Continuous time Markov chains

Samy Tindel

Purdue University
Elements of Stochastic Processes - MA 532

Mostly taken from Probability and Random Processes by Grimmett-Stirzaker

Purdue

Outline

(1) Birth processes and the Poisson process

- Poisson process
- Birth processes
(2) Continuous time Markov chain
- General definitions and transitions
- Generators
- Classification of states

Outline

(1) Birth processes and the Poisson process

- Poisson process
- Birth processes
(2) Continuous time Markov chain
- General definitions and transitions
- Generators
- Classification of states

Outline

(1) Birth processes and the Poisson process

- Poisson process
- Birth processes
(2) Continuous time Markov chain
- General definitions and transitions
- Generators
- Classification of states

A model for radioactive particles emission

Model for the process

- $N(t) \equiv \#$ particles emitted at time t
- $N=\{N(t) ; t \geq 0\}$
- $N(0)=0$ and $N(t) \in \mathbb{N}$
- $N(s) \leq N(t)$ if $s \leq t$

Emission model:

- In $(t, t+h)$ there might/might not be emissions
- h small \Longrightarrow likelihood of emission is $\simeq \lambda h$
\hookrightarrow with an intensity λ
- At most 1 emission if h is small

Definition of Poisson process

Definition 1.

Let

- $N=\{N(t) ; t \geq 0\}$ process with $N(0)=0$ and $N(t) \in \mathbb{N}$

Then N is a Poisson process if

- $N(0)=0$ and $t \mapsto N(t)$ is
- Probability $\mathbf{P}(N(t+h)=n+m \mid N(t)=n)$ of the form

$$
\begin{cases}\lambda h+o(h) & \text { if } m=1 \\ o(h) & \text { if } m>1 \\ 1-\lambda h+o(h) & \text { if } m=0\end{cases}
$$

- $N(t)-N(s) \Perp$ emissions on $[0, s]$

Paths of a Poisson process

Vocabulary

Terminology for Poisson processes:

- $N(t)$ is interpreted as a number of arrivals
- N is called counting process

Broader context:

- N is a simple example of continuous time Markov chain
- More general objects: in next section

Birth of Poisson process

3 independent discoveries:

- Lund, Sweden, 1903
\hookrightarrow Actuarial studies
- Erlang, Denmark, 1909 \hookrightarrow Telecommunication networks
- Rutherford, New Zealand, 1910
\hookrightarrow Particle emission

Marginal distribution

Theorem 2.

Let

- N Poisson process with intensity λ
- $t \geq 0$

Then

$$
N(t) \sim \mathcal{P}(\lambda t)
$$

that is for $j \in \mathbb{N}$ we have

$$
\mathbf{P}(N(t)=j)=\frac{(\lambda t)^{j}}{j!} e^{-\lambda t}
$$

Proof of Theorem 2 (1)

Conditioning on a small interval: We have

$$
\begin{aligned}
& \mathbf{P}(N(t+h)=j) \\
&= \sum_{i \in S} \mathbf{P}(N(t+h)=j \mid N(t)=i) \mathbf{P}(N(t)=i) \\
&= \sum_{i \in S} \mathbf{P}((j-i) \text { arrivals in }(t, t+h]) \mathbf{P}(N(t)=i) \\
&= \mathbf{P}(\text { no arrivals in }(t, t+h]) \mathbf{P}(N(t)=j) \\
&+\mathbf{P}(\text { one arrival in }(t, t+h]) \mathbf{P}(N(t)=j-1)+o(h) \\
&=(1-\lambda h) \mathbf{P}(N(t)=j)+\lambda h \mathbf{P}(N(t)=j-1)+o(h)
\end{aligned}
$$

Proof of Theorem 2 (2)

Probability as a function: We set

$$
p_{j}(t)=\mathbf{P}(N(t)=j)
$$

Equation on small intervals: We have seen

$$
\begin{aligned}
p_{0}(t+h) & =(1-\lambda h) p_{0}(t)+o(h) \\
p_{j}(t+h) & =\lambda h p_{j-1}(t)+(1-\lambda h) p_{j}(t)+o(h)
\end{aligned}
$$

Equivalent form with differences:

$$
\begin{aligned}
p_{0}(t+h)-p_{0}(t) & =-\lambda h p_{0}(t)+o(h) \\
p_{j}(t+h)-p_{j}(t) & =\lambda h\left(p_{j-1}(t)-p_{j}(t)\right)+o(h)
\end{aligned}
$$

Proof of Theorem 2 (3)

Recall:

$$
\begin{aligned}
p_{0}(t+h)-p_{0}(t) & =-\lambda h p_{0}(t)+o(h) \\
p_{j}(t+h)-p_{j}(t) & =\lambda h\left(p_{j-1}(t)-p_{j}(t)\right)+o(h)
\end{aligned}
$$

Differentiating: We end up with a system of ode's

$$
\begin{aligned}
p_{0}^{\prime}(t) & =-\lambda p_{0}(t) \\
p_{j}^{\prime}(t+h) & =\lambda p_{j-1}(t)-\lambda p_{j}(t)
\end{aligned}
$$

Initial condition:

$$
p_{j}(0)=\delta_{j 0} \equiv \mathbf{1}_{(j=0)}
$$

Proof of Theorem 2 (4)

Recall: We have obtained a system of ode's

$$
\begin{aligned}
p_{0}^{\prime}(t) & =-\lambda p_{0}(t) \\
p_{j}^{\prime}(t+h) & =\lambda p_{j-1}(t)-\lambda p_{j}(t)
\end{aligned}
$$

A family of generating functions: We set

$$
G_{t}(s)=\mathbf{E}\left[s^{N(t)}\right]=\sum_{j=0}^{\infty} p_{j}(t) s^{j}
$$

Strategy: From the system of ode's
\hookrightarrow deduce a single ode for $t \mapsto G_{t}(s)$

Proof of Theorem 2 (5)

Differential equation for G : We have

$$
\begin{aligned}
\frac{\partial G_{t}(s)}{\partial t} & =\sum_{j=0}^{\infty} p_{j}^{\prime}(t) s^{j} \\
& =-\lambda p_{0}(t)+\sum_{j=1}^{\infty}\left(\lambda p_{j-1}(t)-\lambda p_{j}(t)\right) s^{j} \\
& =-\lambda G_{t}(s)+\lambda s \sum_{j=1}^{\infty} p_{j-1}(t) s^{j-1} \\
& =-\lambda G_{t}(s)+\lambda s G_{t}(s) \\
& =\lambda(s-1) G_{t}(s)
\end{aligned}
$$

Proof of Theorem 2 (6)

Recall: $u_{t} \equiv G_{t}(s)$ verifies

$$
u^{\prime}=\lambda(s-1) u, \quad u_{0}=1
$$

Expression for $G_{t}(s)$: We find

$$
G_{t}(s)=\exp (\lambda(s-1) t)
$$

Conclusion:

$$
N(t) \sim \mathcal{P}(\lambda t)
$$

Relation with binomial random variables

Another way to prove $N(t) \sim \mathcal{P}(\lambda t)$:
(1) Partition $[0, t]$ in subintervals $[(\ell-1) h, \ell h]$
(2) On each subinterval, set $Z_{\ell}=\mathbf{1}_{\text {(arrival in }[(\ell-1) h, \ell h])}$
(We have that $\left\{Z_{\ell} ; \ell \geq 1\right\}$ is i.i.d with common law $\mathcal{B}(\lambda h)$
((1) We have $N(t) \simeq \sum_{\ell=1}^{t / h} Z_{\ell}$, thus

$$
N(t) \simeq \operatorname{Bin}\left(\frac{t}{h} ; \lambda h\right) \xrightarrow{h \rightarrow 0} \mathcal{P}(\lambda t)
$$

Inter-arrival times

Definition 3.

