Discrete time Markov chains

Samy Tindel
Purdue University

Elements of Stochastic Processes - MA 532

Mostly taken from Probability and Random Processes by Grimmett-Stirzaker

Purdue

Outline

(1) Markov processes
(2) Classification of states
(3) Classification of chains
4. Stationary distributions and the limit theorem

- Stationary distributions
- Limit theorems
(5) Reversibility
(6) Chains with finitely many states
(7) Branching processes revisited

Outline

(1) Markov processes
(2) Classification of states
(3) Classification of chains
(4) Stationary distributions and the limit theorem

- Stationary distributions
- Limit theorems
(5) Reversibility
(6) Chains with finitely many states
(4) Branching processes revisited

Vocabulary

Stochastic process:

- Family $\left\{X_{n} ; n \geq 0, n\right.$ integer $\}$ of random variables
- Family evolving in a random but prescribed manner
- Here $X_{n} \in S$, where S countable state space with $N=|S|$

Discrete time:

- In this chapter we consider X indexed by $n \in \mathbb{N}$, discrete
- Later continuous time, $\left\{X_{t} ; t \geq 0\right\}$

Markov evolution:

Conditioned on X_{n},
 the evolution does not depend on the past

Markov chain

Definition 1.

Let

- $X=\left\{X_{n} ; n \geq 0, n\right.$ integer $\}$ stochastic process

We say that X is a Markov chain if

$$
\begin{aligned}
\mathbf{P}\left(X_{n}=s \mid X_{0}=x_{0}, \ldots, X_{n-1}\right. & \left.=x_{n-1}\right) \\
& =\mathbf{P}\left(X_{n}=s \mid X_{n-1}=x_{n-1}\right),
\end{aligned}
$$

for all $n \geq 1$ and $x_{0}, \ldots, x_{n-1}, s \in S$

Random walk as a Markov chain

Proposition 2.

Let

- X_{1}, \ldots, X_{n} Bernoulli random variables with values ± 1,

$$
\mathbf{P}\left(X_{i}=1\right)=p, \quad \mathbf{P}\left(X_{i}=-1\right)=1-p
$$

- The X_{i} 's are independent
- The random walk defined by $S_{0}=0$ and

Then

$$
S_{n}=\sum_{i=1}^{n} X_{i}
$$

S is a Markov chain

Proof of Proposition 2

Decomposition for S_{n} : We write

$$
S_{n+1}=S_{n}+X_{n+1}
$$

Conditional probability: We have

$$
\begin{aligned}
& \mathbf{P}\left(S_{n+1}=s \mid S_{0}=x_{0}, \ldots, S_{n}=x_{n}\right) \\
& =\mathbf{P}\left(S_{n}+X_{n+1}=s \mid S_{0}=x_{0}, \ldots, S_{n}=x_{n}\right) \\
& =\mathbf{P}\left(X_{n+1}=s-x_{n} \mid S_{0}=x_{0}, \ldots, S_{n}=x_{n}\right) \\
& =\mathbf{P}\left(X_{n+1}=s-x_{n}\right) \\
& =\mathbf{P}\left(S_{n+1}=s \mid S_{n}=x_{n}\right)
\end{aligned}
$$

This proves the Markov property

Alternative formulations for Markov's property

Proposition 3.

The Markov property is equivalent to any of the following:
(1) For all $n_{1}<n_{2}<\cdots<n_{k} \leq n$ we have

$$
\begin{aligned}
\mathbf{P}\left(X_{n}=s \mid X_{n_{1}}=x_{n_{1}}, \ldots, X_{n_{k}}\right. & \left.=x_{n_{k}}\right) \\
& =\mathbf{P}\left(X_{n}=s \mid X_{n_{k}}=x_{n_{k}}\right)
\end{aligned}
$$

(2) For all $m, n \geq 0$,

$$
\begin{aligned}
\mathbf{P}\left(X_{m+n}=s \mid X_{0}=x_{0}, \ldots,\right. & \left.X_{m}=x_{m}\right) \\
& =\mathbf{P}\left(X_{m+n}=s \mid X_{m}=x_{m}\right)
\end{aligned}
$$

Transition probability

Reduction to $S \subset \mathbb{N}$:

- Recall that $X_{n} \in S$
- S countable $\Longrightarrow S$ in one-to-one correspondence with $S^{\prime} \subset \mathbb{N}$
- We denote $\left(X_{n}=x_{i}\right)$ by $\left(X_{n}=i\right)$

Important quantity to describe X : Transition probability, defined by

$$
\mathbf{P}\left(X_{n+1}=j \mid X_{n}=i\right)
$$

It depends on n, i, j

Andrey Markov

Andrey Markov's life:

- Lifespan: 1856-1922, \simeq St Petersburg
- Not a very good student \hookrightarrow except in math
- Contributions in analysis and probability
- Used chains for
\hookrightarrow appearance of vowels
- Professor in St Petersburg
- Suspended after 1908 students riots
- Resumed teaching in 1917

Fact: More than 50 mathematical objects named after Markov!!

