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© Continuous time Markov chain
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A model for radioactive particles emission

Model for the process
e N(t) = # particles emitted at time t
o N={N(t); t >0}
e N(0)=0and N(t) e N
o N(s) < N(t)ifs<t

Emission model:
@ In (t, t + h) there might/might not be emissions

@ h small = likelihood of emission is ~ \h
— with an intensity A

@ At most 1 emission if h is small
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Definition of Poisson process

—~ Definition 1. N

Let
o N ={N(t); t >0} process with N(0) =0 and N(t) € N

Then N is a Poisson process if
e N(0)=0and t — N(t)is ~

@ Probability P (N(t + h) = n+ m| N(t) = n) of the form
Ah + o(h) ifm=1

o(h) if m>1
1—Ah+o(h) ifm=0

e N(t) — N(s) 1L emissions on [0, s]

\ J
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Paths of a Poisson process

Poisson Process with X(w;; t)
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Vocabulary

Terminology for Poisson processes:
@ N(t) is interpreted as a number of arrivals

@ N is called counting process

Broader context:
@ N is a simple example of continuous time Markov chain

@ More general objects: in next section
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Birth of Poisson process

3 independent discoveries:
@ Lund, Sweden, 1903
— Actuarial studies

e Erlang, Denmark, 1909
< Telecommunication networks

@ Rutherford, New Zealand, 1910
< Particle emission
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Marginal distribution

~ Theorem 2. \

Let
@ N Poisson process with intensity A
et>0

Then
N(t) ~ P(At),

that is for j € N we have
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Proof of Theorem 2 (1)

Conditioning on a small interval: We have
P(N(t+ h) =)
=Y P(N(t+h) =jIN(t) = i)P(N(t) =)

i€S
- Z P((j— i) arrivals in (t,t+ h]) P (N(t) = 1)
= P (no arrivals in (t,t + h]) P (N(t) = )
+ P (one arrival in (t,t+ h]) P(N(t) =/ — 1) + o(h)

= (1= M) P (N(t) = j) + AP (N(t) = j — 1) + o(h)
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Proof of Theorem 2 (2)

Probability as a function: We set

Equation on small intervals: We have seen

po(t+h) = (1= Ah)po(t) + o(h)
BlE+h) = Mpya()+(1— A pi(2) + o(h)

Equivalent form with differences:

po(t +h) — po(t) = —Ahpo(t) + o(h)
pi(t +h) = pi(t) = Ah(pj-1(t) — pi(t)) + o(h)
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Proof of Theorem 2 (3)

Recall:

po(t +h) — po(t) = —Ahpo(t) + o(h)
pi(t+h) —pi(t) = Ah(pi-1(t) — pi(t)) + o(h)

Differentiating: We end up with a system of ode’s

po(t) = —Apo(t)
pi(t+h) = Apj1(t) — Ap;(t)

Initial condition:
pi(0) = djo = 1o

Samy T. (Purdue) Continuous Markov chains Stochastic processes 13 /114



Proof of Theorem 2 (4)

Recall: We have obtained a system of ode’s

po(t) = —Apo(t)
pi(t+h) = Apa(t) — Api(t)

A family of generating functions: We set
Gi(s) = E[s"®) = 3 py(t)s
j=0

Strategy: From the system of ode’s
— deduce a single ode for t — G,(5s)
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Proof of Theorem 2 (5)

Differential equation for G: We have

aC.;t(s) _ - / J

= —Apo(t +Z Api1(t) — Api(t)) s

= =\ Gt(S) + )\SZ pj_l(t)sj_l
j=1

= —AG(s) + AsGy(s)
= (s —1)Gi(s)
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Proof of Theorem 2 (6)

Recall: u; = G(s) verifies
v =XNs-1)u, up =1
Expression for G;(s): We find

Ge(s) = exp (A(s —1)1)

Conclusion:
N(t) ~ P(At),
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Relation with binomial random variables

Another way to prove N(t) ~ P(At):
@ Partition [0, t] in subintervals [(¢ — 1)h, (h]

@ On each subinterval, set Zy = 1(arival in [(¢—1)5,0h])

© We have that {Z; ¢ > 1} is i.i.d with common law B(\h)
© We have N(t) ~ t/h 1 Zs, thus

N(t) ~ Bin (E /\h> P29 p(at)
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Inter-arrival times

\.