Let

- N Poisson process with intensity λ

We define $T_{0}=0$ and

$$
\begin{aligned}
& T_{n}=\inf \{t \geq 0 ; N(t)=n\} \\
& X_{n}=T_{n}-T_{n-1}
\end{aligned}
$$

Then X_{n} is called inter-arrival time

From X to N

N as a function of X : We have

$$
\begin{aligned}
T_{n} & =\sum_{i=1}^{n} X_{i} \\
N(t) & =\max \left\{n \geq 0 ; T_{n} \leq t\right\}
\end{aligned}
$$

Distribution of the inter-arrival times

Theorem 4.
Let

- N Poisson process with intensity λ
- $\left\{X_{j} ; j \geq 1\right\}$ inter-arrival times

Then
The X_{j} 's are i.i.d with common distribution $\mathcal{E}(\lambda)$

Proof of Theorem 4 (1)

Variable X_{1} : We have

$$
\mathbf{P}\left(X_{1}>t\right)=\mathbf{P}(N(t)=0)=\exp (-\lambda t)
$$

Thus

$$
X_{1} \sim \mathcal{E}(\lambda)
$$

Proof of Theorem 4 (2)

Conditioning on X_{1} : Write

$$
\begin{aligned}
& \mathbf{P}\left(X_{2}>t \mid X_{1}=t_{1}\right) \\
= & \mathbf{P}\left(\text { No arrival in }\left(t_{1}, t_{1}+t\right] \mid X_{1}=t_{1}\right) \\
= & \left.\mathbf{P}\left(N\left(t_{1}, t_{1}+t\right]\right)=0 \mid N\left(t_{1}\right)=1, X_{1}=t_{1}\right) \\
= & \exp (-\lambda t)
\end{aligned}
$$

Thus

$$
X_{2} \sim \mathcal{E}(\lambda), \quad \text { and } \quad X_{2} \Perp X_{1}
$$

Proof of Theorem 4 (3)

Conditioning on X_{n} : Write $\tau=\sum_{i=1}^{n} t_{i}$ and

$$
\begin{aligned}
& \mathbf{P}\left(X_{n+1}>t \mid X_{1}=t_{1}, \ldots, X_{n}=t_{n}\right) \\
= & \mathbf{P}\left(\text { No arrival in }(\tau, \tau+t] \mid X_{1}=t_{1}, \ldots, X_{n}=t_{n}\right) \\
= & \mathbf{P}\left(N(\tau, \tau+t]=0 \mid N(\tau)=n, X_{1}=t_{1}, \ldots, X_{n}=t_{n}\right) \\
= & \exp (-\lambda t)
\end{aligned}
$$

Thus

$$
X_{n+1} \sim \mathcal{E}(\lambda), \quad \text { and } \quad X_{n+1} \Perp\left(X_{1}, \ldots, X_{n}\right)
$$

Another proof of $N(t) \sim \mathcal{P}(\lambda t)$

Strategy:

(1) Start from $\left\{X_{k} ; k \geq 1\right\}$ inter-arrival times
(2) Set $T_{n}=\sum_{k=1}^{n} X_{k}$

- If X_{k} 's are i.i $\mathcal{E}(\lambda)$ random variables, then $T_{n} \sim \Gamma(\lambda, n)$
- Compute

$$
\begin{aligned}
\mathbf{P}(N(t)=j) & =\mathbf{P}\left(T_{j} \leq t<T_{j+1}\right) \\
& =\mathbf{P}\left(T_{j} \leq t\right)-\mathbf{P}\left(T_{j+1} \leq t\right) \\
& =\frac{(\lambda t)^{j}}{j!} \exp (-\lambda t)
\end{aligned}
$$

Outline

(1) Birth processes and the Poisson process

- Poisson process
- Birth processes
(2) Continuous time Markov chain
- General definitions and transitions
- Generators
- Classification of states

Definition of birth process

Definition 5.

Let

- $N=\{N(t) ; t \geq 0\}$ process with $N(0)=0$ and $N(t) \in \mathbb{N}$

Then N is a birth process if

- $N(0)=0$ and $t \mapsto N(t)$ is
- Probability $\mathbf{P}(N(t+h)=n+m \mid N(t)=n)$ of the form

$$
\begin{cases}\lambda_{n} h+o(h) & \text { if } m=1 \\ o(h) & \text { if } m>1 \\ 1-\lambda_{n} h+o(h) & \text { if } m=0\end{cases}
$$

- Conditional on $N(s), N(t)-N(s) \Perp$ values of N on $[0, s]$

Remark and particular case

Interpretation: For a birth process
\hookrightarrow the birth rate depends on the population size
Poisson case:
When $\lambda_{n}=\lambda$, i.e birth rate independent of the population size

Simple birth

Model:

- Living individuals give birth independently of one another
- Each individual gives birth with probability $\lambda h+o(h)$
- No death

Claim:
The simple birth process is a birth process with $\lambda_{n}=n \lambda$

Simple birth (2)

Justification of the claim: Let $M=\#$ births in $(t, t+h)$. Then

$$
\begin{aligned}
\mathbf{P}(M & =n+m \mid N(t)=n)=\binom{n}{m}(\lambda h)^{m}(1-\lambda h)^{n-m}+o(h) \\
& = \begin{cases}n \lambda h+o(h) & \text { if } m=1 \\
o(h) & \text { if } m>1 \\
1-n \lambda h+o(h) & \text { if } m=0\end{cases}
\end{aligned}
$$

Simple birth with immigration

Model:

- Living individuals give birth independently of one another
- Each individual gives birth with probability $\lambda h+o(h)$
- No death
- Constant immigration ν

Form of λ_{n} : We get

$$
\lambda_{n}=n \lambda+\nu
$$

Forward ode's for the probabilities

Proposition 6.

Let

- N birth process
- Intensities $\left\{\lambda_{j} ; j \geq-1\right\}$, with $\lambda_{-1}=0$

Set

$$
p_{i j}(t)=\mathbf{P}(N(s+t)=j \mid N(s)=i)
$$

Then for $j \geq i$ the function $p_{i j}$ satisfies

$$
p_{i, j}^{\prime}(t)=\lambda_{j-1} p_{i, j-1}(t)-\lambda_{j} p_{i, j}(t),
$$

with initial condition $p_{i j}(0)=\delta_{i j}$

Proof of Proposition 6 (1)

Conditioning on a small interval: We have

$$
\begin{aligned}
& p_{i j}(t+h) \\
= & \mathbf{P}(N(t+h)=j \mid N(0)=i) \\
= & \sum_{k \in S} \mathbf{P}(N(t+h)=j, N(t)=k \mid N(0)=i) \\
= & \sum_{k \in S} \mathbf{P}(N(t+h)=j \mid N(0)=i, N(t)=k) \mathbf{P}(N(t)=k \mid N(0)=i) \\
= & \sum_{k \in S} \mathbf{P}(N(t+h)=j \mid N(t)=k) \mathbf{P}(N(t)=k \mid N(0)=i) \\
= & \left(1-\lambda_{j} h\right) p_{i j}(t)+\left(\lambda_{j-1} h\right) p_{i, j-1}(t)+o(h)
\end{aligned}
$$

Proof of Proposition 6 (2)

Recall:

$$
p_{i j}(t+h)-p_{i j}(t)=\left(\lambda_{j-1} p_{i, j-1}(t)-\lambda_{j} p_{i j}(t)\right) h+o(h)
$$

Differentiating: We end up with a system of ode's

$$
p_{i j}^{\prime}(t)=\lambda_{j-1} p_{i, j-1}(t)-\lambda_{j} p_{i j}(t)
$$

Initial condition:

$$
p_{i j}(0)=\delta_{i j} \equiv \mathbf{1}_{(i=j)}
$$

Backward ode's

Proposition 7.

