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A model for radioactive particles emission

Model for the process

N(t) ≡ # particles emitted at time t

N = {N(t); t ≥ 0}
N(0) = 0 and N(t) ∈ N
N(s) ≤ N(t) if s ≤ t

Emission model:

In (t, t + h) there might/might not be emissions

h small =⇒ likelihood of emission is ' λh
↪→ with an intensity λ

At most 1 emission if h is small
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Definition of Poisson process

Let

N = {N(t); t ≥ 0} process with N(0) = 0 and N(t) ∈ N

Then N is a Poisson process if

N(0) = 0 and t 7→ N(t) is ↗

Probability P (N(t + h) = n + m|N(t) = n) of the form
λh + o(h) if m = 1

o(h) if m > 1

1− λh + o(h) if m = 0

N(t)− N(s) ⊥⊥ emissions on [0, s]

Definition 1.
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Paths of a Poisson process
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Vocabulary

Terminology for Poisson processes:

N(t) is interpreted as a number of arrivals

N is called counting process

Broader context:

N is a simple example of continuous time Markov chain

More general objects: in next section
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Birth of Poisson process

3 independent discoveries:

Lund, Sweden, 1903
↪→ Actuarial studies

Erlang, Denmark, 1909
↪→ Telecommunication networks

Rutherford, New Zealand, 1910
↪→ Particle emission
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Marginal distribution

Let

N Poisson process with intensity λ

t ≥ 0

Then
N(t) ∼ P(λt) ,

that is for j ∈ N we have

P(N(t) = j) =
(λt)j

j !
e−λt

Theorem 2.
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Proof of Theorem 2 (1)

Conditioning on a small interval: We have

P (N(t + h) = j)

=
∑
i∈S

P (N(t + h) = j |N(t) = i) P (N(t) = i)

=
∑
i∈S

P ((j − i) arrivals in (t, t + h]) P (N(t) = i)

= P (no arrivals in (t, t + h]) P (N(t) = j)

+ P (one arrival in (t, t + h]) P (N(t) = j − 1) + o(h)

= (1− λh) P (N(t) = j) + λhP (N(t) = j − 1) + o(h)
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Proof of Theorem 2 (2)

Probability as a function: We set

pj(t) = P(N(t) = j)

Equation on small intervals: We have seen

p0(t + h) = (1− λh) p0(t) + o(h)

pj(t + h) = λh pj−1(t) + (1− λh) pj(t) + o(h)

Equivalent form with differences:

p0(t + h)− p0(t) = −λh p0(t) + o(h)

pj(t + h)− pj(t) = λh (pj−1(t)− pj(t)) + o(h)
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Proof of Theorem 2 (3)

Recall:

p0(t + h)− p0(t) = −λh p0(t) + o(h)

pj(t + h)− pj(t) = λh (pj−1(t)− pj(t)) + o(h)

Differentiating: We end up with a system of ode’s

p′0(t) = −λ p0(t)

p′j(t + h) = λ pj−1(t)− λ pj(t)

Initial condition:
pj(0) = δj0 ≡ 1(j=0)
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Proof of Theorem 2 (4)

Recall: We have obtained a system of ode’s

p′0(t) = −λ p0(t)

p′j(t + h) = λ pj−1(t)− λ pj(t)

A family of generating functions: We set

Gt(s) = E
[
sN(t)

]
=
∞∑
j=0

pj(t)s j

Strategy: From the system of ode’s
↪→ deduce a single ode for t 7→ Gt(s)
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Proof of Theorem 2 (5)

Differential equation for G : We have

∂Gt(s)

∂t
=

∞∑
j=0

p′j(t)s j

= −λ p0(t) +
∞∑
j=1

(λ pj−1(t)− λ pj(t)) s j

= −λGt(s) + λs
∞∑
j=1

pj−1(t)s j−1

= −λGt(s) + λsGt(s)

= λ(s − 1)Gt(s)
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Proof of Theorem 2 (6)

Recall: ut ≡ Gt(s) verifies

u′ = λ(s − 1)u, u0 = 1

Expression for Gt(s): We find

Gt(s) = exp (λ(s − 1)t)

Conclusion:
N(t) ∼ P(λt) ,
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Relation with binomial random variables

Another way to prove N(t) ∼ P(λt):

1 Partition [0, t] in subintervals [(`− 1)h, `h]

2 On each subinterval, set Z` = 1(arrival in [(`−1)h,`h])

3 We have that {Z`; ` ≥ 1} is i.i.d with common law B(λh)

4 We have N(t) '
∑t/h

`=1 Z`, thus

N(t) ' Bin
( t
h

; λh
)

h→0−→ P(λt)
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Inter-arrival times