— Definition 3.

Let

@ NN Poisson process with intensity A

We define To = 0 and

Th
Xn

= inf{t > 0; N(t) = n}
= Tn - Tn—l

Then X, is called inter-arrival time
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From X to N

N as a function of X: We have

Tn = zn:Xl
i=1

N(t) = max{n>0; T, <t}
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Distribution of the inter-arrival times

~ Theorem 4. \

Let
@ N Poisson process with intensity A

e {Xj; j > 1} inter-arrival times
Then

The X;'s are i.i.d with common distribution £(\)
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Proof of Theorem 4 (1)

Variable X;: We have
P(X;>1t)=P(N(t)=0) =exp(—A\t)

Thus
X1~ E(N)
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Proof of Theorem 4 (2)

Conditioning on Xj: Write

P(X; >t/ Xi=1t)

=P (No arrival in (t1,t; + t]| X1 = 1)

P(N(tr,t1+t]) =0 N(t1) =1, Xy = t1)
—exp( At)

Thus
X2 Ng(/\), and X2 J_|_Xl
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Proof of Theorem 4 (3)

Conditioning on X,: Write 7 =" | t; and

P(Xp1 >t/ Xy =t1,.... X, = t,)

=P (No arrival in TT—|—t”X1—t1,...,X,,:tn)

(N(77+t]—0\N =n X1=1t,...,. X, =
—exp( At)

Thus
X,,+1 Ng()\), and Xn+1 AL (Xl,...,Xn)

Samy T. (Purdue) Continuous Markov chains Stochastic processes 23 /114



Another proof of N(t) ~ P(At)

Strategy:
© Start from {Xy; k > 1} inter-arrival times

Q Set T,, = 22:1 Xk
@ If Xi's are i.i £(A) random variables, then T, ~ (A, n)
© Compute

P(N(t)=J) = P(Tj<t<Tj)
= P(Tj<t)-P(Tj11<t)

J

= ();l;)J exp(—At)
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@ Birth processes and the Poisson process

Outline

@ Birth processes
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Definition of birth process

\.

— Definition 5. | \

Let
o N = {N(t); t >0} process with N(0) =0 and N(t) e N

Then N is a birth process if
e N(0)=0and t — N(t)is

@ Probability P (N(t + h) = n+ m| N(t) = n) of the form
Mhto(h)  ifm=1

o(h) if m>1
1—Ah+o(h) ifm=0

e Conditional on N(s), N(t) — N(s) L values of N on [0, s]
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Remark and particular case

Interpretation: For a birth process
— the birth rate depends on the population size

Poisson case:

When A, = ), i.e birth rate independent of the population size
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Simple birth

Model:
@ Living individuals give birth independently of one another
e Each individual gives birth with probability Ah + o(h)
e No death

Claim:

The simple birth process is a birth process with A\, = n A
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Simple birth (2)

Justification of the claim: Let M = # births in (t, t 4+ h). Then

P(M=n+m|N(t)=n) = (;) (AR)™ (1 — Xh)""™ + o(h)
nAh + o(h) ifm=1
= ¢ o(h) ifm>1

1—nXh+o(h) ifm=0
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Simple birth with immigration

Model:
e Living individuals give birth independently of one another
e Each individual gives birth with probability Ah + o(h)
@ No death

o Constant immigration v

Form of A\,: We get
Ap=nNA\+v

Samy T. (Purdue) Continuous Markov chains Stochastic processes

30 / 114



Forward ode's for the probabilities

,—[Proposition 6.}

Let
e N birth process
@ Intensities {\;; j > —1}, with A_; =0
Set
pi(t) =P (N(s +t) = j|N(s) = i)
Then for j > i the function pj; satisfies

pij(t) = Aimapij-1(t) = Aipi(t)