Let

- N birth process
- Intensities $\left\{\lambda_{j} ; j \geq-1\right\}$, with $\lambda_{-1}=0$

Set

$$
p_{i j}(t)=\mathbf{P}(N(s+t)=j \mid N(s)=i)
$$

Then for $j \geq i$ the function $p_{i j}$ satisfies

$$
p_{i, j}^{\prime}(t)=\lambda_{i} p_{i+1, j}(t)-\lambda_{i} p_{i, j}(t)
$$

with initial condition $p_{i j}(0)=\delta_{i j}$

Proof of Proposition 7 (1)

Backward conditioning on a small interval: We have

$$
\begin{aligned}
& p_{i j}(t+h) \\
= & \mathbf{P}(N(t+h)=j \mid N(0)=i) \\
= & \sum_{k \in S} \mathbf{P}(N(t+h)=j, N(h)=k \mid N(0)=i) \\
= & \sum_{k \in S} \mathbf{P}(N(t+h)=j \mid N(0)=i, N(h)=k) \mathbf{P}(N(h)=k \mid N(0)=i) \\
= & \sum_{k \in S} \mathbf{P}(N(t+h)=j \mid N(h)=k) \mathbf{P}(N(h)=k \mid N(0)=i) \\
= & p_{i j}(t)\left(1-\lambda_{i} h\right)+p_{i+1, j}(t)\left(\lambda_{i} h\right)+o(h)
\end{aligned}
$$

Proof of Proposition 7 (2)

Recall:

$$
p_{i j}(t+h)-p_{i j}(t)=\left(\lambda_{i} p_{i+1, j}(t)-\lambda_{i} p_{i j}(t)\right) h+o(h)
$$

Differentiating: We end up with a system of ode's

$$
p_{i j}^{\prime}(t)=\lambda_{i} p_{i+1, j}(t)-\lambda_{i} p_{i j}(t)
$$

Initial condition:

$$
p_{i j}(0)=\delta_{i j} \equiv \mathbf{1}_{(i=j)}
$$

Solving the forward system

Theorem 8.

Let

- Intensities $\left\{\lambda_{j} ; j \geq-1\right\}$, with $\lambda_{-1}=0$
- Set of indices $\{0 \leq i, j<\infty\}$

Then the system of equations

- $p_{i, j}^{\prime}(t)=\lambda_{j-1} p_{i, j-1}(t)-\lambda_{j} p_{i, j}(t)$ if $j \geq i$
- $p_{i j}(0)=\delta_{i j}$
- $p_{i j}(t)=0$ if $j<i$
admits a unique solution

Proof of Theorem 8

Case $i=j$: The equation becomes

$$
p_{i, i}^{\prime}(t)=-\lambda_{i} p_{i, i}(t), \quad \text { initial condition } \quad p_{i, i}(0)=1
$$

Thus

$$
p_{i, i}(t)=\exp \left(-\lambda_{i} t\right)
$$

General case:
Obtained by recursion

Laplace transform

Definition: Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$. Then

$$
\mathcal{L} f(s)=\hat{f}(s)=\int_{0}^{\infty} e^{-s t} f(t) d t .
$$

Possible strategy to solve a differential equation:
(1) Transform diff. equation into algebraic problem in s variable.
(2) Solve algebraic problem and find \hat{f}.
(3) Invert Laplace transform and find f.

Existence of Laplace transform

Theorem 9.

Hypothesis:

- f piecewise continuous on $[0, A]$ for each $A>0$.
- $|f(t)| \leq K e^{a t}$ for $K \geq 0$ and $a \in \mathbb{R}$.

Conclusion:
$\mathcal{L} f(s)$ exists for $s>a$.

Vocabulary: f satisfying $|f(t)| \leq K e^{a t}$
\hookrightarrow Called function of exponential order.

Table of Laplace transforms

Function f	Laplace transform \hat{f}	Domain of \hat{f}
$\mathbf{1}$	$\frac{1}{s}$	$s>0$
$e^{a t}$	$\frac{1}{s-a}$	$s>a$
$\mathbf{1}_{[0,1)}(t)+k \mathbf{1}_{(t=1)}$	$\frac{1-e^{-s}}{s}$	$s>0$
$t^{n}, n \in \mathbb{N}$	$\frac{n!}{s^{n+1}}$	$s>0$
$t^{p}, p>-1$	$\frac{\Gamma(p+1)}{s^{p+1}}$	$\frac{a}{s^{2}+a^{2}}$
$\sin (a t)$	$\frac{s}{s^{2}+a^{2}}$	$s>0$
$\cos (a t)$	$\frac{a}{s^{2}-a^{2}}$	$s>0$
$\sinh (a t)$	$\frac{s}{s^{2}-a^{2}}$	$s>\|a\|$
$\cosh (a t)$	$\frac{b}{(s-a)^{2}+b^{2}}$	$s>\|a\|$
$e^{a t} \sin (b t)$	$\frac{s-a}{(s-a)^{2}+b^{2}}$	$s>a$
$e^{a t} \cos (b t)$		$s>a$

Table of Laplace transforms (2)

Function f	Laplace transform \hat{f}	Domain of \hat{f}
$t^{n} e^{a t}, n \in \mathbb{N}$	$\frac{n!}{(s-a)^{n+1}}$	$s>a$
$u_{c}(t)$	$\frac{e^{-c s}}{s}$	$s>0$
$u_{c}(t) f(t-c)$	$e^{-c s} \hat{f}(s)$	
$e^{c t} f(t)$	$\hat{f}(s-c)$	
$f(c t), c>0$	$\frac{1}{c} \hat{f}\left(\frac{s}{c}\right)$	
$\int_{0}^{t} f(t-\tau) g(\tau)$	$e^{-c s}$	
$\delta(t-c)$	$\hat{f}(s) \hat{g}(s)$	
$f^{(n)}(t)$	$s^{n} \hat{f}(s)-s^{n-1} f(0)-\cdots-f^{(n-1)}(0)$	
$(-t)^{n} f(s)$	$\hat{f}^{(n)}(s)$	

Linearity of Laplace transform

Example of function f :

$$
f(t)=5 e^{-2 t}-3 \sin (4 t)
$$

Laplace transform by linearity: we find

$$
\begin{aligned}
\mathcal{L} f(s) & =5\left[\mathcal{L}\left(e^{-2 t}\right)\right](s)-3[\mathcal{L}(\sin (4 t)](s) \\
& =\frac{5}{s+2}-\frac{12}{s^{2}+16}
\end{aligned}
$$

Interest of Laplace transform

Laplace:

- 1749-1827, lived in France
- Mostly mathematician
- Called the French Newton
- Contributions in
- Mathematical physics
- Analysis, partial differential equations
- Celestial mechanics
- Probability (central limit theorem)

General interest of Laplace transform:
In many branches of mathematics (analysis - geometry - probability)
Interest for differential equations:
Deal with impulsive (discontinuous) forcing terms.

