## Generating function for the branching process

## Theorem 18.

For the branching process, recall that

- $Z_{n}=\#$ individuals of $n$-th generation
- $G=$ generating function for the offspring $f$

We set

$$
G_{n}(s)=\mathbf{E}\left[s^{Z_{n}}\right]
$$

Then

$$
G_{m+n}(s)=G_{m}\left(G_{n}(s)\right)=G_{n}\left(G_{m}(s)\right)
$$

Thus

$$
G_{n}(s)=G^{\circ(n)}(s)
$$

Recursion Recall that $z_{n+1}=\sum_{j=1}^{z_{n}} Y_{i}^{(n+1)}$
And $Z_{n}$ has pgf $G_{n}$
$\left\{Y_{i}^{(n n)} ; i \geqslant 1\right\}$ have pg $G$
Aplying The 17, we get

$$
G_{z_{n-1}}(s)=G_{n}(G(s))
$$

$$
\begin{aligned}
& P\left(z_{0}=1\right)=1 \\
& P\left(z_{0}=k\right)=0
\end{aligned}
$$

Initial condition For $n=0, z_{0}=1$

$$
\begin{aligned}
& G_{0}(\jmath)=\sum_{k=0}^{\infty} P\left(z_{0}=k\right) J^{k}=1 \times s^{\prime}=s \\
& G_{0}(J)=s
\end{aligned}
$$

conclusion

$$
\begin{aligned}
& G_{0}(\mathrm{~s})=1, G_{\underline{l}}(\mathrm{~J})=G\left(G_{0}(\mathrm{~s})\right)=G(\mathrm{~s})=G^{o(\overline{(1)}}(\mathrm{s}) \\
& \ldots \quad G_{n}(\mathrm{~s})=G_{T}^{o(n)}(\mathrm{J})
\end{aligned}
$$

## Proof of Theorem 18 (1)

Decomposition of $Z_{n+m}$ : Write

$$
\begin{aligned}
Z_{n+m} & =Y_{1}+\cdots+Y_{Z_{m}} \\
& =\sum_{j=1}^{Z_{m}} Y_{j}
\end{aligned}
$$

where

$$
\begin{gathered}
Y_{j}=\# \text { individuals in generation }(n+m) \text { which stem } \\
\text { from individual } j \text { in } m \text {-th generation }
\end{gathered}
$$

## Proof of Theorem 18 (2)

Recall:

$$
Z_{n+m}=\sum_{j=1}^{Z_{m}} Y_{j}
$$

Information on the random variables $Y_{j}$ :

- $Y_{j}$ 's are independent
- $Y_{j}$ 's are independent of $Z_{m}$
- $Y_{j} \stackrel{(d)}{=} Z_{n}$

Application of Theorem 17:

$$
G_{m+n}(s)=G_{m}\left(G_{Y_{1}}(s)\right)=G_{m}\left(G_{n}(s)\right)
$$

## Moments of $Z_{n}$ Intuition: $\mu=1 \Rightarrow$ senvival

## Proposition 19.

For the branching process with offspring $Z_{1} \sim f$ set

$$
\mu=\mathbf{E}\left[Z_{1}\right], \quad \sigma^{2}=\operatorname{Var}\left(Z_{1}\right)
$$

Then

$$
\mathbf{E}\left[Z_{n}\right]=\mu^{n}
$$

and

$$
\operatorname{Var}\left(Z_{n}\right)= \begin{cases}n \sigma^{2} & \text { if } \mu=1 \\ \frac{\sigma^{2}\left(\mu^{n}-1\right) \mu^{n-1}}{\mu-1} & \text { if } \mu \neq 1\end{cases}
$$

Remark or $E\left[z_{n}\right]$

$$
E\left[z_{n}\right]=\mu^{n}
$$

Thus $\mu<1 \Rightarrow \lim _{n \rightarrow \infty} E\left[z_{n}\right]=0$
con average, extinction)

$$
\mu=1 \quad \Rightarrow \quad \lim _{n \rightarrow \infty} E\left[z_{n}\right]=1
$$

(on average, survival)

$$
\underline{\mu>1} \Rightarrow \lim _{n \rightarrow \infty} E\left[z_{n}\right]=\infty
$$

(on average, exponential growth)

Q: What does the valiance of a I.V. measure?
Remark on $\operatorname{Var}\left(t_{n}\right)$ Flacheakions predictable / unpredictable
If $\mu=1, \operatorname{Var}\left(t_{n}\right)=n \sigma^{2}$
Thus $E\left[z_{n}\right)=1$, Oscillations $\left(z_{n}\right) \simeq \sigma \sqrt{2}$
( $z_{n}$ might get la ge, a $z_{n} \rightarrow 0$ )
If $\mu<1$

$$
\begin{gathered}
\operatorname{var}\left(z_{n}\right)=\frac{\sigma^{2}\left(\mu^{n}-1\right) \mu^{n-1}}{\mu-1}=\frac{1-\mu^{n}}{1-\mu} \sigma^{2} \mu^{n-1} \\
\sigma_{z_{n}}=\left(\operatorname{Var}\left(z_{n}\right)\right)^{\frac{1}{c}}=\left(\frac{1-\mu^{n}}{1-\mu}\right)^{\frac{1}{2}-\mu} \sigma \mu^{\frac{n-1}{2}} \xrightarrow{n \rightarrow 0} 0
\end{gathered}
$$

Thus $\left.\begin{array}{rl}E\left[z_{n}\right] & \rightarrow 0 \\ \sigma_{z_{n}} & \rightarrow 0\end{array}\right\} \Rightarrow$ extinction