Homogeneous Markov chains

Definition 4.

Let X be a Markov chain. Then
(1) X is homogeneous if for all n, i, j we have

$$
\mathbf{P}\left(X_{n+1}=j \mid X_{n}=i\right)=\mathbf{P}\left(X_{1}=j \mid X_{0}=i\right)
$$

(2) If X is homogeneous we define a transition matrix

$$
P=\left(p_{i j}\right) \quad \text { with } \quad p_{i j}=\mathbf{P}\left(X_{n+1}=j \mid X_{n}=i\right)
$$

Hypothesis 5.
In the chapter we always assume that X is homogeneous

Stochastic matrix

Theorem 6.

The matrix P is stochastic, that is
(1) $p_{i j} \geq 0$, for all i, j
(2) $\sum_{j} p_{i j}=1$, for all i

n-step transition

Definition 7.

Let X be a Markov chain. We set

$$
P(m, m+n)=\left(p_{i j}(m, m+n)\right)_{i, j},
$$

with

$$
p_{i j}(m, m+n)=P\left(X_{m+n}=j \mid X_{m}=i\right)
$$

Remark:

- P describes the short term behavior of X
- $P(m, m+n)$ describes the long term behavior of X

Chapman-Kolmogorov equations

Theorem 8.

Let X be a Markov chain with transition p. Then
(1) For $m, n, r \geq 0$ we have

$$
p_{i j}(m, m+n+r)=\sum_{k} p_{i k}(m, m+n) p_{k j}(m+n, m+n+r)
$$

(2) As a matrix,

$$
P(m, m+n+r)=P(m, m+n) P(m+n, m+n+r)
$$

© In particular,

$$
P(m, m+n)=P^{n}
$$

Proof of Theorem 8 (1)

Preliminary identity:

$$
\mathbf{P}(A \cap B \mid C)=\mathbf{P}(A \mid B \cap C) \mathbf{P}(B \mid C)
$$

Proof: Start from right hand side,

$$
\begin{aligned}
\mathbf{P}(A \mid B \cap C) \mathbf{P}(B \mid C) & =\frac{\mathbf{P}(A \cap B \cap C)}{\mathbf{P}(B \cap C)} \frac{\mathbf{P}(B \cap C)}{\mathbf{P}(C)} \\
& =\frac{\mathbf{P}((A \cap B) \cap C)}{\mathbf{P}(C)} \\
& =\mathbf{P}(A \cap B \mid C)
\end{aligned}
$$

Proof of Theorem 8 (2)

Computation: We have

$$
\begin{aligned}
& p_{i j}(m, m+n+r)=\mathbf{P}\left(X_{m+n+r}=j \mid X_{m}=i\right) \\
& =\sum_{k} \mathbf{P}\left(X_{m+n+r}=j, X_{m+n}=k \mid X_{m}=i\right) \\
& =\sum_{k} \mathbf{P}\left(X_{m+n+r}=j \mid X_{m+n}=k, X_{m}=i\right) \mathbf{P}\left(X_{m+n}=k \mid X_{m}=i\right) \\
& =\sum_{k} \mathbf{P}\left(X_{m+n+r}=j \mid X_{m+n}=k\right) \mathbf{P}\left(X_{m+n}=k \mid X_{m}=i\right) \\
& =\sum_{k} p_{i k}(m, m+n) p_{k j}(m+n, m+n+r)
\end{aligned}
$$

Law of X_{n}

Proposition 9.

Consider the row vector

$$
\mu_{i}^{(n)}=\mathbf{P}\left(X_{n}=i\right)
$$

Then

$$
\mu^{(m+n)}=\mu^{(m)} P^{n}
$$

In particular,

$$
\mu^{(n)}=\mu^{(0)} P^{n}
$$

Proof of Proposition 9

Computation: Write

$$
\begin{aligned}
\mu_{j}^{(m+n)} & =\mathbf{P}\left(X_{m+n}=j\right) \\
& =\sum_{i} \mathbf{P}\left(X_{m+n}=j \mid X_{m}=i\right) \mathbf{P}\left(X_{m}=i\right) \\
& =\sum_{i} \mu_{i}^{(m)} p_{i j}(m, m+n) \\
& =\left[\mu^{(m)} P^{n}\right]_{j}
\end{aligned}
$$

Example: weather in West Lafayette (1)