Relation between $\mathcal{L} f$ and $\mathcal{L} f^{\prime}$

Theorem 10.

Hypothesis:
(1) f continuous, f^{\prime} piecewise continuous on $[0, A]$
\hookrightarrow for each $A>0$.
(2) $|f(t)| \leq K e^{a t}$ for $K, a \geq 0$.

Conclusion: $\mathcal{L} f^{\prime}$ exists and

$$
\mathcal{L} f^{\prime}(s)=s \mathcal{L} f(s)-f(0)
$$

Proof of Theorem 10

Integration by parts:

$$
\int_{0}^{A} e^{-s t} f^{\prime}(t) d t=\left[e^{-s t} f(t)\right]_{0}^{A}+s \int_{0}^{A} e^{-s t} f(t) d t
$$

Laplace transform of transitions

Proposition 11.

Let

- Intensities $\left\{\lambda_{j} ; j \geq-1\right\}$, with $\lambda_{-1}=0$
- Set of indices $\{0 \leq i, j<\infty\}$
- $p_{i j}$ solution to forward system

$$
p_{i, j}^{\prime}(t)=\lambda_{j-1} p_{i, j-1}(t)-\lambda_{j} p_{i, j}(t)
$$

Then for $i \leq j$ the Laplace transform $\hat{p}_{i j}$ satisfies

$$
\hat{p}_{i j}(s)=\frac{1}{\lambda_{j}} \prod_{\ell=i}^{j} \frac{\lambda_{\ell}}{s+\lambda_{\ell}}
$$

Proof of Proposition 13 (1)

Laplace transform of the forward equation: The equation

$$
p_{i, j}^{\prime}(t)=\lambda_{j-1} p_{i, j-1}(t)-\lambda_{j} p_{i, j}(t)
$$

becomes

$$
s \hat{p}_{i j}(s)-\delta_{i j}=\lambda_{j-1} \hat{p}_{i, j-1}(s)-\lambda_{j} \hat{p}_{i j}(s)
$$

Rearranging terms: We get

$$
\left(s+\lambda_{j}\right) \hat{p}_{i j}(s)=\delta_{i j}+\lambda_{j-1} \hat{p}_{i, j-1}(s)
$$

Proof of Proposition 13 (2)

Case $j>i$: Since $\delta_{i j}=0$ in that case, we get

$$
\begin{aligned}
\hat{p}_{i j}(s) & =\frac{\lambda_{j-1}}{s+\lambda_{j}} \hat{p}_{i, j-1}(s) \\
& =\frac{\lambda_{j-1}}{s+\lambda_{j}} \frac{\lambda_{j-2}}{s+\lambda_{j-1}} \hat{p}_{i, j-2}(s) \\
& =\frac{1}{\lambda_{j}} \frac{\lambda_{j}}{s+\lambda_{j}} \frac{\lambda_{j-1}}{s+\lambda_{j-1}} \lambda_{j-2} \hat{p}_{i, j-2}(s)
\end{aligned}
$$

Conclusion: Iterating the above computation, we get

$$
\hat{p}_{i j}(s)=\frac{1}{\lambda_{j}} \prod_{\ell=i}^{j} \frac{\lambda_{\ell}}{s+\lambda_{\ell}}
$$

Backward and forward system

Proposition 12.

Consider the backward system

$$
\begin{equation*}
\pi_{i, j}^{\prime}(t)=\lambda_{i} \pi_{i+1, j}(t)-\lambda_{i} \pi_{i, j}(t), \tag{1}
\end{equation*}
$$

Then

> The solution $\left\{p_{i j} ; i, j \geq 0\right\}$ to the forward system also solves the system (1)

Proof of Proposition 15

Backward equation in Laplace mode: We get

$$
\begin{equation*}
\left(s+\lambda_{i}\right) \hat{\pi}_{i j}(s)=\delta_{i j}+\lambda_{i} \hat{\pi}_{i+1, j}(s) \tag{2}
\end{equation*}
$$

Forward solves backward: Take

$$
\hat{\pi}_{i j}(s)=\hat{p}_{i j}(s)=\frac{1}{\lambda_{j}} \prod_{\ell=i}^{j} \frac{\lambda_{\ell}}{s+\lambda_{\ell}}
$$

This solves (2)

Problem with the backward system

Main problem:
Backward system may not have a unique solution
Minimal solution:
The unique solution of the forward system is a minimal solution of the backward system

Minimal solution of the backward system

Proposition 13.

Let

- Intensities $\left\{\lambda_{j} ; j \geq-1\right\}$, with $\lambda_{-1}=0$
- Set of indices $\{0 \leq i, j<\infty\}$
- $p_{i j}$ solution to forward system $p_{i, j}^{\prime}(t)=\lambda_{j-1} p_{i, j-1}(t)-\lambda_{j} p_{i, j}(t)$

Then
$\pi_{i j}$ solution of the backward system
\Longrightarrow We have $p_{i, j}(t) \leq \pi_{i, j}(t)$ for all $i, j \in S$ and $t \geq 0$

Backward system and explosion

Relating explosion time and uniqueness:
(1) If $\sum_{j \in S} p_{i, j}(t)=1$, then
$\hookrightarrow p_{i, j}$ is the unique solution of the backward system
(2) Problem: $\left\{p_{i, j}(t) ; j \in S\right\}$ is not always a distribution
(3) This is related to explosion time: we might have

$$
\mathbf{P}\left(T_{\infty}<\infty\right)>0, \quad \text { where } \quad T_{\infty}=\lim _{n \rightarrow \infty} T_{n}
$$

Honest birth process

Definition 14.

Let

- N birth process
- Intensities $\left\{\lambda_{j} ; j \geq-1\right\}$, with $\lambda_{-1}=0$
- $\left\{T_{n} ; n \geq 1\right\}$ arrival times

Then N is said to be honest if

$$
\mathbf{P}\left(T_{\infty}=\infty\right)=1
$$

Sum of exponential random variables

Proposition 15.