Let

N Poisson process with intensity λ

We define T0 = 0 and

Tn = inf{t ≥ 0; N(t) = n}
Xn = Tn − Tn−1

Then Xn is called inter-arrival time

Definition 3.
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From X to N
N as a function of X : We have

Tn =
n∑

i=1

Xi

N(t) = max {n ≥ 0; Tn ≤ t}
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Distribution of the inter-arrival times

Let

N Poisson process with intensity λ

{Xj ; j ≥ 1} inter-arrival times

Then

The Xj ’s are i.i.d with common distribution E(λ)

Theorem 4.
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Proof of Theorem 4 (1)

Variable X1: We have

P (X1 > t) = P (N(t) = 0) = exp(−λ t)

Thus
X1 ∼ E(λ)
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Proof of Theorem 4 (2)

Conditioning on X1: Write

P (X2 > t|X1 = t1)

=P
(
No arrival in (t1, t1 + t]

∣∣X1 = t1

)
=P

(
N(t1, t1 + t]) = 0

∣∣N(t1) = 1, X1 = t1

)
= exp(−λ t)

Thus
X2 ∼ E(λ), and X2 ⊥⊥ X1
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Proof of Theorem 4 (3)

Conditioning on Xn: Write τ =
∑n

i=1 ti and

P (Xn+1 > t|X1 = t1, . . . ,Xn = tn)

=P
(
No arrival in (τ, τ + t]

∣∣X1 = t1, . . . ,Xn = tn
)

=P
(
N(τ, τ + t] = 0

∣∣N(τ) = n, X1 = t1, . . . ,Xn = tn
)

= exp(−λ t)

Thus
Xn+1 ∼ E(λ), and Xn+1 ⊥⊥ (X1, . . . ,Xn)
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Another proof of N(t) ∼ P(λt)

Strategy:

1 Start from {Xk ; k ≥ 1} inter-arrival times

2 Set Tn =
∑n

k=1 Xk

3 If Xk ’s are i.i E(λ) random variables, then Tn ∼ Γ(λ, n)

4 Compute

P (N(t) = j) = P (Tj ≤ t < Tj+1)

= P (Tj ≤ t)− P (Tj+1 ≤ t)

=
(λt)j

j !
exp(−λ t)
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Definition of birth process

Let

N = {N(t); t ≥ 0} process with N(0) = 0 and N(t) ∈ N

Then N is a birth process if

N(0) = 0 and t 7→ N(t) is ↗

Probability P (N(t + h) = n + m|N(t) = n) of the form
λnh + o(h) if m = 1

o(h) if m > 1

1− λnh + o(h) if m = 0

Conditional on N(s), N(t)−N(s) ⊥⊥ values of N on [0, s]

Definition 5.
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Remark and particular case

Interpretation: For a birth process
↪→ the birth rate depends on the population size

Poisson case:

When λn = λ, i.e birth rate independent of the population size
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Simple birth

Model:

Living individuals give birth independently of one another

Each individual gives birth with probability λh + o(h)

No death

Claim:

The simple birth process is a birth process with λn = n λ

Samy T. (Purdue) Continuous Markov chains Stochastic processes 28 / 114



Simple birth (2)

Justification of the claim: Let M = # births in (t, t + h). Then

P
(
M = n + m

∣∣N(t) = n
)

=

(
n

m

)
(λh)m (1− λh)n−m + o(h)

=


nλh + o(h) if m = 1

o(h) if m > 1

1− nλh + o(h) if m = 0
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Simple birth with immigration

Model:

Living individuals give birth independently of one another

Each individual gives birth with probability λh + o(h)

No death

Constant immigration ν

Form of λn: We get
λn = n λ + ν
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Forward ode’s for the probabilities

Let

N birth process

Intensities {λj ; j ≥ −1}, with λ−1 = 0

Set
pij(t) = P

(
N(s + t) = j

∣∣N(s) = i
)

Then for j ≥ i the function pij satisfies

p′i ,j(t) = λj−1pi ,j−1(t)− λjpi ,j(t) ,

with initial condition pij(0) = δij

Proposition 6.
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Proof of Proposition 6 (1)

Conditioning on a small interval: We have

pij(t + h)

= P (N(t + h) = j |N(0) = i)

=
∑
k∈S

P (N(t + h) = j , N(t) = k |N(0) = i)

=
∑
k∈S

P (N(t + h) = j |N(0) = i , N(t) = k) P (N(t) = k |N(0) = i)