Model: We choose $S=\{1, \ldots, 6\}:=\{V N, N, S N, S G, G, V G\}$.
Transition: from empirical data, we have found

$$
P=\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
0.4 & 0.6 & 0 & 0 & 0 & 0 \\
0.3 & 0 & 0.4 & 0.2 & 0.1 & 0 \\
0 & 0 & 0 & 0.3 & 0.7 & 0 \\
0 & 0 & 0 & 0.5 & 0 & 0.5 \\
0 & 0 & 0 & 0.8 & 0 & 0.2
\end{array}\right)
$$

Example: weather in West Lafayette (2)

Model: We choose $S=\{1, \ldots, 6\}:=\{V N, N, S N, S G, G, V G\}$.
Prediction for $\mathrm{J}+2$:

$$
P^{2}=\left(\begin{array}{cccccc}
0.4 & 0.6 & 0 & 0 & 0 & 0 \\
0.24 & 0.76 & 0 & 0 & 0 & 0 \\
0.12 & 0.3 & 0.16 & 0.19 & 0.18 & 0.05 \\
0 & 0 & 0 & 0.44 & 0.21 & 0.35 \\
0 & 0 & 0 & 0.55 & 0.35 & 0.1 \\
0 & 0 & 0 & 0.4 & 0.56 & 0.04
\end{array}\right)
$$

Example: weather in West Lafayette (3)

Model: We choose $S=\{1, \ldots, 6\}:=\{V N, N, S N, S G, G, V G\}$.
Prediction for $\mathrm{J}+28$:

$$
P^{28}=\left(\begin{array}{cccccc}
0.29 & 0.71 & 0 & 0 & 0 & 0 \\
0.29 & 0.71 & 0 & 0 & 0 & 0 \\
0.14 & 0.36 & 7.2 \times 10^{-12} & 0.23 & 0.16 & 0.10 \\
0 & 0 & 0 & 0.47 & 0.33 & 0.20 \\
0 & 0 & 0 & 0.47 & 0.33 & 0.20 \\
0 & 0 & 0 & 0.47 & 0.33 & 0.20
\end{array}\right)
$$

Easy criteria to establish Markov property

Proposition 10.

Let X be a process such that

- $X_{n+1}=\varphi\left(X_{n}, Z_{n+1}\right)$
- $Z_{n+1} \Perp\left(X_{0}, \ldots, X_{n}\right)$
- $\left\{Z_{n} ; n \geq 1\right\}$ i.i.d family
- φ is a given fixed function

Then
(1) X is a Markov chain
(2) The transition is given by

$$
p_{i j}=\mathbf{P}\left(\varphi\left(i, Z_{1}\right)=j\right)
$$

Simple random walk case (1)

State space:

$$
S=\mathbb{Z}
$$

Markov property: We have seen

- $X_{n+1}=X_{n}+Z_{n+1}=\varphi\left(X_{n}, Z_{n+1}\right)$
- $\varphi(x, y)=x+y$
- $\left\{Z_{n} ; n \geq 1\right\}$ i.i.d family
- $\mathbf{P}\left(Z_{1}=1\right)=p$ and $\mathbf{P}\left(Z_{1}=-1\right)=q$

Thus

X is a Markov chain

Simple random walk case (2)

Transition probability: We have

$$
\begin{aligned}
p_{i j} & =\mathbf{P}\left(i+Z_{1}=j\right) \\
& =\mathbf{P}\left(Z_{1}=j-i\right) \\
& = \begin{cases}p, & \text { if } j=i+1 \\
q, & \text { if } j=i-1 \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

Simple random walk case (3)

Expression for X_{n} : Starting from i, write

$$
X_{n}=i+\sum_{k=1}^{n} Z_{k}
$$

Relation with Bernoulli random variables: We have

$$
Z_{k}=2 Y_{k}-1, \quad \text { with } \quad Z_{k} \sim \mathcal{B}(p)
$$

Thus

$$
X_{n}=i+2 \sum_{k=1}^{n} Y_{k}-n
$$

Simple random walk case (4)

n-step transition: We obtain

$$
X_{n}=j \quad \Longleftrightarrow \quad \sum_{k=1}^{n} Y_{k}=\frac{1}{2}(n+j-i)
$$

Thus

$$
p_{i j}(n)= \begin{cases}\binom{n}{\frac{1}{2}(n+j-i)} p^{\frac{1}{2}(n+j-i)} q^{\frac{1}{2}(n-j+i)}, & \text { if } n+j-i \text { even } \\ 0, & \text { otherwise }\end{cases}
$$

Conditions on i, j :

- $-n \leq j-i \leq n$
- $j-i$ has the same parity as n

Branching process case (1)

