Vocabulary If $N(0)=\#$ visits to 0 . In the rearrest
case $P(N(0)=\infty)=1$
Rump: In that case, \# visits to 0 is $=\infty$
Persistent or recurrent: the random walk is said to be recurrent \hookrightarrow if $\mathbf{P}\left(T_{0}<\infty\right)=1$

Transient: the random walk is said to be transient
\hookrightarrow if $\mathbf{P}\left(T_{0}<\infty\right)<1 \quad \underline{\text { Rok: In that care } \# \text { visits to } 0}$ is always finite Summarizing our result: We have seen that $P(N(0)=\infty)=0$

Random walk is persistent $\Longleftrightarrow p=\frac{1}{2}$

Visits to point r

 $r>0$
Definition 13.

The first time to visit r is defined by

$$
T_{r}=\inf \left\{n>0 ; S_{n}=r\right\}
$$

Then we set

$$
f_{r}(n)=\mathbf{P}\left(T_{r}=n\right)=\mathbf{P}\left(S_{1} \neq r, \ldots, S_{n-1} \neq r, S_{n}=r\right)
$$

and

$$
F_{r}(s)=\sum_{n=1}^{\infty} f_{r}(n) s^{n}
$$

Generating function for T_{r}

Theorem 14.

For $r \geq 1$ we have

$$
F_{r}(s)=\left[F_{1}(s)\right]^{r}
$$

with

$$
F_{1}(s)=\frac{1-\left(1-4 p q s^{2}\right)^{1 / 2}}{2 q}
$$

Sruredy :. Decompore $A=\left(T_{r}=n\right)$
Befue reaching Ω, we need to reach $\Omega-1$

$$
\Omega>1 \quad(\rightarrow \Omega-1 \geqslant 1)
$$

Decompositior:
disjounts

$$
\begin{aligned}
& P\left(T_{\Omega}=n\right)=P\left(\left(T_{\Omega}=n\right) \cap \bigcup_{k=1}^{n-1}\left(T_{\Omega-1}=n-k\right)\right) \\
& =\sum_{k=1}^{n-1} P\left(\left(T_{R}=n\right) \cap\left(T_{1-1}=n-k\right)\right) \quad f_{\Omega-1}(n-k \\
& =\sum_{n=1}^{n-1} P\left(T_{\Omega}=n \mid T_{n-1}=n-k\right) P\left(T_{\Omega-1}=n-k\right)
\end{aligned}
$$

Summary: We have found $\quad \Omega>1 n \geqslant 1$

$$
f_{2}(n)=\sum_{k=1}^{n-1} f_{1}(k) f_{n-1}(n-k)
$$

Initial condition $f_{r}(0)=P\left(T_{l}=0\right)=0$
By convolution,

$$
F_{r}(\mathrm{~s})=F_{1}(\mathrm{~J}) F_{r-1}(\mathrm{~s})
$$

Recursion We find

$$
F_{r}(\mathrm{l})=\left[F_{1}(\mathrm{~s})\right]^{r}
$$

Conditionning to compute $F_{1} \quad$ Rmk: $S_{1} \in\{-1,1\}$

$$
\begin{aligned}
& f_{1}(n)=P\left(T_{1}=n\right) \quad \text { Hyp: } n>1 \quad \times P\left(S_{1}=-1\right) \\
& =P\left(T_{1}=n \mid S_{1}=1\right) P\left(S_{1}=1\right)+P\left(T_{1}=n \mid S_{1}=-1\right) \\
& =0 \times p+\frac{P\left(T_{1}=n \mid S_{1}=-1\right)}{}=0 \\
& f_{2}(n-1)
\end{aligned}
$$

$$
f_{1}(n)=f_{2}(n-1) q
$$

we nave obkeined, for $n>1$ fiststepisup $f_{1}(n)=9 f_{2}(n-1) \quad \& \quad f_{1}(1)=P\left(\widetilde{T_{1}}=1\right)=P$