=
∑
k∈S

P (N(t + h) = j |N(t) = k) P (N(t) = k |N(0) = i)

= (1− λjh) pij(t) + (λj−1h) pi ,j−1(t) + o(h)
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Proof of Proposition 6 (2)

Recall:

pij(t + h)− pij(t) = (λj−1pi ,j−1(t)− λjpij(t)) h + o(h)

Differentiating: We end up with a system of ode’s

p′ij(t) = λj−1 pi ,j−1(t)− λj pij(t)

Initial condition:
pij(0) = δij ≡ 1(i=j)
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Backward ode’s

Let

N birth process

Intensities {λj ; j ≥ −1}, with λ−1 = 0

Set
pij(t) = P

(
N(s + t) = j

∣∣N(s) = i
)

Then for j ≥ i the function pij satisfies

p′i ,j(t) = λipi+1,j(t)− λipi ,j(t) ,

with initial condition pij(0) = δij

Proposition 7.
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Proof of Proposition 7 (1)

Backward conditioning on a small interval: We have

pij(t + h)

= P (N(t + h) = j |N(0) = i)

=
∑
k∈S

P (N(t + h) = j , N(h) = k |N(0) = i)

=
∑
k∈S

P (N(t + h) = j |N(0) = i , N(h) = k) P (N(h) = k |N(0) = i)

=
∑
k∈S

P (N(t + h) = j |N(h) = k) P (N(h) = k |N(0) = i)

= pij(t) (1− λih) + pi+1,j(t) (λih) + o(h)
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Proof of Proposition 7 (2)

Recall:

pij(t + h)− pij(t) = (λipi+1,j(t)− λipij(t)) h + o(h)

Differentiating: We end up with a system of ode’s

p′ij(t) = λi pi+1,j(t)− λi pij(t)

Initial condition:
pij(0) = δij ≡ 1(i=j)
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Solving the forward system

Let

Intensities {λj ; j ≥ −1}, with λ−1 = 0

Set of indices {0 ≤ i , j <∞}

Then the system of equations

p′i ,j(t) = λj−1pi ,j−1(t)− λjpi ,j(t) if j ≥ i

pij(0) = δij

pij(t) = 0 if j < i

admits a unique solution

Theorem 8.
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Proof of Theorem 8

Case i = j : The equation becomes

p′i ,i(t) = −λipi ,i(t) , initial condition pi ,i(0) = 1

Thus
pi ,i(t) = exp (−λi t)

General case:

Obtained by recursion
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Laplace transform

Definition: Let f : R+ → R. Then

Lf (s) = f̂ (s) =

∫ ∞
0

e−stf (t) dt.

Possible strategy to solve a differential equation:

1 Transform diff. equation into algebraic problem in s variable.

2 Solve algebraic problem and find f̂ .

3 Invert Laplace transform and find f .

Samy T. (Purdue) Continuous Markov chains Stochastic processes 39 / 114



Existence of Laplace transform

Hypothesis:

f piecewise continuous on [0,A] for each A > 0.

|f (t)| ≤ Keat for K ≥ 0 and a ∈ R.

Conclusion:
Lf (s) exists for s > a.

Theorem 9.

Vocabulary: f satisfying |f (t)| ≤ Keat

↪→ Called function of exponential order.
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Table of Laplace transforms

Function f Laplace transform f̂ Domain of f̂
1 1

s
s > 0

eat 1
s−a s > a

1[0,1)(t) + k 1(t=1)
1−e−s

s
s > 0

tn, n ∈ N n!
sn+1 s > 0

tp, p > −1 Γ(p+1)
sp+1 s > 0

sin(at) a
s2+a2 s > 0

cos(at) s
s2+a2 s > 0

sinh(at) a
s2−a2 s > |a|

cosh(at) s
s2−a2 s > |a|

eat sin(bt) b
(s−a)2+b2 s > a

eat cos(bt) s−a
(s−a)2+b2 s > a
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Table of Laplace transforms (2)

Function f Laplace transform f̂ Domain of f̂
tneat , n ∈ N n!

(s−a)n+1 s > a

uc(t) e−cs

s
s > 0

uc(t)f (t − c) e−cs f̂ (s)

ectf (t) f̂ (s − c)

f (ct), c > 0 1
c
f̂ ( s

c
)∫ t

0
f (t − τ)g(τ) f̂ (s)ĝ(s)

δ(t − c) e−cs

f (n)(t) sn f̂ (s)− sn−1f (0)− · · · − f (n−1)(0)

(−t)nf (s) f̂ (n)(s)
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Linearity of Laplace transform

Example of function f :

f (t) = 5 e−2t − 3 sin(4t).