State space:

$$
S=\mathbb{N}
$$

Markov property: We have seen

- $X_{n+1}=\sum_{k=1}^{X_{n}} Z_{k}^{(n+1)}=\varphi\left(X_{n}, \mathbf{Z}^{(n+1)}\right)$
- $\mathbf{Z}^{(n)}=\left\{\mathbf{Z}_{k}^{(n)} ; k \geq 1\right\}$ is a sequence
- $\varphi(x, \mathbf{z})=\sum_{k=1}^{x} z_{k}$
- $\left\{\mathbf{Z}^{(n)} ; n \geq 1\right\}$ i.i.d family
\hookrightarrow with $\left(Z_{k}^{(n)}\right)_{k \geq 1}$ i.i.d with common pgf G
Thus
X is a Markov chain

Branching process case (2)

Transition probability: We have

$$
\begin{aligned}
p_{i j} & =\mathbf{P}\left(\sum_{k=1}^{i} Z_{k}^{(1)}=j\right) \\
& =\frac{1}{j!} \times \text { Coefficient of } s^{j} \operatorname{in}(G(s))^{i}
\end{aligned}
$$

n-step transition: We obtain

$$
p_{i j}(n)=\frac{1}{j!} \times \text { Coefficient of } s^{j} \text { in }\left(G_{n}(s)\right)^{i}
$$

Outline

(1) Markov processes

(2) Classification of states
(3) Classification of chains
4. Stationary distributions and the limit theorem

- Stationary distributions
- Limit theorems
(5) Reversibility
(6) Chains with finitely many states
(7) Branching processes revisited

Questions about Markov chains

Main questions
(1) Does the MC X_{n} go to ∞ when $n \rightarrow \infty$?
(2) Does it return to state i after $n=0$?
(3) How often does it return to i ?
(9) What is the range of $X_{n}(\omega)$?

Methodologies to answer those questions
(1) We have seen: pgf's for random walks and branching
(2) Now: Markov chain methods

Persistent and transient states

Definition 11.

Let

- X Markov chain
- istate in S

Then
(1) i is called persistent or recurrent if

$$
\mathbf{P}\left(X_{n}=i \text { for some } n \geq 1 \mid X_{0}=i\right)=1
$$

(2) i is called transient if

$$
\mathbf{P}\left(X_{n}=i \text { for some } n \geq 1 \mid X_{0}=i\right)<1
$$

First passage time probabilities

Definition 12.

Let

- X Markov chain and i, j states in S

Then we define
(1) Probability that
\hookrightarrow 1st visit to j starting from i takes place at step n :

$$
f_{i j}(n)=\mathbf{P}\left(X_{1} \neq j, \ldots, X_{n-1} \neq j, X_{n}=j \mid X_{0}=i\right)
$$

(2) Probability that X ever visits j starting from i :

$$
f_{i j}=\sum_{n=1}^{\infty} f_{i j}(n)
$$

Alternative definition for $f_{i j}(n)$

First visit to j : We set $T_{j}=\infty$ if there is no visit to j, and

$$
T_{j}=\inf \left\{n \geq 1 ; X_{n}=j\right\}
$$

Expression for $f_{i j}(n)$: We have

$$
\begin{aligned}
f_{i j}(n) & =\mathbf{P}\left(X_{1} \neq j, \ldots, X_{n-1} \neq j, X_{n}=j \mid X_{0}=i\right) \\
& =\mathbf{P}\left(T_{j}=n \mid X_{0}=i\right)
\end{aligned}
$$

Some pgf's

Pgf's P and F : We set

$$
P_{i j}(s)=\sum_{n=0}^{\infty} p_{i j}(n) s^{n}, \quad F_{i j}(s)=\sum_{n=0}^{\infty} f_{i j}(n) s^{n}
$$

Remarks:
(1) Conventions above: $p_{i j}(0)=\delta_{i j}$ and $f_{i j}(0)=0$
(2) i persistent iff $f_{i i}=1$
(3) For $|s|<1$, the series $P_{i j}(s)$ and $F_{i j}(s)$ are convergent
(4) $P_{i j}(1)$ and $F_{i j}(1)$ are defined through Abel's theorem
(5) $f_{i j}=F_{i j}(1)$

Relation between F and P

Theorem 13.
Let X_{n} be a Markov chain with transition p. Then
(1) $P_{i j}$ and $F_{i i}$ satisfy

$$
P_{i i}(s)=1+F_{i i}(s) P_{i i}(s)
$$

(2) For $i \neq j$, the function $P_{i j}$ verifies

$$
P_{i j}(s)=F_{i j}(s) P_{j j}(s)
$$

Proof of Theorem 13 (1)