Let

- $\left\{X_{n} ; n \geq 1\right\}$ sequence of independent random variables
- Each X_{n} is such that $X_{n} \sim \mathcal{E}\left(\lambda_{n-1}\right)$
- $T_{\infty}=\sum_{n=1}^{\infty} X_{n}$

Then

$$
\mathbf{P}\left(T_{\infty}<\infty\right)= \begin{cases}0, & \text { if } \sum_{n=1}^{\infty} \frac{1}{\lambda_{n}}=\infty \\ 1 & \text { if } \sum_{n=1}^{\infty} \frac{1}{\lambda_{n}}<\infty\end{cases}
$$

Proof of Proposition 15 (1)

Case $\sum_{n \geq 1} \lambda_{n}^{-1}<\infty$: Using Fubini-Tonelli we have

$$
\mathbf{E}\left[T_{\infty}\right]=\mathbf{E}\left[\sum_{n=1}^{\infty} X_{n}\right]=\sum_{n=1}^{\infty} \frac{1}{\lambda_{n-1}}<\infty
$$

Thus

$$
\mathbf{P}\left(T_{\infty}<\infty\right)=0
$$

Proof of Proposition 15 (2)

Case $\sum_{n \geq 1} \lambda_{n}^{-1}=\infty$, strategy: We have

$$
\begin{aligned}
\mathbf{E}\left[e^{-T_{\infty}}\right]=0 & \Longrightarrow \mathbf{P}\left(e^{-T_{\infty}}=0\right)=1 \\
& \Longrightarrow \mathbf{P}\left(T_{\infty}=\infty\right)=1
\end{aligned}
$$

We will thus prove

$$
\mathbf{E}\left[e^{-T_{\infty}}\right]=0
$$

Proof of Proposition 15 (3)

Case $\sum_{n \geq 1} \lambda_{n}^{-1}=\infty$, computation: We have

$$
\begin{aligned}
\mathbf{E}\left[e^{-T_{\infty}}\right] & =\mathbf{E}\left[\prod_{n=1}^{\infty} e^{-X_{n}}\right] \\
& =\lim _{N \rightarrow \infty} \mathbf{E}\left[\prod_{n=1}^{N} e^{-X_{n}}\right] \quad \text { (monotone convergenc } \\
& =\lim _{N \rightarrow \infty} \prod_{n=1}^{N} \mathbf{E}\left[e^{-X_{n}}\right] \\
& =\lim _{N \rightarrow \infty} \prod_{n=1}^{N} \frac{1}{1+\lambda_{n-1}^{-1}}=\left(\prod_{n=1}^{\infty}\left(1+\frac{1}{\lambda_{n-1}}\right)\right)^{-1}
\end{aligned}
$$

Proof of Proposition 15 (4)

Infinite products: If $u_{n} \geq 0$, then

$$
\begin{equation*}
\prod_{n=1}^{\infty}\left(1+u_{n}\right)=\infty \quad \Longleftrightarrow \quad \sum_{n=1}^{\infty} u_{n}=\infty \tag{3}
\end{equation*}
$$

Pseudo-proof of (3): We have

$$
\begin{aligned}
\ln \left(\prod_{n=1}^{\infty}\left(1+u_{n}\right)\right) & =\sum_{n=1}^{\infty} \ln \left(1+u_{n}\right) \\
& \asymp \sum_{n=1}^{\infty} u_{n}
\end{aligned}
$$

Proof of Proposition 15 (5)

Recall: We have seen

$$
\mathbf{E}\left[e^{-T_{\infty}}\right]=\left(\prod_{n=1}^{\infty}\left(1+\frac{1}{\lambda_{n-1}}\right)\right)^{-1}
$$

Application of (3):

$$
\mathbf{E}\left[e^{-T_{\infty}}\right] \Longleftrightarrow \prod_{n=1}^{\infty}\left(1+\frac{1}{\lambda_{n-1}}\right)=\infty \Longleftrightarrow \sum_{n \geq 1} \lambda_{n}^{-1}=\infty
$$

Conclusion:

$$
T_{\infty}=\infty \quad \Longleftrightarrow \quad \sum_{n \geq 1} \lambda_{n}^{-1}=\infty
$$

Application to birth process

Proposition 16.

Let

- N birth process
- Intensities $\left\{\lambda_{j} ; j \geq-1\right\}$, with $\lambda_{-1}=0$
- $\left\{T_{n} ; n \geq 1\right\}$ arrival times

Then N is honest iff

$$
\sum_{n=1}^{\infty} \frac{1}{\lambda_{n}}=\infty
$$

Final remarks

Notes before next section:
(1) Poisson and birth processes are Markov processes \hookrightarrow Due to $(N(t)-N(s)) \Perp$ Past, given $N(s)=i$
(2) They are in fact strong Markov processes
\hookrightarrow Definition to be seen later
(3) Problems can occur due to explosions
\hookrightarrow This could not be observed in discrete time

Outline

(1) Birth processes and the Poisson process
 - Poisson process
 - Birth processes

(2) Continuous time Markov chain

- General definitions and transitions
- Generators
- Classification of states

Outline

(1) Birth processes and the Poisson process

- Poisson process
- Birth processes
(2) Continuous time Markov chain
- General definitions and transitions
- Generators
- Classification of states

Vocabulary

Stochastic process:

- Family $\{X(t) ; t \in[0, \infty)\}$ of random variables
- Family evolving in a random but prescribed manner
- Here $X(t) \in S$, where S countable state space with $N=|S|$

Markov evolution:

> Conditioned on $X(t)$, the evolution does not depend on the past

Markov chain

Definition 17.

Let

- $X=\{X(t) ; t \geq 0\}$ stochastic process

We say that X is a continuous time Markov chain if

$$
\begin{aligned}
& \mathbf{P}\left(X\left(t_{n}\right)=j \mid X\left(t_{1}\right)=i_{1}, \ldots, X\left(t_{n-1}\right)=i_{n-1}\right) \\
= & \mathbf{P}\left(X\left(t_{n}\right)=j \mid X\left(t_{n-1}\right)=i_{n-1}\right),
\end{aligned}
$$

for all

- $0 \leq t_{1}<\cdots<t_{n}<\infty$
- $i_{1}, \ldots, i_{n}, j \in S$

Differences with discrete time

Main difference:

- No time unit
- Therefore no exact analogue of P

Method 1:

- Use infinitesimal calculus
- This leads to infinitesimal generator

Method 2:

- Embedded chain

Birth process as Markov process

Proposition 18.

Let

- N birth process
- Intensities $\left\{\lambda_{j} ; j \geq-1\right\}$, with $\lambda_{-1}=0$

Then

N is a Markov process

Proof of Proposition 18 (1)

Setting: Consider

- $s_{1}<\cdots<s_{n}<s<t$
- $i_{1}, \ldots, i_{n}, j \in S$

Aim: Prove

$$
\begin{aligned}
& \mathbf{P}\left(N(t)=j \mid N\left(s_{1}\right)=i_{1}, \ldots, N\left(s_{n}\right)=i_{n}, N(s)=i\right) \\
= & \mathbf{P}(N(t)=j \mid N(s)=i)
\end{aligned}
$$

Equivalent statement: Prove that

$$
\begin{aligned}
\mathbf{P}(N(t)-N(s) & \left.=j-i \mid N\left(s_{1}\right)=i_{1}, \ldots, N\left(s_{n}\right)=i_{n}, N(s)=i\right) \\
= & \mathbf{P}(N(t)-N(s)=j-i \mid N(s)=i)
\end{aligned}
$$

Proof of Proposition 18 (2)

Recall: We wish to prove

$$
\begin{aligned}
& \mathbf{P}\left(N(t)-N(s)=j-i \mid N\left(s_{1}\right)=i_{1}, \ldots, N\left(s_{n}\right)=i_{n}, N(s)=i\right) \\
& =\mathbf{P}(N(t)-N(s)=j-i \mid N(s)=i)
\end{aligned}
$$

Defining some sets: Consider

- $A_{s t}=(N(t)-N(s)=j-i)$
- $B_{s_{1}, \ldots, s_{n}}=N\left(s_{1}\right)=i_{1}, \ldots, N\left(s_{n}\right)=i_{n}$
- $C_{s}=(N(s)=i)$