Laplace transform by linearity: we find

Lf (s) = 5
[
L(e−2t)

]
(s)− 3 [L(sin(4t)] (s)

=
5

s + 2
− 12

s2 + 16
.
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Interest of Laplace transform
Laplace:

1749-1827, lived in France

Mostly mathematician

Called the French Newton

Contributions in
I Mathematical physics
I Analysis, partial differential equations
I Celestial mechanics
I Probability (central limit theorem)

General interest of Laplace transform:
In many branches of mathematics (analysis - geometry - probability)

Interest for differential equations:
Deal with impulsive (discontinuous) forcing terms.
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Relation between Lf and Lf ′

Hypothesis:

1 f continuous, f ′ piecewise continuous on [0,A]
↪→ for each A > 0.

2 |f (t)| ≤ Keat for K , a ≥ 0.

Conclusion: Lf ′ exists and

Lf ′(s) = sLf (s)− f (0)

Theorem 10.
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Proof of Theorem 10

Integration by parts:∫ A

0

e−stf ′(t) dt =
[
e−stf (t)

]A
0

+ s

∫ A

0

e−stf (t) dt
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Laplace transform of transitions

Let

Intensities {λj ; j ≥ −1}, with λ−1 = 0

Set of indices {0 ≤ i , j <∞}
pij solution to forward system
p′i ,j(t) = λj−1pi ,j−1(t)− λjpi ,j(t)

Then for i ≤ j the Laplace transform p̂ij satisfies

p̂ij(s) =
1

λj

j∏
`=i

λ`
s + λ`

Proposition 11.
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Proof of Proposition 13 (1)

Laplace transform of the forward equation: The equation

p′i ,j(t) = λj−1pi ,j−1(t)− λjpi ,j(t)

becomes
s p̂ij(s)− δij = λj−1p̂i ,j−1(s)− λj p̂ij(s)

Rearranging terms: We get

(s + λj) p̂ij(s) = δij + λj−1p̂i ,j−1(s)
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Proof of Proposition 13 (2)

Case j > i : Since δij = 0 in that case, we get

p̂ij(s) =
λj−1

s + λj
p̂i ,j−1(s)

=
λj−1

s + λj

λj−2

s + λj−1
p̂i ,j−2(s)

=
1

λj

λj
s + λj

λj−1

s + λj−1
λj−2 p̂i ,j−2(s)

Conclusion: Iterating the above computation, we get

p̂ij(s) =
1

λj

j∏
`=i

λ`
s + λ`
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Backward and forward system

Consider the backward system

π′i ,j(t) = λiπi+1,j(t)− λiπi ,j(t) , (1)

Then

The solution {pij ; i , j ≥ 0} to the forward system
also solves the system (1)

Proposition 12.
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Proof of Proposition 15

Backward equation in Laplace mode: We get

(s + λi) π̂ij(s) = δij + λi π̂i+1,j(s) (2)

Forward solves backward: Take

π̂ij(s) = p̂ij(s) =
1

λj

j∏
`=i

λ`
s + λ`

This solves (2)
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Problem with the backward system

Main problem:
Backward system may not have a unique solution

Minimal solution:

The unique solution of the forward system
is a minimal solution of the backward system
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Minimal solution of the backward system

Let

Intensities {λj ; j ≥ −1}, with λ−1 = 0

Set of indices {0 ≤ i , j <∞}
pij solution to forward system
p′i ,j(t) = λj−1pi ,j−1(t)− λjpi ,j(t)

Then

πij solution of the backward system
=⇒ We have pi ,j(t) ≤ πi ,j(t) for all i , j ∈ S and t ≥ 0

Proposition 13.
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Backward system and explosion

Relating explosion time and uniqueness:

1 If
∑

j∈S pi ,j(t) = 1, then
↪→ pi ,j is the unique solution of the backward system

2 Problem: {pi ,j(t); j ∈ S} is not always a distribution

3 This is related to explosion time: we might have

P (T∞ <∞) > 0, where T∞ = lim
n→∞

Tn
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Honest birth process

Let

N birth process

Intensities {λj ; j ≥ −1}, with λ−1 = 0

{Tn; n ≥ 1} arrival times

Then N is said to be honest if

P (T∞ =∞) = 1

Definition 14.
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Sum of exponential random variables

Let

{Xn; n ≥ 1} sequence of independent random variables

Each Xn is such that Xn ∼ E(λn−1)