Events: We set

$$
A_{m}=\left(X_{m}=j\right), \quad B_{k}=\left(T_{j}=k\right)
$$

Decomposition for A_{m} : We have

$$
A_{m}=A_{m} \cap\left(\bigcup_{k=1}^{n} B_{k}\right)=\bigcup_{k=1}^{n}\left(A_{m} \cap B_{k}\right)
$$

Proof of Theorem 13 (2)

Preliminary identity: Recall that

$$
\mathbf{P}(A \cap B \mid C)=\mathbf{P}(A \mid B \cap C) \mathbf{P}(B \mid C)
$$

Decomposition for probabilities: We get

$$
\begin{align*}
\mathbf{P}\left(A_{m} \cap B_{k} \mid X_{0}=i\right) & =\mathbf{P}\left(A_{m} \mid B_{k}, X_{0}=i\right) \mathbf{P}\left(B_{k} \mid X_{0}=i\right) \\
& \stackrel{\text { Markov }}{=} \mathbf{P}\left(A_{m} \mid X_{k}=j\right) \mathbf{P}\left(B_{k} \mid X_{0}=i\right)
\end{align*}
$$

Proof of Theorem 13 (3)

Convolution relation: Equation (1) can be read as

$$
\begin{aligned}
p_{i j}(m) & =\mathbf{P}\left(A_{m} \mid X_{0}=i\right) \\
& =\sum_{k=1}^{n} \mathbf{P}\left(A_{m} \cap B_{k} \mid X_{0}=i\right) \\
& =\sum_{k=1}^{n} p_{j j}(m-k) f_{i j}(k), \quad \text { for } \quad m \geq 1, \quad \text { and } \quad p_{i j}(0)=\delta_{i j}
\end{aligned}
$$

Expression with generating functions: We get

$$
P_{i j}(s)-\delta_{i j}=F_{i j}(s) P_{j j}(s)
$$

Criterion for recurrence and transience

Proposition 14.

Let X_{n} be a Markov chain with transition p. Then
(1) If $\sum_{n=0}^{\infty} p_{j j}(n)=\infty$, then

- State j is persistent
- $\sum_{n=0}^{\infty} p_{i j}(n)=\infty$ for all i 's such that $f_{i j}>0$
(2) If $\sum_{n=0}^{\infty} p_{j j}(n)<\infty$, then
- State j is transient
- $\sum_{n=0}^{\infty} p_{i j}(n)<\infty$ for all i

Proof of Proposition 14 (1)

Expression for $P_{j j}(s)$: From Theorem 13 we have

$$
P_{j j}(s)=\frac{1}{1-F_{j j}(s)}, \quad \text { for } \quad|s|<1
$$

Limit as $s \nearrow$ 1: We get

- $P_{j j}(s) \rightarrow \infty$ iff $F_{j j}(1)=1$
- $F_{j j}(1)=f_{j j}$
- j persistent iff $f_{j j}=1$

Thus
j persistent iff $\lim _{s \not{ }_{\text {万1 }}} P_{j j}(s)=\infty$

Proof of Proposition 14 (2)

Recall: We have seen

$$
j \text { persistent iff } \lim _{s \not{ }_{1}} P_{j j}(s)=\infty
$$

Application of Abel:

$$
\lim _{s \not \subset 1} P_{j j}(s)=\sum_{n=0}^{\infty} p_{j j}(n)
$$

Conclusion:

$$
j \text { persistent iff } \sum_{n=0}^{\infty} p_{i j}(n)=\infty
$$

Proof of Proposition 14 (3)

Another relation for $p_{i j}(n)$: We have seen

$$
P_{i j}(s)=F_{i j}(s) P_{j j}(s)
$$

Taking limits $s \nearrow 1$ we get

$$
\sum_{n=0}^{\infty} p_{i j}(n)=f_{i j} \sum_{n=0}^{\infty} p_{j j}(n)
$$

Conclusion: If $\sum_{n=0}^{\infty} p_{j j}(n)=\infty$, then

$$
\sum_{n=0}^{\infty} p_{i j}(n)=\infty \text { for all } i \text { 's such that } f_{i j}>0
$$

Behavior of $p_{i j}(n)$

Proposition 15.

Let

- X Markov chain with transition p
- j transient state

Then

$$
\lim _{n \rightarrow \infty} p_{i j}(n)=0
$$

Simple random walk case

Proposition 16.