Rephrasing our claim: Now we wish to prove

$$
\mathbf{P}\left(A_{s t} \mid B_{s_{1}, \ldots, s_{n}} \cap C_{s}\right)=\mathbf{P}\left(A_{s t} \mid C_{s}\right)
$$

Proof of Proposition 18 (3)

General formula: We have

$$
\begin{equation*}
\mathbf{P}\left(A_{s t} \cap B_{s_{1}, \ldots, s_{n}} \mid C_{s}\right)=\mathbf{P}\left(A_{s t} \mid B_{s_{1}, \ldots, s_{n}} \cap C_{s}\right) \mathbf{P}\left(B_{s_{1}, \ldots, s_{n}} \mid C_{s}\right) \tag{4}
\end{equation*}
$$

Conditional independence: In Definition 5 we had the assumption
Conditional on $N(s), N(t)-N(s) \Perp$ values of N on $[0, s]$
This reads

$$
\begin{equation*}
\mathbf{P}\left(A_{s t} \cap B_{s_{1}, \ldots, s_{n}} \mid C_{s}\right)=\mathbf{P}\left(A_{s t} \mid C_{s}\right) \mathbf{P}\left(B_{s_{1}, \ldots, s_{n}} \mid C_{s}\right) \tag{5}
\end{equation*}
$$

Conclusion: Combining (4) and (5) we end up with

$$
\mathbf{P}\left(A_{s t} \mid B_{s_{1}, \ldots, s_{n}} \cap C_{s}\right)=\mathbf{P}\left(A_{s t} \mid C_{s}\right)
$$

Transition probabilities

Definition 19.

Let X be a continuous-time Markov chain. Then
(1) The transition probabilities are given by

$$
p_{i j}(s, t)=\mathbf{P}(X(t)=j \mid X(s)=i) \quad \text { for } \quad s<t, i, j \in S
$$

(2) X is homogeneous if for all n, i, j we have

$$
p_{i j}(s, t)=p_{i j}(0, t-s) \equiv p_{i j}(t-s)
$$

Hypothesis 20.
In the chapter we always assume that X is homogeneous

Transitions for the Poisson process

Proposition 21.

Let

- N Poisson process
- Intensity λ

Then N is homogeneous and

$$
p_{i j}(s, t)=p_{i j}(t-s)=\exp (-\lambda(t-s)) \frac{(\lambda(t-s))^{j-i}}{(j-i)!}
$$

Proof of Proposition 21

Expression for the conditional probabilities: We have

$$
\begin{aligned}
p_{i j}(s, t) & =\mathbf{P}(N(t)=j \mid N(s)=i) \\
& =\mathbf{P}(N(t)-N(s)=j-i \mid N(s)=i) \\
& =\mathbf{P}(N(t)-N(s)=j-i) \quad(N(t)-N(s) \Perp \mathbf{N}(\mathrm{s})) \\
& =\mathbf{P}(N(t-s)=j-i) \quad(\text { Homogeneity }) \\
& =\exp (-\lambda(t-s)) \frac{(\lambda(t-s))^{j-i}}{(j-i)!} \quad \text { (Poisson distribution) }
\end{aligned}
$$

Transition semigroup

Definition 22.

Let X be a homogeneous Markov chain. Then
(1) We set

$$
P_{t}=\left(p_{i j}(t)\right)_{i, j \in S}
$$

(2) The family

$$
\left\{P_{t} ; t \geq 0\right\}
$$

is called transition semigroup

Stochastic semigroup

Theorem 23.

The family P is a stochastic semigroup, that is
(1) $P_{0}=\mathrm{Id}$
(2) For all $t \geq 0, P_{t}$ is a stochastic matrix, i.e

- $p_{i j}(t) \geq 0$, for all i, j
- $\sum_{j} p_{i j}(t)=1$, for all i
(3) Chapman-Kolmogorov holds true:

$$
P_{s+t}=P_{s} P_{t}
$$

Proof of Theorem 23

Proof of item 2: For $t \geq 0$ we have

$$
\begin{aligned}
\sum_{j \in S} p_{i j}(t) & =\sum_{j \in S} \mathbf{P}(X(t)=j \mid X(0)=i) \\
& =\mathbf{P}\left(\cup_{j \in S} X(t)=j \mid X(0)=i\right) \\
& =1
\end{aligned}
$$

Proof of Theorem 23 (2)

Proof of item 3: For $s, t \geq 0$ we have

$$
\begin{aligned}
& p_{i j}(s+t)=\mathbf{P}(X(s+t)=j \mid X(0)=i) \\
& =\sum_{k} \mathbf{P}(X(s+t)=j, X(s)=k \mid X(0)=i) \\
& =\sum_{k} \mathbf{P}(X(s+t)=j \mid X(s)=k, X(0)=i) \mathbf{P}(X(s)=k \mid X(0)=i) \\
& =\sum_{k} \mathbf{P}(X(s+t)=j \mid X(s)=k) \mathbf{P}(X(s)=k \mid X(0)=i) \\
& =\sum_{k} p_{i k}(s) p_{k j}(t)
\end{aligned}
$$

Standard semigroup

Definition 24.

Let

- X Markov chain with transition P

Then P is said to be standard if

$$
\lim _{t \rightarrow 0} P_{t}=\mathrm{Id},
$$

that is

$$
\lim _{t \rightarrow 0} p_{i j}(t)=\delta_{i j}, \text { for all } i, j \in S
$$

Outline

(1) Birth processes and the Poisson process

- Poisson process
- Birth processes
(2) Continuous time Markov chain
- General definitions and transitions
- Generators
- Classification of states

Continuity of standard semigroups

Proposition 25.

Assume

- X Markov chain
- The transition P is standard

Then P is continuous: for all $t \geq 0$ we have

$$
\lim _{h \rightarrow 0} P_{t+h}=P_{t}
$$

that is

$$
\lim _{h \rightarrow 0} p_{i j}(t+h)=p_{i j}(t), \text { for all } i, j \in S
$$

Behavior close to 0

Taylor expansions: We have (admitted)

$$
\begin{aligned}
& p_{i j}(h)=g_{i j} h+o(h) \\
& p_{i i}(h)=1+g_{i i} h+o(h)
\end{aligned}
$$

Signs of $g_{i j}$: If we want $p_{i j}(h) \in[0,1]$ we need

$$
g_{i j} \geq 0, \quad \text { and } \quad g_{i i} \leq 0
$$

Meaning of $g_{i j}$'s

Interpretation: Starting from $X(t)=i$,
(1) Nothing happens with probability

$$
1+g_{i i} h+o(h)
$$

(2) The chain jumps from i to j with probability

$$
g_{i j} h+o(h)
$$

Terminology:
The matrix $G=\left(g_{i j}\right)_{i, j \in S}$ is called generator of the Markov chain

Basic property of the generator

Proposition 26.

Assume

- X Markov chain
- The transition P is standard
- There is a generator G

Then for most cases we have

$$
\sum_{j \in S} g_{i j}=0, \quad \text { for all } \quad i \in S
$$

Generator for birth process

Proposition 27.