Cale $\mu>1$

$$
\begin{aligned}
& \operatorname{var}\left(z_{n}\right)=\frac{\sigma^{2}\left(\mu^{n}-1\right) \mu^{n-1}}{\mu-1} \\
& \sigma_{z_{n}}=\left(\operatorname{var}\left(z_{n}\right)\right)^{\frac{1}{2}} \asymp \frac{\sigma}{\sqrt{\mu-1}} \frac{1}{\sqrt{\mu}} \mu^{n}
\end{aligned}
$$

Thus

$$
\left.\begin{array}{rl}
E\left[z_{n}\right] & =\mu^{n} \\
\sigma_{z_{n}} & \simeq c_{\mu, \sigma} \mu^{n}
\end{array}\right) \text { Populakion } \text { exposion? }
$$

Proof of $E\left[Z_{n}\right]=\mu^{n}$
we know that $G_{n n}(s)=G\left(G_{n}(s)\right)$
we we this relation to get a secursiar on $E\left[z_{n}\right]=G_{n}^{\prime}(1)$

$$
\begin{aligned}
\left(G_{n+1}(s)\right)^{\prime} & =\left(G\left(G_{n}(s)\right)\right)^{\prime} \\
G_{n+1}^{\prime}(s) & =G^{\prime}\left(G_{n}(s)\right) G_{n}^{\prime}(s)
\end{aligned}
$$

At $s=1$, we get $\left(G_{n}(1)=1\right.$ since tu finite)

$$
\begin{aligned}
& E\left[z_{n+\pi}\right]=G_{n+1}^{\prime}(1)\left.=G^{\prime}(1) G_{n}^{\prime}(1)\right) \\
&=\mu E\left[z_{n}\right] \\
& \Rightarrow E\left[z_{n \pi}\right]=\mu E\left[z_{n}\right]
\end{aligned}
$$

Recursion $\quad z_{0}=1$

$$
\begin{aligned}
& E\left[z_{0}\right]=1, E\left[z_{n r i}\right]=\mu E\left[z_{n}\right] \\
& \Rightarrow E\left[z_{n}\right]=\mu^{n}
\end{aligned}
$$

Recursion for $G^{\prime \prime}$

$$
\begin{aligned}
\left(G_{n+1}^{\prime}(1)\right)^{\prime}= & \left(G^{\prime}\left(G_{n}(\rho)\right) G_{n}^{\prime}(\jmath)\right)^{\prime} \\
\left.G_{n+1}^{\prime \prime}(1)\right)= & G^{\prime \prime}\left(G_{n}(1)\right)\left(G_{n}^{\prime}(1)\right)^{2} \\
& \left.+G^{\prime}\left(G_{n}(1)\right) G_{n}^{\prime \prime}(1)\right)
\end{aligned}
$$

linear securxior for $U_{n}=G_{n}^{\prime \prime}(s)$

$$
u_{n+1}=a_{n}+b_{n} u_{n}
$$

We ger

$$
G_{n}^{\prime \prime}(1)=\left(\sigma^{2}+\mu(\mu-1)\right) \mu^{2(n-1)}+\mu G_{n-1}^{\prime \prime}(1)
$$

$\Rightarrow$ expessicer for

$$
G_{n}^{\prime \prime}(1)=E\left[Z_{n}\left(z_{n-1}\right)\right]
$$

$\Rightarrow$ expericon for

$$
\operatorname{Var}\left(t_{n}\right)
$$

## Proof of Proposition 19 (1)

Method of computation: We use

$$
\mathbf{E}\left[Z_{n}\right]=G_{n}^{\prime}(1)
$$

Recursive relation: Recall that

$$
G_{n}(s)=G\left(G_{n-1}(s)\right)
$$

## Proof of Proposition 19 (2)

Recall: We have

$$
G_{n}(s)=G\left(G_{n-1}(s)\right)
$$

Differentiate: We have

$$
G_{n}^{\prime}(s)=G^{\prime}\left(G_{n-1}(s)\right) G_{n-1}^{\prime}(s)
$$

Thus at $s=1$ we get

$$
\mathbf{E}\left[Z_{n}\right]=G^{\prime}(1) \mathbf{E}\left[Z_{n-1}\right]=\mu \mathbf{E}\left[Z_{n-1}\right]
$$

Conclusion: Since $\mathbf{E}\left[Z_{0}\right]=1$, we get

$$
\mathbf{E}\left[Z_{n}\right]=\mu^{n}
$$

## Proof of Proposition 19 (3)

Method for the variance: We use

$$
\mathbf{E}\left[Z_{n}\left(Z_{n}-1\right)\right]=G_{n}^{\prime \prime}(1)
$$

or

$$
\operatorname{Var}\left(Z_{n}\right)=G_{n}^{\prime \prime}(1)+G_{n}^{\prime}(1)-\left(G_{n}^{\prime}(1)\right)^{2}
$$

Recursive relation: We differentiate twice the relation

$$
G_{n}(s)=G\left(G_{n-1}(s)\right)
$$

We get a linear recursion (to be solved)

$$
\begin{aligned}
G_{n}^{\prime \prime}(1) & =G^{\prime \prime}(1)\left(G_{n-1}^{\prime}(1)\right)^{2}+G^{\prime}(1) G_{n-1}^{\prime \prime}(1) \\
& =\left(\sigma^{2}+\mu(\mu-1)\right) \mu^{2(n-1)}+\mu G_{n-1}^{\prime \prime}(1)
\end{aligned}
$$