\

with initial condition p;;(0) = d;;

Samy T. (Purdue) Continuous Markov chains Stochastic processes 31 /114



Proof of Proposition 6 (1)

Conditioning on a small interval: We have

pi(t + h)
=P (N(t+ h) = j| N(0) = i)

=> P(N(t+h) =j, N(t) = k| N(0) = i)

=Y P(N(t+h) =j|N(0) =i, N(t) = k) P (N(t) = k| N(0) = i)
keS

=Y P(N(t+h) =jIN(t) = k) P(N(t) = k| N(0) = i)
keS

= (1 = A;h) py(t) + (Aj-1h) pij-1(t) + o(h)
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Proof of Proposition 6 (2)

Recall:
pii(t + h) = pii(t) = (Aj—1pij-1(t) — Aip;i(t)) h + o(h)
Differentiating: We end up with a system of ode's

pii(t) = Aj—1 pij-1(t) — A py(t)

Initial condition:
pi(0) = 65 = 1(i—))
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Backward ode's

,—[Proposition 7.}

Let

Set

\

e N birth process

@ Intensities {)\;; j > —1}, with A_; =0

pi(t) = P (N(s +t) = j[N(s) =

Then for j > i the function pj; satisfies

pij(t) = Xipisa(t) — Aipij(t),

with initial condition p;;(0) = d;;

i)
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Proof of Proposition 7 (1)

Backward conditioning on a small interval: We have

pi(t + h)
=P (N(t+ h) = j| N(0) = i)

=> P(N(t+h) =], N(h) = k| N(0) = /)

— ST P(N(t + h) = jIN(0) = i. N(h) = k) P (N(h) = k| N(0) = )
keS

= ST P(N(t + h) = j| N(h) = k) P (N(h) = k| N(0) = )
keS

= pii(t) (1 = Aih) + piya(t) (Aih) + o(h)
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Proof of Proposition 7 (2)

Recall:
pii(t + h) — py(t) = (Aipir1,(t) — Aipy(t)) h+ o(h)
Differentiating: We end up with a system of ode's

Pi(t) = Ai piv1(t) — A py(2)

Initial condition:
pi(0) = 65 = 1(i—))
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Solving the forward system

~ Theorem 8. N

Let
@ Intensities {\;; j > —1}, with A_; =0
@ Set of indices {0 < /,j < oo}

Then the system of equations
o pi(t) = N-1pij-1(t) — Ajpij(t) if j > i
° pi(0) = 5

admits a unique solution

\. J
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Proof of Theorem 8

Case i = j: The equation becomes
pii(t) = —Aipii(t), initial condition p;;(0) =1

Thus
p,'7,'(t) = exp (—)\,t)

General case:

Obtained by recursion
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Laplace transform

Definition: Let f : R, — R. Then

Lf(s) = f(s) = /0 h e tf(t) dt.

Possible strategy to solve a differential equation:

© Transform diff. equation into algebraic problem in s variable.

@ Solve algebraic problem and find fl
© Invert Laplace transform and find f.
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Existence of Laplace transform

~ Theorem 9. \

Hypothesis:
o f piecewise continuous on [0, A] for each A > 0.
o |f(t)] < Ke for K> 0and a € R.

Conclusion:
Lf(s) exists for s > a.

Vocabulary: f satisfying |f(t)| < Ke®
— Called function of exponential order.
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Table of Laplace transforms

Function f Laplace transform f | Domain of f
1 2 s>0
e’ P s>a
1[071)(1') + k 1(t:1) 1756_5 s>0
t". neN sn”—frl s>0
tP p>—1 MptD) s>0
sin(at) P s>0
cos(at) P s>0
sinh(at) g s > |a
cosh(at) == s > |a
e? sin(bt) (s_a)% s>a
e?" cos(bt) (G s>a
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Table of Laplace transforms (2)

Function f Laplace transform f Domain of £
t"e? neN (s—Z!)"“ s>a
uc(t) e_scs s>0
u.(t)f(t —c) e f(s)
et f(t) f(s —c)
f(ct),c>0 %f(i)
Jo F(t=7)g(7) f(s)&(s)
i(t—c) e =
FO(t) s"f(s) — s" 1 (0) — f(n=1)(0)
(—1)"f(s) Fir)(s)
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Linearity of Laplace transform

Example of function f:

f(t) =5e 2" — 3 sin(4t).