Let

- X simple random walk
- Parameters p and $q=1-p$

Then

$$
X \text { is persistent iff } p=\frac{1}{2}
$$

Proof of Proposition 16 (1)

Formula for $p_{j j}(m)$: According to (26),

$$
p_{j j}(2 n)=\binom{2 n}{n}(p q)^{n}, \quad p_{j j}(2 n+1)=0
$$

Stirling's formula:

$$
m!\equiv \sqrt{2 \pi} n^{n+\frac{1}{2}} e^{-n}
$$

Equivalent for $p_{j j}(2 n)$: We get, as $n \rightarrow \infty$,

$$
p_{j j}(2 n) \sim \frac{(4 p q)^{n}}{(\pi n)^{1 / 2}}
$$

Proof of Proposition 16 (2)

Recall: We have seen that

$$
p_{j j}(2 n) \sim \frac{(4 p q)^{n}}{(\pi n)^{1 / 2}}
$$

Case $p=\frac{1}{2}$: We get

$$
p_{j j}(2 n) \sim \frac{1}{(\pi n)^{1 / 2}}
$$

Thus

$$
\sum_{n=0}^{\infty} p_{j j}(2 n)=\infty \quad \Longrightarrow \quad \text { State } j \text { persistent }
$$

Proof of Proposition 16 (3)

Recall: We have seen that

$$
p_{j j}(2 n) \sim \frac{(4 p q)^{n}}{(\pi n)^{1 / 2}}
$$

Case $p \neq \frac{1}{2}$: We get

$$
p_{j j}(2 n) \sim \frac{\left(c_{p}\right)^{n}}{(\pi n)^{1 / 2}}, \quad \text { with } \quad c_{p}<1
$$

Thus

$$
\sum_{n=0}^{\infty} p_{j j}(2 n)<\infty \quad \Longrightarrow \quad \text { State } j \text { transient }
$$

Number of visits

Recall: We have seen that

State j is either persistent or transient

Number of visits: We set
$N(i)=\#$ times that X visits its starting point i

Fact: We have

$$
\mathbf{P}\left(N(i)=\infty \mid X_{0}=i\right)= \begin{cases}1, & \text { if } i \text { persistent } \\ 0, & \text { if } i \text { transient }\end{cases}
$$

Behavior of T_{j} for a transient state

Recall: We set $T_{j}=\infty$ if there is no visit to j, and

$$
T_{j}=\inf \left\{n \geq 1 ; X_{n}=j\right\}
$$

Mean for T_{j} if j is transient: Whenever j is transient,

$$
\begin{aligned}
\mathbf{P}\left(T_{j}=\infty \mid X_{0}=j\right) & >0 \\
\mathbf{E}\left[T_{j} \mid X_{0}=j\right] & =\infty
\end{aligned}
$$

Mean recurrence time

Definition 17.

Let

- X Markov chain
- i state in S

Then we set

$$
\mu_{i}=\mathbf{E}\left[T_{i} \mid X_{0}=i\right]= \begin{cases}\sum_{n=1}^{\infty} n f_{i i}(n), & \text { if } i \text { is persistent } \\ \infty, & \text { if } i \text { is transient }\end{cases}
$$

Null and positive states

Definition 18.

Let

- X Markov chain
- i persistent state in S, with mean recurrence time μ_{i}

Then
(1) i is said to be null if $\mu_{i}=\infty$
(2) i is said to be positive if $\mu_{i}<\infty$

Criterion for nullity

Theorem 19.
Let

- X Markov chain
- i persistent state in S

Then

$$
i \text { is null iff } \lim _{n \rightarrow \infty} p_{i i}(n)=0
$$

Period

Definition 20.

Let

- X Markov chain, i state in S

Then
(1) The period of i is given by

$$
d(i)=\operatorname{gcd}\left\{n ; p_{i i}(n)>0\right\}
$$

(2) The state i is aperiodic if $d(i)=1$, periodic if $d(i)>1$

Interpretation: The period describes
\hookrightarrow Times at which returns to i are possible

Ergodic states

Definition 21.

Let

- X Markov chain
- i state in S

Then i is said to be ergodic if
i is persistent, positive and aperiodic

Simple random walk case

Proposition 22.

Let

- X simple random walk
- Parameters p and $q=1-p$

Then the states are
(1) Periodic with period 2
(2) Transient if $p \neq \frac{1}{2}$
(3) Null persistent if $p=\frac{1}{2}$

Proof of Proposition 22 (1)

Transience if $p \neq \frac{1}{2}$:
This has been established in Proposition 16
Null recurrence if $p=\frac{1}{2}$:

- This has been established \hookrightarrow in Generating functions - Proposition 12
- We have seen that $\mathrm{E}\left[T_{0}\right]=\infty$

Proof of Proposition 22 (2)

Another way to look at null recurrence: If $p=\frac{1}{2}$ we have seen

$$
p_{i i}(2 n) \sim \frac{1}{(\pi n)^{1 / 2}}, \quad p_{i i}(2 n+1)=0
$$

Hence

$$
\lim _{n \rightarrow \infty} p_{i i}(n)=0
$$

According to Theorem 19, i is recurrent null
Period 2: The fact that $d(i)=2$ stems from

$$
p_{i i}(2 n)>0, \quad p_{i i}(2 n+1)=0
$$

Branching process case

Proposition 23.