T∞ =
∑∞

n=1 Xn

Then

P (T∞ <∞) =

{
0, if

∑∞
n=1

1
λn

=∞
1 if

∑∞
n=1

1
λn
<∞

Proposition 15.
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Proof of Proposition 15 (1)

Case
∑

n≥1 λ
−1
n <∞: Using Fubini-Tonelli we have

E [T∞] = E

[
∞∑
n=1

Xn

]
=
∞∑
n=1

1

λn−1
<∞

Thus

P (T∞ <∞) = 0

Samy T. (Purdue) Continuous Markov chains Stochastic processes 57 / 114



Proof of Proposition 15 (2)

Case
∑

n≥1 λ
−1
n =∞, strategy: We have

E
[
e−T∞

]
= 0 =⇒ P

(
e−T∞ = 0

)
= 1

=⇒ P (T∞ =∞) = 1

We will thus prove

E
[
e−T∞

]
= 0
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Proof of Proposition 15 (3)

Case
∑

n≥1 λ
−1
n =∞, computation: We have

E
[
e−T∞

]
= E

[
∞∏
n=1

e−Xn

]

= lim
N→∞

E

[
N∏

n=1

e−Xn

]
(monotone convergence)

= lim
N→∞

N∏
n=1

E
[
e−Xn

]
= lim

N→∞

N∏
n=1

1

1 + λ−1
n−1

=

(
∞∏
n=1

(
1 +

1

λn−1

))−1
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Proof of Proposition 15 (4)

Infinite products: If un ≥ 0, then

∞∏
n=1

(1 + un) =∞ ⇐⇒
∞∑
n=1

un =∞ (3)

Pseudo-proof of (3): We have

ln

(
∞∏
n=1

(1 + un)

)
=

∞∑
n=1

ln (1 + un)

�
∞∑
n=1

un
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Proof of Proposition 15 (5)

Recall: We have seen

E
[
e−T∞

]
=

(
∞∏
n=1

(
1 +

1

λn−1

))−1

Application of (3):

E
[
e−T∞

]
⇐⇒

∞∏
n=1

(
1 +

1

λn−1

)
=∞ ⇐⇒

∑
n≥1

λ−1
n =∞

Conclusion:
T∞ =∞ ⇐⇒

∑
n≥1

λ−1
n =∞
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Application to birth process

Let

N birth process

Intensities {λj ; j ≥ −1}, with λ−1 = 0

{Tn; n ≥ 1} arrival times

Then N is honest iff
∞∑
n=1

1

λn
=∞

Proposition 16.
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Final remarks

Notes before next section:

1 Poisson and birth processes are Markov processes
↪→ Due to (N(t)− N(s)) ⊥⊥ Past, given N(s) = i

2 They are in fact strong Markov processes
↪→ Definition to be seen later

3 Problems can occur due to explosions
↪→ This could not be observed in discrete time
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Vocabulary

Stochastic process:

Family {X (t); t ∈ [0,∞)} of random variables

Family evolving in a random but prescribed manner

Here X (t) ∈ S , where S countable state space with N = |S |

Markov evolution:

Conditioned on X (t),
the evolution does not depend on the past
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Markov chain

Let

X = {X (t); t ≥ 0} stochastic process

We say that X is a continuous time Markov chain if

P (X (tn) = j |X (t1) = i1, . . . ,X (tn−1) = in−1)

=P (X (tn) = j |X (tn−1) = in−1) ,

for all

0 ≤ t1 < · · · < tn <∞
i1, . . . , in, j ∈ S

Definition 17.
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Differences with discrete time

Main difference:

No time unit

Therefore no exact analogue of P

Method 1:

Use infinitesimal calculus

This leads to infinitesimal generator

Method 2:

Embedded chain
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Birth process as Markov process

Let

N birth process

Intensities {λj ; j ≥ −1}, with λ−1 = 0

Then

N is a Markov process

Proposition 18.
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Proof of Proposition 18 (1)

Setting: Consider

s1 < · · · < sn < s < t

i1, . . . , in, j ∈ S

Aim: Prove

P (N(t) = j |N(s1) = i1, . . . ,N(sn) = in,N(s) = i)

=P (N(t) = j |N(s) = i)

Equivalent statement: Prove that

P (N(t)− N(s) = j − i |N(s1) = i1, . . . ,N(sn) = in,N(s) = i)

=P (N(t)− N(s) = j − i |N(s) = i)
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Proof of Proposition 18 (2)

Recall: We wish to prove

P (N(t)− N(s) = j − i |N(s1) = i1, . . . ,N(sn) = in,N(s) = i)