Laplace transform by linearity: we find

Lf(s) = 5[L(e72)](s) — 3 [L(sin(4t)] (s)
5 12
s+2 2116
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Interest of Laplace transform
Laplace:

@ 1749-1827, lived in France

@ Mostly mathematician

o Called the French Newton

@ Contributions in

Mathematical physics

Analysis, partial differential equations
Celestial mechanics

Probability (central limit theorem)

v v Vv

v

General interest of Laplace transform:
In many branches of mathematics (analysis - geometry - probability)

Interest for differential equations:
Deal with impulsive (discontinuous) forcing terms.
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Relation between Lf and Lf’

r—[Theorem 10.] ‘

Hypothesis:

© f continuous, f’ piecewise continuous on [0, A]
— for each A > 0.

Q |7(t)] < Ke® for K,a > 0.

Conclusion: Lf’ exists and

LF'(s) =sLf(s) — f(0)
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Proof of Theorem 10

Integration by parts:

/A e S'f'(t) dt = [e‘“f(t)}OA + s/A e 'f(t) dt
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Laplace transform of transitions

,—[Proposition 11.]

Let
o Intensities {)\;; j > —1}, with A_; =0
@ Set of indices {0 < /,j < oo}
@ pj solution to forward system

Pij(t) = Ajm1pij-1(t) = Apiy(t)

Then for i < the Laplace transform pj; satisfies

Pils) =3, H5+Ag

Samy T. (Purdue) Continuous Markov chains
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Proof of Proposition 13 (1)

Laplace transform of the forward equation: The equation

pij(t) = Ajimapij-1(t) — Aipi(t)

becomes
s Pyi(s) — 65 = Aj-1Pij-1(s) — AiPi(s)

Rearranging terms: We get

(s+ N) pii(s) = 0 + \ji—1pij-1(s)
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Proof of Proposition 13 (2)
Case j > i: Since 0;; = 0 in that case, we get

. Aji-1 4
ils) = 5 Pl
o Aj—1 A2 4
N S+ )\j S+ )\j—l P:,J—2(5)
1 )\j >\j—1

- - N0 B
)\j5+)\j S+)\'_1 j=2 Pig 2(5)

Conclusion: lterating the above computation, we get

Pi(s) =+ H5+Ag

=i
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Backward and forward system

,—{Proposition 12.} \

Consider the backward system
() = Nimin () — Nimi(t) (1)
Then

The solution {pj; i,j > 0} to the forward system
also solves the system (1)
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Proof of Proposition 15

Backward equation in Laplace mode: We get

(s + ) #i(s) = 65 + Aiftia,(s) (2)

Forward solves backward: Take

J

#ii(s) = py(s) =
J =

This solves (2)
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Problem with the backward system

Main problem:
Backward system may not have a unique solution

Minimal solution:

The unique solution of the forward system
is a minimal solution of the backward system
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Minimal solution of the backward system

,—[Proposition 13.]

Let
@ Intensities {\;; j > —1}, with A_; =0
@ Set of indices {0 < /,j < oo}
@ pj; solution to forward system
pij(t) = Aj-apij-1(t) = Ajpiy(t)
Then

mij solution of the backward system
= We have p; j(t) < m;;(t) forall i,j € Sand t >0
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Backward system and explosion

Relating explosion time and uniqueness:

QIf Zjes p,-J(t) =1, then
— p;ij is the unique solution of the backward system

@ Problem: {p;;(t); j € S} is not always a distribution

© This is related to explosion time: we might have

P(To <) >0, where T,= lim T,

n—o0
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Honest birth process

~ Definition 14. ) ~
Let
@ N birth process
o Intensities {\;; j > —1}, with A_; =0
e {T, n> 1} arrival times