Consider a branching process with

- $Z_{1} \sim f, f$ with pgf G
- $\mathbf{P}\left(Z_{1}=0\right)=f(0)>0$

Then
(1) 0 is an absorbing state:

$$
\mathbf{P}\left(X_{n}=0 \text { for all } n \mid X_{0}=i\right)=1
$$

(2) Other states are transient

Proof of Proposition 23

Proof:

Done in Exercise 2

Outline

(1) Markov processes

- Classification of states
(3) Classification of chains
(4) Stationary distributions and the limit theorem
- Stationary distributions
- Limit theorems
(5) Reversibility
(6) Chains with finitely many states
(4) Branching processes revisited

Communication

Recall: For a Markov chain X, we have seen that

$$
\mathbf{P}\left(X_{n}=j \mid X_{0}=i\right)=p_{i j}(n)
$$

Communication:
We say that i communicates with j if
There exists $n \geq 0$ such that $\mathbf{P}\left(X_{n}=j \mid X_{0}=i\right)=p_{i j}(n)>0$.
Notation: $i \rightarrow j$.

Intercommunication

Intercommunication:
If $i \rightarrow j$ and $j \rightarrow i$, we say that i and j intercommunicate.
Notation: $i \leftrightarrow j$.
Remarks:
(1) For all $i \in S$, we have $i \leftrightarrow i$, since $p^{0}(i, i)=1$.
(2) If $i \rightarrow j$ and $j \rightarrow k$, then $i \rightarrow k$.

Graph related to a Markov chain

Definition 24.

Let X be a Markov chain with transition p.
We define a graph $\mathcal{G}(X)$ given by

- $\mathcal{G}(X)$ is an oriented graph
- The vertices of $\mathcal{G}(X)$ are points in S.
- The edges of $\mathcal{G}(X)$ are given by the set

$$
\mathbb{V} \equiv\{(i, j) ; i \neq j, p(i, j)>0\}
$$

Example

Definition of the chain: Take $S=\{1,2,3,4,5\}$ and

$$
p=\left(\begin{array}{ccccc}
1 / 3 & 0 & 2 / 3 & 0 & 0 \\
1 / 4 & 1 / 2 & 1 / 4 & 0 & 0 \\
1 / 2 & 0 & 1 / 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 2 / 3 & 1 / 3
\end{array}\right)
$$

Related graph: to be done in class

Graph and communication

Proposition 25.

Let X be a Markov chain with transition p. Then

$$
\underset{i f f}{i \rightarrow j}
$$

$i=j$ or there exists an oriented path from i to j in $\mathcal{G}(X)$

Proof of Proposition 25

Relation with the graph: If $i \neq j$ we have
$(i \rightarrow j) \Leftrightarrow$ There exists $n \geq 1$ such that $p_{i j}(n)>0$
\Leftrightarrow There exists $n \geq 1$ such that

$$
\sum_{i_{1}, \ldots, i_{n-1} \in E} p_{i, i_{1}} \cdots p_{i_{n-1}, j}>0
$$

\Leftrightarrow There exists $n \geq 1$ and $i_{1}, \ldots, i_{n-1} \in E$ such that

$$
p_{i, i_{1}} \cdots p_{i_{n-1}, j}>0
$$

\Leftrightarrow There exists an oriented path from i to j in $\mathcal{G}(X)$

Irreducible classes

Proposition 26.

Let

- X Markov chain with transition p

Then
(1) The relation \leftrightarrow is an equivalence relation.
(2) Denote C_{1}, \ldots, C_{l} the equivalence classes for \leftrightarrow in S. Then \rightarrow is a partial order relation between classes:

$$
C_{1} \rightarrow C_{2} \text { and } C_{2} \rightarrow C_{3} \Longrightarrow C_{1} \rightarrow C_{3}
$$

(3) $C_{1} \rightarrow C_{2}$ iff $\exists i \in C_{1}$ and $j \in C_{2}$ such that $i \rightarrow j$.
(4) The classes are called irreducible

Example (1)

Definition of the chain: Take $E=\{1,2,3,4,5\}$ and

$$
p=\left(\begin{array}{ccccc}
1 / 3 & 0 & 2 / 3 & 0 & 0 \\
1 / 4 & 1 / 2 & 1 / 4 & 0 & 0 \\
1 / 2 & 0 & 1 / 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 2 / 3 & 1 / 3
\end{array}\right)
$$

Example (2)