=P (N(t)− N(s) = j − i |N(s) = i)

Defining some sets: Consider

Ast = (N(t)− N(s) = j − i)

Bs1,...,sn = N(s1) = i1, . . . ,N(sn) = in

Cs = (N(s) = i)

Rephrasing our claim: Now we wish to prove

P (Ast |Bs1,...,sn ∩ Cs) = P (Ast |Cs)
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Proof of Proposition 18 (3)

General formula: We have

P (Ast ∩ Bs1,...,sn |Cs) = P (Ast |Bs1,...,sn ∩ Cs) P (Bs1,...,sn |Cs) (4)

Conditional independence: In Definition 5 we had the assumption

Conditional on N(s), N(t)− N(s) ⊥⊥ values of N on [0, s]

This reads

P (Ast ∩ Bs1,...,sn |Cs) = P (Ast |Cs) P (Bs1,...,sn |Cs) (5)

Conclusion: Combining (4) and (5) we end up with

P (Ast |Bs1,...,sn ∩ Cs) = P (Ast |Cs)
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Transition probabilities

Let X be a continuous-time Markov chain. Then

1 The transition probabilities are given by

pij(s, t) = P (X (t) = j |X (s) = i) for s < t, i , j ∈ S

2 X is homogeneous if for all n, i , j we have

pij(s, t) = pij(0, t − s) ≡ pij(t − s)

Definition 19.

In the chapter we always assume that X is homogeneous

Hypothesis 20.
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Transitions for the Poisson process

Let

N Poisson process

Intensity λ

Then N is homogeneous and

pij(s, t) = pij(t − s) = exp(−λ(t − s))
(λ(t − s))j−i

(j − i)!

Proposition 21.
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Proof of Proposition 21

Expression for the conditional probabilities: We have

pij(s, t) = P (N(t) = j |N(s) = i)

= P (N(t)− N(s) = j − i |N(s) = i)

= P (N(t)− N(s) = j − i) (N(t)− N(s) ⊥⊥ N(s))

= P (N(t − s) = j − i) (Homogeneity)

= exp(−λ(t − s))
(λ(t − s))j−i

(j − i)!
(Poisson distribution)
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Transition semigroup

Let X be a homogeneous Markov chain. Then

1 We set
Pt = (pij(t))i ,j∈S

2 The family
{Pt ; t ≥ 0}

is called transition semigroup

Definition 22.
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Stochastic semigroup

The family P is a stochastic semigroup, that is

1 P0 = Id

2 For all t ≥ 0, Pt is a stochastic matrix, i.e
I pij(t) ≥ 0, for all i , j
I
∑

j pij(t) = 1, for all i

3 Chapman-Kolmogorov holds true:

Ps+t = PsPt

Theorem 23.
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Proof of Theorem 23

Proof of item 2: For t ≥ 0 we have∑
j∈S

pij(t) =
∑
j∈S

P (X (t) = j |X (0) = i)

= P (∪j∈S X (t) = j |X (0) = i)

= 1
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Proof of Theorem 23 (2)

Proof of item 3: For s, t ≥ 0 we have

pij(s + t) = P(X (s + t) = j |X (0) = i)

=
∑
k

P(X (s + t) = j , X (s) = k |X (0) = i)

=
∑
k

P(X (s + t) = j |X (s) = k , X (0) = i)P(X (s) = k |X (0) = i)

=
∑
k

P(X (s + t) = j |X (s) = k)P(X (s) = k |X (0) = i)

=
∑
k

pik(s)pkj(t)
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Standard semigroup

Let

X Markov chain with transition P

Then P is said to be standard if

lim
t→0

Pt = Id,

that is
lim
t→0

pij(t) = δij , for all i , j ∈ S

Definition 24.
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Continuity of standard semigroups

Assume

X Markov chain

The transition P is standard

Then P is continuous: for all t ≥ 0 we have

lim
h→0

Pt+h = Pt ,

that is
lim
h→0

pij(t + h) = pij(t), for all i , j ∈ S

Proposition 25.
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Behavior close to 0

Taylor expansions: We have (admitted)

pij(h) = gijh + o(h)

pii(h) = 1 + giih + o(h)

Signs of gij : If we want pij(h) ∈ [0, 1] we need

gij ≥ 0, and gii ≤ 0
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Meaning of gij ’s

Interpretation: Starting from X (t) = i ,

1 Nothing happens with probability

1 + giih + o(h)

2 The chain jumps from i to j with probability

gijh + o(h)

Terminology:

The matrix G = (gij)i ,j∈S is called generator of the Markov chain
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Basic property of the generator

Assume

X Markov chain

The transition P is standard

There is a generator G

Then for most cases we have∑
j∈S

gij = 0, for all i ∈ S

Proposition 26.
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Generator for birth process

Let

N birth process

Intensities {λj ; j ≥ −1}, with λ−1 = 0

Then the generator G of N is given by

gii = −λi , gi ,i+1 = λi , gij = 0 otherwise , (6)

that is

G =


−λ0 λ0 0 0 0 · · ·

0 −λ1 λ1 0 0 · · ·
0 0 −λ2 λ2 0 · · ·
...