Then N is said to be honest if

P(To=00)=1
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Sum of exponential random variables

,—[Proposition 15.] \

Let

e {X,;n > 1} sequence of independent random variables
e Each X, is such that X, ~ E(\,_1)

0 T => "X,

Then
0, if 02,5 =00
1 if Y, L <oo

n=1 )\,

P(Too<oo):{
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Proof of Proposition 15 (1)

Case )., A" < co: Using Fubini-Tonelli we have

E[T.]=E ixn :iA11<OO
n=1 n=1 """

Thus

P(Ty < o0) =0
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Proof of Proposition 15 (2)

Case ), -1 A, = 0o, strategy: We have
E[e™]=0 = P(e” :o) 1
= P (T =00)=

We will thus prove

E[e”">] =0
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Proof of Proposition 15 (3)

Case ), A" = 0o, computation: We have

E[le™~] = E[nlje_x”]

N
= lim E [H e_X”] (monotone convergence)

N—oo
N
— H _Xn
= m LIl
N 0 -1
. 1 1
- "’lT"Onli[l 1+ A0 (E (1 - /\n_1)>
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Proof of Proposition 15 (4)

Infinite products: If u, > 0, then
H1+u,, 0 = Zu,,:oo (3)
n=1 n=1

Pseudo-proof of (3): We have

n (H(l—l—un)) = > In(1+uy)

n=1
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Proof of Proposition 15 (5)

Recall: We have seen

Ele™] = (: (1+ Anl_l))_l

Application of (3):

E[e_T‘x’] — ﬁ(l—i—)\l )zoo — Z)\;lzoo
n—1

n=1 n>1

Conclusion:
T =00 <= Z M =00

n>1
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Application to birth process

,—[Proposition 16.] \
Let
e N birth process
@ Intensities {)\;; j > —1}, with A_.; =0
e {T, n> 1} arrival times

Then N is honest iff

=1
D5 =

n=1""
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Final remarks

Notes before next section:

© Poisson and birth processes are Markov processes
< Due to (N(t) — N(s)) L Past, given N(s) =i

© They are in fact strong Markov processes
— Definition to be seen later

© Problems can occur due to explosions
< This could not be observed in discrete time
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Outline

© Continuous time Markov chain
@ General definitions and transitions
@ Generators
@ Classification of states
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© Continuous time Markov chain
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Vocabulary

Stochastic process:
e Family {X(t); t € [0,00)} of random variables
@ Family evolving in a random but prescribed manner
@ Here X(t) € S, where S countable state space with N = |§]|

Markov evolution:

Conditioned on X(t),
the evolution does not depend on the past
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Markov chain

~ Definition 17. ) \

Let
e X = {X(t); t > 0} stochastic process

We say that X is a continuous time Markov chain if

P (X(tn) :J| X(tl) - i17 s 7X(tn—1) — in—l)
=P (X(tn) = j| X(tn-1) = in-1)
for all

e 0< < - <t <0
(] il,...,i,,,jES
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Differences with discrete time

Main difference:
@ No time unit

@ Therefore no exact analogue of P

Method 1:
@ Use infinitesimal calculus

@ This leads to infinitesimal generator

Method 2:
@ Embedded chain

Samy T. (Purdue) Continuous Markov chains Stochastic processes 68 / 114



Birth process as Markov process

,—[Proposition 18.] \

Let
@ N birth process
o Intensities {)\;; j > —1}, with A_; =0

Then

N is a Markov process
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Proof of Proposition 18 (1)

Setting: Consider
@55 < <5, <s<t
(] i1,...,in,j€5

Aim: Prove
P(N(t) =4I N(s1) =i1,...,N(s,) =in, N(s) =1)
=P (N(t) = j| N(s) = i)
Equivalent statement: Prove that

P(N(t) = N(s) =j—i|N(s1) = ir, ..., N(sn) = i, N(s) = /)
=P (N(t) = N(s) = j — i N(s) = i)
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Proof of Proposition 18 (2)

