, and $p \neq q$ we have

$$
\begin{aligned}
& P\left(T_{0}=\infty\right)>0 \text { if } p \neq q \\
\Rightarrow & E\left[T_{0}\right]=\infty
\end{aligned}
$$

\Rightarrow The interesting case fir $E\left[T_{0}\right]$ is when $p=q=\frac{1}{2}$
case $p=\frac{1}{2}$. We have

$$
\begin{aligned}
& F_{0}(J)=1-\left(1-4 p q s^{2}\right)^{\frac{1}{2}} \quad \& p q=\frac{1}{4} \\
& F_{0}(J)=1-\left(1-s^{2}\right)^{\frac{1}{2}} \quad
\end{aligned}
$$

Computation of $E\left[T_{0}\right]$

$$
\begin{aligned}
& F_{0}(s)=1-\left(1-s^{2}\right)^{\frac{1}{2}} \\
& E\left[T_{0}\right]=F_{0}^{\prime}(1)
\end{aligned}
$$

We have $F_{0}^{\prime}(\lambda)=\frac{1}{2} \frac{2 s}{\left(1-s^{2}\right)^{2}}$

$$
F_{0}^{\prime}(s)=\frac{s}{\left(1-s^{2}\right)^{\frac{1}{2}}}
$$

Thew $F_{0}^{\prime}(1)=\lim _{s \rightarrow 1} F_{0}^{\prime}(s)=\infty$ we have found $E\left[T_{0}\right]=\infty$

Interpretation for $p>q \quad\left(p>\frac{1}{2}\right)$

$$
\frac{S_{n}}{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \quad x_{i} \text { ind } 1 \cdot v
$$

Law of longe numbers: $\frac{S_{n}}{n} \longrightarrow E\left[x_{1}\right]$
and $E\left[x_{1}\right]=p \times 1+(1-p)(-1)=p\left(x_{1}=1\right) \times 1$

$$
=2 p-1>0+P\left(x_{1}=-1\right) \times(-1)
$$

Thus $J_{n} \simeq(2 p-1) n$

In terpretahion $\quad D=\frac{1}{2}$

Proof of Proposition 12 (1)

Expression for F_{0} : We have seen

$$
F_{0}(s)=1-\left(1-4 p q s^{2}\right)^{1 / 2}
$$

Expression for $\mathbf{P}\left(T_{0}<\infty\right)$: We have also seen that

$$
\mathbf{P}\left(T_{0}<\infty\right)=F_{0}(1)
$$

Hence

$$
\begin{aligned}
\mathbf{P}\left(T_{0}<\infty\right) & =F_{0}(1) \\
& =1-(1-4 p q)^{1 / 2} \\
& =1-|2 p-1| \\
& =1-|p-q|
\end{aligned}
$$

Proof of Proposition 12 (2)

F_{0} for $p=1 / 2$: When $p=q=\frac{1}{2}$ we have

$$
F_{0}(s)=1-\left(1-s^{2}\right)^{1 / 2}
$$

Expression for $\mathbf{E}\left[T_{0}\right]$: We have seen that

$$
\mathbf{E}\left[T_{0}\right]=F_{0}^{\prime}(1)
$$

Computation of F_{0}^{\prime} : We get

$$
F_{0}^{\prime}(s)=\frac{s}{\left(1-s^{2}\right)^{1 / 2}}
$$

Conclusion: We have

$$
\mathrm{E}\left[T_{0}\right]=F_{0}^{\prime}(1)=\infty
$$