...
...

...
...

. . .



Proposition 27.
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Proof of Proposition 27

Expansion for birth transitions: We have seen (cf Definition 5)

pn,n(t, t + h) = pn,n(h) = 1− λnh + o(h)

pn,n+1(t, t + h) = pn,n+1(h) = λnh + o(h)

pn,j(t, t + h) = pn,j(h) = o(h) , if j ≥ n + 2

General expansion: We have also seen the general expression

pnn(h) = 1 + gnnh + o(h)

pnj(h) = gnjh + o(h)

Conlusion:
We easily get (6) by identification
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Matrix form of the generator

Assume

X Markov chain

The transition P is standard

Then we have

lim
h→0

1

h
(Ph − Id) = G ,

that is

lim
h→0

1

h
(pij(h)− δij) = gij , for all i , j ∈ S

Proposition 28.
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Proof of Proposition 28

Main argument: Rephrasing of

pij(h) = gijh + o(h)

pii(h) = 1 + giih + o(h)
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Transitions from generator: forward equations

Assume

X Markov chain

The transition P is standard

Then Pt satisfies the differential equation

P ′t = Pt G .

that is
p′ij(t) =

∑
k∈S

pik(t)gkj , for all i , j ∈ S

Proposition 29.
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Proof of Proposition 29

Application of Chapman-Kolmogorov:

pij(t + h) =
∑
k∈S

pik(t)pkj(h)

' pij(t) (1 + gjjh) +
∑
k 6=j

pik(t)gkjh

= pij(t) +
∑
k∈S

pik(t)gkjh

Differentiating:

1

h
(pij(t + h)− pij(t)) '

∑
k∈S

pik(t)gkj = (PtG )ij
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Transitions from generator: matrix exponential

Assume

X Markov chain

The transition P is standard

Then Pt satisfies the relation

Pt = et G , where et A ≡
∞∑
n=0

tn

n!
An

Proposition 30.
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General inter-arrival

Let

X Markov chain with transition Pt

U random variable defined by

U = inf {t ≥ 0;X (s + t) 6= i}

Then we have

L (U |X (s) = i) = E(−gii) ,

that is

P (U > t|X (s) = i) = exp (−gii t)

Proposition 31.
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Proof of Proposition 31 (1)

Properties of exponential random variables: If Z ∼ E(µ), then

P (Z > a + b|Z > a) = P (Z > b) = exp (−µ b) (7)

Remarks about (7):

1 Relation (7) can be interpreted as lack of memory

2 It can also be interpreted as no aging

3 In fact (7) characterizes the distribution E(µ)
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Proof of Proposition 31 (2)

Main argument: We have

P (U > a + b|U > a, X (s) = i)

= P (U > a + b|X (s + a) = i , X (s) = i)

= P (a + U ◦ θa > a + b|X (s + a) = i , X (s) = i)

= P (U ◦ θa > b|X (s + a) = i) (Markov)

= P (U ◦ θa > b|X (s) ◦ θa = i)

= P (U > b|X (s) = i) (Homogeneity)
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Imbedded Markov chain

Let

X Markov chain with standard transition Pt

Assume X (0) = i

Then we have

P (X jumps to j |X (0) = i) = −gij
gii

Proposition 32.
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Proof of Proposition 32

Argument on a small interval: On [t, t + h),

P (X jumps to j |X jumps) ' pij(h)

1− pii(h)

' gij h

(−gii h)

' −gij
gii
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Example with 2 states (1)

Model: We consider

State space S = {1, 2}
Generator

G =

[
−α α
β −β

]
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Example with 2 states (2)

Pathwise description: Applying Propositions 31 and 32 we get

1 If X is in state 1 then
I X stays at 1 an amount of time ∼ E(α)
I Next X jumps to 2

2 If X is in state 2 then
I X stays at 2 an amount of time ∼ E(β)
I Next X jumps to 1
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Example with 2 states (3)