Recall: We wish to prove

P (N(t) — N(s) = j — i| N(s1) = i1, ..., N(sp) = in, N(s) = i)
=P (N(t) — N(s) = j — i| N(s) = i)

Defining some sets: Consider
@ A= (N(t) — N(s)=j—1)

Rephrasing our claim: Now we wish to prove

P (A5t| le,...,s,, N Cs) =P (Ast‘ Cs)
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Proof of Proposition 18 (3)

General formula: We have

P (A N By

-----

77777

Conditional independence: In Definition 5 we had the assumption
Conditional on N(s), N(t) — N(s) LL values of N on [0, s]
This reads

P (Ast N 851 5n| CS) =P (Ast| CS) P (851 ,,,,, 5n| CS) (5)

Conclusion: Combining (4) and (5) we end up with

P(As|Bs,...s, N C) = P (Ag| )
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Transition probabilities

~ Definition 19. |

Let X be a continuous-time Markov chain. Then

© The transition probabilities are given by
pii(s,t) =P (X(t) =j| X(s) =i) for s<t, i, je$
@ X is homogeneous if for all n,i,j we have

pi(s,t) = p;(0,t — s) = p;(t — s)

\

,—[Hypothesis 20.]

In the chapter we always assume that X is homogeneous
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Transitions for the Poisson process

,—[Proposition 21.] \

Let
@ NN Poisson process

@ Intensity A

Then N is homogeneous and

puls. ) = pylt = 5) = op(=A(t = ) =y,
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Proof of Proposition 21

Expression for the conditional probabilities: We have

,D,'J'(S, t)

P (N(t) =j| N(s) =)

P(N(t) = N(s) =j — i| N(s) = i)

P(N(t) = N(s) =j—i) (N(t) = N(s) LL N(s))
P(N(t—s)=j—1i) (Homogeneity)

(At —s))"

(Poisson distribution)
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Transition semigroup

~ Definition 22. \
Let X be a homogeneous Markov chain. Then
Q We set

P = (pij(t)),’,jes

@ The family
{Pt; t > O}

is called transition semigroup
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Stochastic semigroup

r—[Theorem 23.] \

The family P is a stochastic semigroup, that is
Q@ P=1d

@ For all t > 0, P; is a stochastic matrix, i.e
» pij(t) >0, for all i,
> Zj pij(t) =1, for all i

© Chapman-Kolmogorov holds true:

Ps-l—t:PsPt
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Proof of Theorem 23

Proof of item 2: For t > 0 we have

> opile) = DOP(X() =jIX(0) =)
JjES JjES
P (Ujes X(t) = j| X(0) = i)
1
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Proof of Theorem 23 (2)

Proof of item 3: For s, t > 0 we have

pils + t) = P(X(s + t) = j| X(0) = i)
= STP(X(s + £) = j. X(s) = k| X(0) = i)

= ZP(X(S—l— t) = j| X(s) = k, X(0) = i)P(X(s) = k| X(0) =)

= P(X(s+t) =j| X(s) = k)P(X(s) = k| X(0) = i)

= Z Pir(s)pxi(t)
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Standard semigroup

~ Definition 24. \

Let

@ X Markov chain with transition P

Then P is said to be standard if
lim P, = Id,
t—0

that is
1|_rn)p,-j(t) =0, foralli,je$
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Outline

© Continuous time Markov chain

@ Generators
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Continuity of standard semigroups

,—[Proposition 25.] \

Assume
@ X Markov chain
@ The transition P is standard

Then P is continuous: for all t > 0 we have
lim Piyp = P
hes0 t+h ts

that is

i|'|_>n2)p,~j(t+ h) = p;(t), forall i,j € S

Samy T. (Purdue) Continuous Markov chains Stochastic processes 82 /114



Behavior close to 0

Taylor expansions: We have (admitted)

pi(h) = gzh+o(h)
pii(h) = 14 gih+ o(h)

Signs of gj: If we want p;(h) € [0, 1] we need

gi=>0, and g; <0
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Meaning of gji's
Interpretation: Starting from X(t) = i,
@ Nothing happens with probability
1+ giih+ o(h)
@ The chain jumps from /i to j with probability
giih + o(h)
Terminology:

The matrix G = (gj)ijes is called generator of the Markov chain
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Basic property of the generator

,—[Proposition 26.] \

Assume
@ X Markov chain
@ The transition P is standard
@ There is a generator G

Then for most cases we have

> gy=0, forall i€S$

Jjes
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Generator for birth process

,—[Proposition 27.]