Let

- N birth process
- Intensities $\left\{\lambda_{j} ; j \geq-1\right\}$, with $\lambda_{-1}=0$

Then the generator G of N is given by

$$
\begin{equation*}
g_{i i}=-\lambda_{i}, \quad g_{i, i+1}=\lambda_{i}, \quad g_{i j}=0 \text { otherwise } \tag{6}
\end{equation*}
$$

that is

$$
G=\left[\begin{array}{cccccc}
-\lambda_{0} & \lambda_{0} & 0 & 0 & 0 & \cdots \\
0 & -\lambda_{1} & \lambda_{1} & 0 & 0 & \cdots \\
0 & 0 & -\lambda_{2} & \lambda_{2} & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Proof of Proposition 27

Expansion for birth transitions: We have seen (cf Definition 5)

$$
\begin{aligned}
p_{n, n}(t, t+h) & =p_{n, n}(h)=1-\lambda_{n} h+o(h) \\
p_{n, n+1}(t, t+h) & =p_{n, n+1}(h)=\lambda_{n} h+o(h) \\
p_{n, j}(t, t+h) & =p_{n, j}(h)=o(h), \quad \text { if } j \geq n+2
\end{aligned}
$$

General expansion: We have also seen the general expression

$$
\begin{aligned}
p_{n n}(h) & =1+g_{n n} h+o(h) \\
p_{n j}(h) & =g_{n j} h+o(h)
\end{aligned}
$$

Conlusion:
We easily get (6) by identification

Matrix form of the generator

Proposition 28.

Assume

- X Markov chain
- The transition P is standard

Then we have

$$
\lim _{h \rightarrow 0} \frac{1}{h}\left(P_{h}-\mathrm{Id}\right)=G
$$

that is

$$
\lim _{h \rightarrow 0} \frac{1}{h}\left(p_{i j}(h)-\delta_{i j}\right)=g_{i j}, \text { for all } i, j \in S
$$

Proof of Proposition 28

Main argument: Rephrasing of

$$
\begin{aligned}
& p_{i j}(h)=g_{i j} h+o(h) \\
& p_{i i}(h)=1+g_{i i} h+o(h)
\end{aligned}
$$

Transitions from generator: forward equations

Proposition 29.

Assume

- X Markov chain
- The transition P is standard

Then P_{t} satisfies the differential equation

$$
P_{t}^{\prime}=P_{t} G .
$$

that is

$$
p_{i j}^{\prime}(t)=\sum_{k \in S} p_{i k}(t) g_{k j}, \text { for all } i, j \in S
$$

Proof of Proposition 29

Application of Chapman-Kolmogorov:

$$
\begin{aligned}
p_{i j}(t+h) & =\sum_{k \in S} p_{i k}(t) p_{k j}(h) \\
& \simeq p_{i j}(t)\left(1+g_{j j} h\right)+\sum_{k \neq j} p_{i k}(t) g_{k j} h \\
& =p_{i j}(t)+\sum_{k \in S} p_{i k}(t) g_{k j} h
\end{aligned}
$$

Differentiating:

$$
\frac{1}{h}\left(p_{i j}(t+h)-p_{i j}(t)\right) \simeq \sum_{k \in S} p_{i k}(t) g_{k j}=\left(P_{t} G\right)_{i j}
$$

Transitions from generator: matrix exponential

Proposition 30.

Assume

- X Markov chain
- The transition P is standard

Then P_{t} satisfies the relation

$$
P_{t}=e^{t G}, \quad \text { where } \quad e^{t A} \equiv \sum_{n=0}^{\infty} \frac{t^{n}}{n!} A^{n}
$$

General inter-arrival

Proposition 31.

Let

- X Markov chain with transition P_{t}
- U random variable defined by

$$
U=\inf \{t \geq 0 ; X(s+t) \neq i\}
$$

Then we have

$$
\mathcal{L}(U \mid X(s)=i)=\mathcal{E}\left(-g_{i i}\right)
$$

that is

$$
\mathbf{P}(U>t \mid X(s)=i)=\exp \left(-g_{i i} t\right)
$$

Proof of Proposition 31 (1)

Properties of exponential random variables: If $Z \sim \mathcal{E}(\mu)$, then

$$
\begin{equation*}
\mathbf{P}(Z>a+b \mid Z>a)=\mathbf{P}(Z>b)=\exp (-\mu b) \tag{7}
\end{equation*}
$$

Remarks about (7):
(1) Relation (7) can be interpreted as lack of memory
(2) It can also be interpreted as no aging

- In fact (7) characterizes the distribution $\mathcal{E}(\mu)$

Proof of Proposition 31 (2)

Main argument: We have

$$
\begin{aligned}
& \mathbf{P}(U>a+b \mid U>a, X(s)=i) \\
& =\mathbf{P}(U>a+b \mid X(s+a)=i, X(s)=i) \\
& =\mathbf{P}\left(a+U \circ \theta_{a}>a+b \mid X(s+a)=i, X(s)=i\right) \\
& =\mathbf{P}\left(U \circ \theta_{a}>b \mid X(s+a)=i\right) \quad \text { (Markov) } \\
& =\mathbf{P}\left(U \circ \theta_{a}>b \mid X(s) \circ \theta_{a}=i\right) \\
& =\mathbf{P}(U>b \mid X(s)=i) \quad \text { (Homogeneity) }
\end{aligned}
$$

Imbedded Markov chain

Proposition 32.

Let

- X Markov chain with standard transition P_{t}
- Assume $X(0)=i$

Then we have

$$
\mathbf{P}(X \text { jumps to } j \mid X(0)=i)=-\frac{g_{i j}}{g_{i i}}
$$

Proof of Proposition 32

Argument on a small interval: On $[t, t+h)$,

$$
\begin{aligned}
\mathbf{P}(X \text { jumps to } j \mid X \text { jumps }) & \simeq \frac{p_{i j}(h)}{1-p_{i j}(h)} \\
& \simeq \frac{g_{i j} h}{\left(-g_{i j} h\right)} \\
& \simeq-\frac{g_{i j}}{g_{i j}}
\end{aligned}
$$

Example with 2 states (1)

Model: We consider

- State space $S=\{1,2\}$
- Generator

$$
G=\left[\begin{array}{cc}
-\alpha & \alpha \\
\beta & -\beta
\end{array}\right]
$$

Example with 2 states (2)

Pathwise description: Applying Propositions 31 and 32 we get
(1) If X is in state 1 then

- X stays at 1 an amount of time $\sim \mathcal{E}(\alpha)$
- Next X jumps to 2
(2) If X is in state 2 then
- X stays at 2 an amount of time $\sim \mathcal{E}(\beta)$
- Next X jumps to 1

Example with 2 states (3)

Forward equation: Can be read as

$$
\left[\begin{array}{ll}
p_{11}^{\prime}(t) & p_{12}^{\prime}(t) \\
p_{21}^{\prime}(t) & p_{22}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
p_{11}(t) & p_{12}(t) \\
p_{21}(t) & p_{22}(t)
\end{array}\right]\left[\begin{array}{cc}
-\alpha & \alpha \\
\beta & -\beta
\end{array}\right]
$$

Sub-system for p_{11}, p_{12} : We get a separate system of the form

$$
\left[\begin{array}{l}
p_{11}^{\prime}(t) \\
p_{12}^{\prime}(t)
\end{array}\right]=A\left[\begin{array}{l}
p_{11}(t) \\
p_{12}(t)
\end{array}\right], \quad \text { with } \quad A=\left[\begin{array}{cc}
-\alpha & \beta \\
\alpha & -\beta
\end{array}\right]
$$