Forward equation: Can be read as[
p′11(t) p′12(t)
p′21(t) p′22(t)

]
=

[
p11(t) p12(t)
p21(t) p22(t)

] [
−α α
β −β

]

Sub-system for p11, p12: We get a separate system of the form[
p′11(t)
p′12(t)

]
= A

[
p11(t)
p12(t)

]
, with A =

[
−α β
α −β

]
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Example with 2 states (3)

Eigenvalue decomposition for A: We get

λ1 = 0, with v1 =

[
β
α

]
λ2 = −(α + β), with v2 =

[
−1
1

]
General form of the solution: We get[

p11(t)
p12(t)

]
= c1

[
β
α

]
+ c2

[
−1
1

]
exp (−(α + β)t)
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Example with 2 states (4)

Computation of constants: We use

lim
t→∞

(p11(t) + p12(t)) = 1, and p12(0) = 0

and we get

c1 =
1

α + β
, and c2 = − α

α + β

Unique solution: We end up with[
p11(t)
p12(t)

]
=

1

α + β

[
β
α

]
− α

α + β

[
−1
1

]
exp (−(α + β)t)
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Example with 2 states (5)

Sub-system for p21, p22: We get a separate system of the form[
p′21(t)
p′22(t)

]
= A

[
p21(t)
p22(t)

]
, with A =

[
−α β
α −β

]
Unique solution: We end up with[

p21(t)
p22(t)

]
=

1

α + β

[
β
α

]
− β

α + β

[
−1
1

]
exp (−(α + β)t)
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Irreducibility of chains

Let X Markov chain with standard transition Pt

Then we have

1 For every pair i , j ∈ S , either

pij(t) = 0 for all t > 0
or

pij(t) > 0 for all t > 0

2 Terminology: if pij(t) > 0 for all t > 0
↪→ X is said to be irreducible

3 In order to know if X is irreducible
↪→ draw graph related to G

Proposition 33.
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Birth process example

Recall: For the birth process,

G =


−λ0 λ0 0 0 0 · · ·

0 −λ1 λ1 0 0 · · ·
0 0 −λ2 λ2 0 · · ·
...

...
...

...
...

. . .


Nature of states:

All states are transient
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2 states example

Recall:

G =

[
−α α
β −β

]
Nature of states:

The chain is irreducible

Samy T. (Purdue) Continuous Markov chains Stochastic processes 107 / 114



Stationary distribution

Let

X Markov chain with transition P

π vector

Then π is a stationary distribution if

1 πj ≥ 0 for all j ∈ S and
∑

j∈S πj = 1

2 π satisfies π = πPt for all t ≥ 0, that is

πj =
∑
i∈S

πipij(t), for all j ∈ S

Definition 34.
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Interpretation of stationary distribution

Let

X Markov chain with transition P

π invariant distribution

Then
X0 ∼ π =⇒ X (t) ∼ π for all t ≥ 0

Otherwise stated,

P (X (t) = j |X (0) ∼ π) = πj

Proposition 35.
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Stationary distribution and generator

Let

X Markov chain with transition P and generator G

π distribution

Then

π invariant distribution ⇐⇒ π G = 0

Proposition 36.
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Proof of Proposition 36
Basic relation: We have

πG = 0 ⇐⇒ πG n = 0

Reasoning with matrix exponential: We get

πG = 0 ⇐⇒
∞∑
n=1

tn

n!
πG n = 0, for all t ≥ 0

⇐⇒ π
∞∑
n=1

tn

n!
G n = 0, for all t ≥ 0

⇐⇒ π
∞∑
n=0

tn

n!
G n = π, for all t ≥ 0

⇐⇒ πPt = π, for all t ≥ 0
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Ergodic theorem

Let

X Markov chain with transition P and generator G

Assume X is irreducible

Then

1 If there exists a stationary distribution π, then

π is unique and limt→∞ pij(t) = πj for all i , j ∈ S

2 If there is no stationary distribution π, then

limt→∞ pij(t) = 0 for all i , j ∈ S

Proposition 37.
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2 states example (1)

Recall:

G =

[
−α α
β −β

]

Invariant distribution: The chain is irreducible and we have

π =

[
β

α + β

α

α + β

]
=⇒ πG = 0
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2 states example (2)

Recall: We have seen[
p11(t)
p12(t)

]
=

1

α + β

[
β
α

]
− α

α + β

[
−1
1

]
exp (−(α + β)t)

Verifying the ergodic theorem: We get

lim
t→0

[
p11(t)
p12(t)

]
=

1

α + β

[
β
α

]
=

[
π1

π2

]
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