Let
@ N birth process
o Intensities {)\;; j > —1}, with A_; =0

Then the generator G of N is given by

gi = —Ai, &ii+t1=Ai, &; =0 otherwise, (6)
that is
—Xo Ao 0 0 O
0O -Ax XN 0 O
=10 0 —x %O
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Proof of Proposition 27

Expansion for birth transitions: We have seen (cf Definition 5)

Pon(t,t+h) = ppa(h) =1—X,h+ o(h)
pn,n+1(ta t+ h) = pn,n+1(h) = Aph + O(h)
pnj(t,t+h) = puj(h)=o0(h), fj>n+2
General expansion: We have also seen the general expression
pnn(h) = 1+ gnnh + O(h)
poj(h) = gnjh+ o(h)

Conlusion:
We easily get (6) by identification
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Matrix form of the generator

,—[Proposition 28.] \

Assume
@ X Markov chain
@ The transition P is standard

Then we have 1

h—0
that is

.1 -
Lmz (pij(h) — 6;) = gjj, foralli,jeS
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Proof of Proposition 28

Main argument: Rephrasing of

pi(h) = gjh+o(h)
p,-,-(h) = 1+g,-,-h—i—o(h)
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Transitions from generator: forward equations

,—{Proposition 29.] \

Assume
@ X Markov chain

@ The transition P is standard

Then P, satisfies the differential equation

that is

pi(t Zp,k )8k, foralli,je$
kes
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Proof of Proposition 29

Application of Chapman-Kolmogorov:

pilt+h) = Y pult)pi(h)

keS
~ py(t) (L + g;h) + Z pik(t)giih
k)
= pi(t) + Z pi(t)gxih
keS
Differentiating:
1
7 (ps(t+h) = py(1)) = > pul(t)gyy = (PeG);
keS
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Transitions from generator: matrix exponential

,—[Proposition 30.]
Assume
@ X Markov chain

@ The transition P is standard

Then P; satisfies the relation

P, =et®, where efA=

o0 n

o n
n!
n=0

Samy T. (Purdue) Continuous Markov chains
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General inter-arrival

,—[Proposition 31.]
Let
@ X Markov chain with transition P;

@ U random variable defined by
U=inf{t>0;X(s+1t)#i}
Then we have
LU X(s)=1)=E(—gi),

that is

P(U> t|X(s) =i) =exp(—gjt)
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Proof of Proposition 31 (1)

Properties of exponential random variables: If Z ~ £(u), then
P(Z>a+b|Z>a)=P(Z>b)=exp(—pub) (7)

Remarks about (7):
@ Relation (7) can be interpreted as lack of memory

© It can also be interpreted as no aging

@ In fact (7) characterizes the distribution £(u)
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Proof of Proposition 31 (2)

Main argument: We have

P(U>a+blU>a X(s)=i)

:P(U> a+b|X(s+a)=1i, X(s) =)
P(a+Uocf,>a+b|X(s+a)=1i X(s)=1)

P(Uo@a > b| X(s+a) =) (Markov)

P(Uoc, > b|X(s) o8, = i)

P(U > b| X(s) =) (Homogeneity)
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Imbedded Markov chain

,—[Proposition 32.] \
Let
@ X Markov chain with standard transition P;:
@ Assume X(0) =i

Then we have

8i

P (X jumps to j| X(0) = i) = —
i
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Proof of Proposition 32

Argument on a small interval: On [t,t + h),

_ o i(h
P (X jumps to j| X jumps) = l—pJ—/E--()h)
. _&ih
(—giih)
. 8
8ii
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Example with 2 states (1)

