Summery $\quad r \geqslant 1$

$$
T_{r}=\inf \left\{n>0 ; \quad S_{n}=r\right\}
$$

Then
(i) $F_{r}(\jmath)=\left(F_{1}(\jmath)\right)^{\Omega}$
(ii) $F_{1}(s)=\frac{1-\left(1-4 p q s^{2}\right)^{\frac{1}{2}}}{2 q}$

Visits to the upper half plane

Proposition 15.

Let S_{n} be the random walk \hookrightarrow with parameters p and $q=1-p$.

$$
=\left\{\begin{array}{cc}
1 & \text { if } p \geq \frac{1}{c} \\
\frac{p}{q} & \text { if } p<\frac{1}{c}
\end{array}\right.
$$

Then
$\mathbf{P}($ At least one visit to the upper half plane $)=\min \left(1, \frac{p}{q}\right)$

Relation to T_{1} Let

$$
\begin{aligned}
A & =\text { (Ar least one visit to upper half plane) } \\
& =(\text { we hit level } 1) \\
& =\left(T_{1}<\infty\right)
\end{aligned}
$$

Relation to F_{1} we have seen

$$
\begin{aligned}
& P\left(T_{1}<\infty\right)=F_{1}(1)=\frac{1-(1-4 p q)^{\frac{1}{2}}}{2 q} \\
& =\frac{1-(1-4 p(1-p))^{\frac{1}{2}}}{2 q} \\
& =\frac{1-\left[(2 p-1)^{2}\right]^{\frac{1}{2}}}{2 q}=\frac{1-12 p-11}{2 q}
\end{aligned}
$$

Computation of $P(A)$

$$
P(A)=P\left(T_{1}<\infty\right)=\frac{1-|2 p-1|}{2(1-p)}
$$

Case $p \geqslant \frac{1}{2}$: we get
$P(A)=\frac{1-2 p+1}{2(1-p)}=\frac{2-2 p}{2-2 p}=1$
Case $p<1 / 2$: we get

$$
P(A)=\frac{1-1+2 p}{2 q}=\frac{2 p}{2 q}=\frac{p}{q}
$$

Proof of Proposition 16

Notation: Set

$$
A=\text { At least one visit to the upper half plane }
$$

Expression with generating function: We have

$$
\begin{aligned}
\mathbf{P}(A) & =\mathbf{P}\left(T_{1}<\infty\right) \\
& =F_{1}(1) \\
& =\frac{1-|p-q|}{2 q}
\end{aligned}
$$

Conclusion: Separating cases $p>q$ and $p \leq q$ we get

$$
\mathbf{P}(A)=\min \left(1, \frac{p}{q}\right)
$$

Hitting time theorem

Theorem 16.

Let

- S_{n} be the random walk with parameters p and $q=1-p$
- $b \in \mathbb{Z}^{*}$ and $n \geq 1$
- $T_{b}=\inf \left\{n>0 ; S_{n}=b\right\}$

Then

$$
\widehat{\mathbf{P}\left(T_{b}=n\right)}=\frac{|b|}{n} \widehat{\mathbf{P}\left(S_{b}=n\right)}
$$

Outline

Calender hes changed
 (i) HW schedule
 (ii) Midterm: 3/6

(1) Generating functions

(2) Random walks
(3) Branching processes

Model

Model for population evolution:

- $Z_{n} \equiv \#$ individuals of n-th generation
- At n-th generation: each member gives birth \hookrightarrow To a \# individuals of $(n+1)$-th generation
- Family size: random variable

Assumptions on the model

Main hypotheses:

all equally distributed

(1) Family sizes form collection of \Perp random variables
(2) Family sizes have same mf f
\hookrightarrow with generating function G
(3) $Z_{0}=1$

Generating functions for random sums

Theorem 17.

Let

- $\left\{X_{j} ; j \geq 1\right\}$ sequence of i.i.d random variables
- $G_{X} \equiv$ common generating function $=G_{X_{1}}$
- N random variable, with $N \Perp\left(X_{j}\right)_{j \geq 1}$ and $N \in\{0,1, \ldots\}$
- $G_{N} \equiv$ generating function for N
- $Z=\sum_{j=1}^{N} X_{j}$

Then

$$
G_{Z}(s)=G_{N}\left(G_{X}(s)\right)
$$

Notakion: If A event, $\mathbb{1}_{A}= \begin{cases}1 & \text { if A occins } \\ 0\end{cases}$

$$
z=\sum_{i=1}^{N} x_{i}
$$

Generaking function $\quad G_{z}(J)=E\left[s^{z}\right]$

$$
\begin{aligned}
& G_{z}(s)=E\left[S^{\sum_{i=1}^{N} x_{i}}\right] \quad \sum_{n=0}^{\infty} S_{N=1}^{\infty}=1 \\
& =E\left[S^{\sum_{i=1}^{N} x_{i}} \sum_{n=0}^{\infty} \mathbb{1}_{(N=n)}\right] \\
& =\sum_{n=0}^{\infty} E\left[J^{z_{i=1}^{N} x_{i}^{n}} 1(v=n)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{n=0}^{\infty} E\left[S^{\left.\sum_{i=1}^{n} \frac{\text { all }}{x_{i}}\right]} E=E\left[\mathbb{1}_{N=n}\right] P(N=n)\right. \\
& =\sum_{n=0}^{\infty} \prod_{i=1}^{n} E\left[S^{\left.x_{i}\right]}=G_{x}^{(s)} f_{N}(n) \text { pmif of } N\right. \\
& =\sum_{n=0}^{\infty}\left(G_{x}(s)\right)^{n} f_{N}(n)=G_{N}\left(G_{x}(s)\right)
\end{aligned}
$$

Proof of Theorem 17

Computation: We have

$$
\begin{aligned}
G_{Z}(s) & =\mathbf{E}\left[s^{Z}\right] \\
& =\sum_{n=0}^{\infty} \mathbf{E}\left[s^{Z} \mid N=n\right] \mathbf{P}(N=n) \\
& =\sum_{n=0}^{\infty} \mathbf{E}\left[s^{\sum_{j=1}^{N} x_{j}} \mid N=n\right] \mathbf{P}(N=n) \\
& =\sum_{n=0}^{\infty} \mathbf{E}\left[s^{\sum_{j=1}^{n} x_{j}}\right] \mathbf{P}(N=n) \\
& =\sum_{n=0}^{\infty}\left(G_{X}(s)\right)^{n} f_{N}(n) \\
& =G_{N}\left(G_{X}(s)\right)
\end{aligned}
$$

Generating function for the branching process

Theorem 18.

For the branching process, recall that

- $Z_{n}=\#$ individuals of n-th generation
- $G=$ generating function for the offspring $f=G_{X}$

We set

$$
G_{n}(s)=\mathbf{E}\left[s^{Z_{n}}\right]=\text { gen. fot for } z_{n}
$$

Then

$$
G_{m+n}(s)=G_{m}\left(G_{n}(s)\right)=G_{n}\left(G_{m}(s)\right)
$$

Thus

$$
\begin{aligned}
& =G\left(G_{F}(\cdots G(s)) \cdots\right) \\
G_{n}(s) & =G^{\circ(n)}(s)
\end{aligned}
$$