$$
\begin{aligned}
& \text { Sum over } n \\
& \begin{aligned}
F_{1}(s)=\sum_{n=0}^{\infty} f_{1}(n) s^{n} & =p s+\sum_{n=2}^{\infty} \frac{f_{1}(n)}{q f_{2}(n-1)} s^{n} s \\
& =p s+q s \sum_{n=2}^{\infty} f_{2}(n-1) s^{n-1} \quad c v: n:=n-1 \\
& =p s+q s \sum_{n=0}^{\infty} f_{2}(n) s^{n}
\end{aligned}
\end{aligned}
$$

we ger

$$
\begin{aligned}
& F_{1}(J)=p s+q s F_{2}(J) \quad F_{r}(J)=\left(F_{1}(J)\right)^{\Omega} \\
& F_{1}(J)=p s+q s\left(F_{1}(s)\right)^{2} \rightarrow \begin{array}{c}
\text { quachatic } \\
\text { eq. }
\end{array}
\end{aligned}
$$

Proof of Theorem 14 (1)

Events: We set, for $r>1$,

$$
A=\left(T_{r}=n\right), \quad B_{k}=\left(T_{r-1}=n-k\right)
$$

Decomposition for A : We have

$$
A=A \cap\left(\bigcup_{k=1}^{n-1} B_{k}\right)=\bigcup_{k=1}^{n-1}\left(A \cap B_{k}\right)
$$

Decomposition for $\mathbf{P}(A)$: We get

$$
\begin{equation*}
\mathbf{P}(A)=\sum_{k=1}^{n-1} \mathbf{P}\left(A \cap B_{k}\right)=\sum_{k=1}^{n-1} \mathbf{P}\left(A \mid B_{k}\right) \mathbf{P}\left(B_{k}\right) \tag{2}
\end{equation*}
$$

Proof of Theorem 14 (2)

Convolution relation: Equation (2) can be read as

$$
f_{r}(n)=\sum_{k=1}^{n-1} f_{1}(k) f_{r-1}(n-k), \quad \text { for } \quad n \geq 1, \quad \text { and } \quad f_{r}(0)=0
$$

Expression with generating functions: We get

$$
F_{r}(s)=F_{1}(s) F_{r-1}(s)
$$

Conclusion for F_{r} : Iterating the above relation we get

$$
F_{r}(s)=\left[F_{1}(s)\right]^{r}
$$

Proof of Theorem 14 (3)

Conditioning on X_{1} : For $n>1$ we have

$$
\begin{aligned}
\mathbf{P}\left(T_{1}=n\right) & =\mathbf{P}\left(T_{1}=n \mid X_{1}=1\right) p+\mathbf{P}\left(T_{1}=n \mid X_{1}=-1\right) q \\
& =0+\mathbf{P}\left(1 \text { st visit to } 1 \text { takes } n-1 \text { steps } \mid S_{0}=-1\right) q \\
& =\mathbf{P}\left(T_{2}=n-1\right) q
\end{aligned}
$$

Relation on pmf's: We get, for $n>1$

$$
f_{1}(n)=q f_{2}(n)
$$

Relation on generating functions: Multiplying by s^{n} we obtain

$$
\begin{aligned}
F_{1}(s) & =p s+s q F_{2}(s) \\
& =p s+s q\left(F_{1}(s)\right)^{2}
\end{aligned}
$$

Proof of Theorem 14 (4)

Recall: We have obtained

$$
F_{1}(s)=p s+s q\left(F_{1}(s)\right)^{2}
$$

Expression for F_{1} :
Solving for $F_{1}(s)$ in the quadratic equation we get

$$
F_{1}(s)=\frac{1-\left(1-4 p q s^{2}\right)^{1 / 2}}{2 q}
$$

Visits to the upper half plane

Proposition 15.

Let S_{n} be the random walk
\hookrightarrow with parameters p and $q=1-p$.
Then
\mathbf{P} (At least one visit to the upper half plane $)=\min$