Model: We consider
e State space S = {1,2}

@ Generator
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Example with 2 states (2)

Pathwise description: Applying Propositions 31 and 32 we get

@ If X is in state 1 then

» X stays at 1 an amount of time ~ &(a)
» Next X jumps to 2

@ If X is in state 2 then

» X stays at 2 an amount of time ~ £(f3)
» Next X jumps to 1
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Example with 2 states (3)

Forward equation: Can be read as

[P/n(t) P/12(t):| _ {Pn(t) P12(t)} {—a a]

por(t) poo(t)]  [Par(t) paa(t)

Sub-system for pi1, p1o: We get a separate system of the form

ato) =2 ol v A= [0 7
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Example with 2 states (3)
Eigenvalue decomposition for A: We get
)\1 = O, with Vi = |:§:|
. -1
A=—(a+ ), with v = [1]

General form of the solution: We get

{Zilgiﬂ - @ [cﬂ e {_11] exp (—(a + B)t)
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Example with 2 states (4)

Computation of constants: We use
t'l[‘;o (pu(t) + pi2(t)) =1, and  p12(0) =

and we get
1 o

=——, and o =-—
a+p 2 a+p

(5]

Unique solution: We end up with

R e

p12(t) a+ B o] a+p
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Example with 2 states (5)

Sub-system for ps1, poo: We get a separate system of the form

) 0

Pa(t) p22(t) -8

Unique solution: We end up with

R R B

pao(t) a+f |« a+ S
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Outline

© Continuous time Markov chain

@ Classification of states
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Irreducibility of chains

,—[Proposition 33.]

Let X Markov chain with standard transition P,

Then we have

© For every pair i,j € S, either

pii(t) =0 forall t >0
or
pii(t) >0 forall t >0

@ Terminology: if p;j(t) >0 forall t >0
— X is said to be irreducible

© In order to know if X is irreducible
— draw graph related to G
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Birth process example

Recall: For the birth process,

"X X O 0 0
0 —X\ M 0 0
G=10 0 =X M 0

Nature of states:

All states are transient
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2 states example

Recall:

c_|a «a ]
{ g =B
Nature of states:

The chain is irreducible
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Stationary distribution

~ Definition 34. \
Let

@ X Markov chain with transition P

@ 7 vector
Then 7 is a stationary distribution if
Q@ mj>0foralljeSand ) om =1

@ T satisfies m = 7P, for all t > 0, that is

T = ZW/PU(t), forall jeS

ieS
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Interpretation of stationary distribution

,—{Proposition 35.]
Let
@ X Markov chain with transition P

@ 7 invariant distribution

Then
Xo~m = X(t)~7 forallt>0

Otherwise stated,

P (X(t) = jI X(0) ~ m) = 7
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Stationary distribution and generator

,—{Proposition 36.] \

Let
@ X Markov chain with transition P and generator G

@ 7 distribution

Then

7 invariant distribution <<— G =0
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Proof of Proposition 36

Basic relation: We have

76=0 <= 7G"=0
Reasoning with matrix exponential: We get

176G =0 <= Z—wcn—o forall t >0

n=1

— wzmcnzo, forall t >0

!

X n
n__
WZHG =mx, forallt>0

!

Py =m, forallt>0
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Ergodic theorem

,—[Proposition 37.] \
Let
@ X Markov chain with transition P and generator G

@ Assume X is irreducible

Then
© |If there exists a stationary distribution 7, then

7 is unique and lim;_,o, p;i(t) =7 forall i,j € S

@ If there is no stationary distribution 7, then

lim; oo pij(t) =0foralli,jeS
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2 states example (1)

Recall:

—a «@
G —
5
Invariant distribution: The chain is irreducible and we have
B o }
T [a +08 a+p i
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2 states example (2)

Recall: We have seen

-l

p2(t)| a+p |a

a+

|- 55 [ 1] ee v o

Verifying the ergodic theorem: We get

im 22 = 2 )= [
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