Example with 2 states (3)

Eigenvalue decomposition for A : We get

$$
\begin{aligned}
& \lambda_{1}=0, \quad \text { with } \quad \mathbf{v}_{1}=\left[\begin{array}{l}
\beta \\
\alpha
\end{array}\right] \\
& \lambda_{2}=-(\alpha+\beta), \quad \text { with } \quad \mathbf{v}_{2}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
\end{aligned}
$$

General form of the solution: We get

$$
\left[\begin{array}{l}
p_{11}(t) \\
p_{12}(t)
\end{array}\right]=c_{1}\left[\begin{array}{l}
\beta \\
\alpha
\end{array}\right]+c_{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \exp (-(\alpha+\beta) t)
$$

Example with 2 states (4)

Computation of constants: We use

$$
\lim _{t \rightarrow \infty}\left(p_{11}(t)+p_{12}(t)\right)=1, \quad \text { and } \quad p_{12}(0)=0
$$

and we get

$$
c_{1}=\frac{1}{\alpha+\beta}, \quad \text { and } \quad c_{2}=-\frac{\alpha}{\alpha+\beta}
$$

Unique solution: We end up with

$$
\left[\begin{array}{l}
p_{11}(t) \\
p_{12}(t)
\end{array}\right]=\frac{1}{\alpha+\beta}\left[\begin{array}{l}
\beta \\
\alpha
\end{array}\right]-\frac{\alpha}{\alpha+\beta}\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \exp (-(\alpha+\beta) t)
$$

Example with 2 states (5)

Sub-system for p_{21}, p_{22} : We get a separate system of the form

$$
\left[\begin{array}{l}
p_{21}^{\prime}(t) \\
p_{22}^{\prime}(t)
\end{array}\right]=A\left[\begin{array}{l}
p_{21}(t) \\
p_{22}(t)
\end{array}\right], \quad \text { with } \quad A=\left[\begin{array}{cc}
-\alpha & \beta \\
\alpha & -\beta
\end{array}\right]
$$

Unique solution: We end up with

$$
\left[\begin{array}{l}
p_{21}(t) \\
p_{22}(t)
\end{array}\right]=\frac{1}{\alpha+\beta}\left[\begin{array}{l}
\beta \\
\alpha
\end{array}\right]-\frac{\beta}{\alpha+\beta}\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \exp (-(\alpha+\beta) t)
$$

Outline

(1) Birth processes and the Poisson process

- Poisson process
- Birth processes
(2) Continuous time Markov chain
- General definitions and transitions
- Generators
- Classification of states

Irreducibility of chains

Proposition 33.

Let X Markov chain with standard transition P_{t}
Then we have
(1) For every pair $i, j \in S$, either

$$
\begin{aligned}
& p_{i j}(t)=0 \text { for all } t>0 \\
& \quad \text { or } \\
& p_{i j}(t)>0 \text { for all } t>0
\end{aligned}
$$

(2) Terminology: if $p_{i j}(t)>0$ for all $t>0$ $\hookrightarrow X$ is said to be irreducible
(3) In order to know if X is irreducible \hookrightarrow draw graph related to G

Birth process example

Recall: For the birth process,

$$
G=\left[\begin{array}{cccccc}
-\lambda_{0} & \lambda_{0} & 0 & 0 & 0 & \cdots \\
0 & -\lambda_{1} & \lambda_{1} & 0 & 0 & \cdots \\
0 & 0 & -\lambda_{2} & \lambda_{2} & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Nature of states:
All states are transient

2 states example

Recall:

$$
G=\left[\begin{array}{cc}
-\alpha & \alpha \\
\beta & -\beta
\end{array}\right]
$$

Nature of states:
The chain is irreducible

Stationary distribution

Definition 34.

Let

- X Markov chain with transition P
- π vector

Then π is a stationary distribution if
(1) $\pi_{j} \geq 0$ for all $j \in S$ and $\sum_{j \in S} \pi_{j}=1$
(2) π satisfies $\pi=\pi P_{t}$ for all $t \geq 0$, that is

$$
\pi_{j}=\sum_{i \in S} \pi_{i} p_{i j}(t), \quad \text { for all } \quad j \in S
$$

Interpretation of stationary distribution

Proposition 35.

Let

- X Markov chain with transition P
- π invariant distribution

Then

$$
X_{0} \sim \pi \quad \Longrightarrow \quad X(t) \sim \pi \quad \text { for all } t \geq 0
$$

Otherwise stated,

$$
\mathbf{P}(X(t)=j \mid X(0) \sim \pi)=\pi_{j}
$$

Stationary distribution and generator

Proposition 36.

Let

- X Markov chain with transition P and generator G
- π distribution

Then

$$
\pi \text { invariant distribution } \Longleftrightarrow \pi G=0
$$

Proof of Proposition 36

Basic relation: We have

$$
\pi G=0 \quad \Longleftrightarrow \quad \pi G^{n}=0
$$

Reasoning with matrix exponential: We get

$$
\begin{aligned}
\pi G=0 & \Longleftrightarrow \sum_{n=1}^{\infty} \frac{t^{n}}{n!} \pi G^{n}=0, \quad \text { for all } t \geq 0 \\
& \Longleftrightarrow \pi \sum_{n=1}^{\infty} \frac{t^{n}}{n!} G^{n}=0, \quad \text { for all } t \geq 0 \\
& \Longleftrightarrow \pi \sum_{n=0}^{\infty} \frac{t^{n}}{n!} G^{n}=\pi, \quad \text { for all } t \geq 0 \\
& \Longleftrightarrow \pi P_{t}=\pi, \quad \text { for all } t \geq 0
\end{aligned}
$$

Ergodic theorem

Proposition 37.

Let

- X Markov chain with transition P and generator G
- Assume X is irreducible

Then
(1) If there exists a stationary distribution π, then π is unique and $\lim _{t \rightarrow \infty} p_{i j}(t)=\pi_{j}$ for all $i, j \in S$
(2) If there is no stationary distribution π, then

$$
\lim _{t \rightarrow \infty} p_{i j}(t)=0 \text { for all } i, j \in S
$$

2 states example (1)

Recall:

$$
G=\left[\begin{array}{cc}
-\alpha & \alpha \\
\beta & -\beta
\end{array}\right]
$$

Invariant distribution: The chain is irreducible and we have

$$
\pi=\left[\begin{array}{cc}
\frac{\beta}{\alpha+\beta} & \frac{\alpha}{\alpha+\beta}
\end{array}\right] \Longrightarrow \pi G=0
$$

2 states example (2)

Recall: We have seen

$$
\left[\begin{array}{l}
p_{11}(t) \\
p_{12}(t)
\end{array}\right]=\frac{1}{\alpha+\beta}\left[\begin{array}{l}
\beta \\
\alpha
\end{array}\right]-\frac{\alpha}{\alpha+\beta}\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \exp (-(\alpha+\beta) t)
$$

Verifying the ergodic theorem: We get

$$
\lim _{t \rightarrow 0}\left[\begin{array}{l}
p_{11}(t) \\
p_{12}(t)
\end{array}\right]=\frac{1}{\alpha+\beta}\left[\begin{array}{l}
\beta \\
\alpha
\end{array}\right]=\left[\begin{array}{l}
\pi_{1} \\
\pi_{2}
\end{array}\right]
$$