Recall: We have $E=\{1,2,3,4,5\}$ and

$$
p=\left(\begin{array}{ccccc}
1 / 3 & 0 & 2 / 3 & 0 & 0 \\
1 / 4 & 1 / 2 & 1 / 4 & 0 & 0 \\
1 / 2 & 0 & 1 / 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 2 / 3 & 1 / 3
\end{array}\right)
$$

Related classes:
$C_{1}=\{1,3\}, C_{2}=\{2\}$ and $C_{3}=\{4,5\}$.
We have $C_{2} \rightarrow C_{1}$

Nature of intercommunicating states

Theorem 27.
Let

- X Markov chain with transition p
- i, j such that $i \leftrightarrow j$

Then
(1) i, j have the same period
(2) i transient iff j transient
(3) inull persistent iff j null persistent

Proof of Theorem 27 - item 2 (1)

A positive quantity: If $i \leftrightarrow j$, then there exists $m, n \geq 1$ such that

$$
\alpha \equiv p_{i j}(m) p_{j i}(n)>0
$$

Application of Chapman-Kolmogorov: We get

$$
p_{i i}(m+r+n) \geq p_{i j}(m) p_{j j}(r) p_{j i}(n)=\alpha p_{j j}(r)
$$

Summing over r : We get

$$
\sum_{r=0}^{\infty} p_{i i}(r)<\infty \quad \Longrightarrow \quad \sum_{r=0}^{\infty} p_{j j}(r)<\infty
$$

Proof of Theorem 27 - item 2 (2)

Conclusion:

i transient $\Longrightarrow j$ transient

Closed class

Definition 28.

An equivalent class C is closed if:

$$
\text { For all } i \in C \text { and } j \notin C \text {, we have } i \nrightarrow j
$$

Some rules for closedness:

- If there exists a unique class C, it is closed
- There exists a unique closed class C \Leftrightarrow There exists a class C s.t for all $i \in E$, we have $i \rightarrow C$.

Example ctd (1)

Definition of the chain: Take $E=\{1,2,3,4,5\}$ and

$$
p=\left(\begin{array}{ccccc}
1 / 3 & 0 & 2 / 3 & 0 & 0 \\
1 / 4 & 1 / 2 & 1 / 4 & 0 & 0 \\
1 / 2 & 0 & 1 / 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 2 / 3 & 1 / 3
\end{array}\right)
$$

Example ctd (2)

Recall: The related classes are
$C_{1}=\{1,3\}, C_{2}=\{2\}$ and $C_{3}=\{4,5\}$.
We have $C_{2} \rightarrow C_{1}$
Closed classes: We find
C_{1}, C_{3} closed, and C_{2} not closed

Random walk example

Proposition 29.

Let

- X simple random walk
- Parameters p and $q=1-p$

Then
(1) There is a unique class, $C=\mathbb{Z}$
(2) This class is closed
(3) If one state is transient, all the states are transient
(4) If one state is null pers., all the states are null pers.
(5) All the states have the same period

Decomposition theorem

Theorem 30.

Let

- X Markov chain with transition p
- S state space

Then S can be partitioned uniquely as

$$
S=T \cup C_{1} \cup C_{2} \cup \cdots,
$$

where

- $T \equiv$ Set of transient states
- $C_{k} \equiv$ irreducible closed class of persistent states

Finite state space case

Proposition 31.

Let

- X Markov chain with transition p
- S finite state space with $S=T \cup C_{1} \cup C_{2} \cup \cdots$

Then
(1) At least 1 state in S is persistent
(2) All persistent states are positive
(3) Later we will see: every state in C_{k} is positive persistent

Proof of Proposition 31

Recall: We have seen in Proposition 15 that

$$
j \text { transient state } \Longrightarrow \quad \lim _{n \rightarrow \infty} p_{i j}(n)=0
$$

Assume all states are transient: Then for $i \in C_{k}$,

$$
\lim _{n \rightarrow \infty} \sum_{j \in C_{k}} p_{i j}(n)=0
$$

Contradiction: If C_{k} is closed,

$$
\lim _{n \rightarrow \infty} \sum_{j \in C_{k}} p_{i j}(n)=1
$$

Example ctd (1)

Definition of the chain: Take $E=\{1,2,3,4,5\}$ and

$$
p=\left(\begin{array}{ccccc}
1 / 3 & 0 & 2 / 3 & 0 & 0 \\
1 / 4 & 1 / 2 & 1 / 4 & 0 & 0 \\
1 / 2 & 0 & 1 / 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 2 / 3 & 1 / 3
\end{array}\right)
$$

Example ctd (2)

Recall: The related classes are
$C_{1}=\{1,3\}, C_{2}=\{2\}$ and $C_{3}=\{4,5\}$.
C_{1}, C_{3} closed, and C_{2} not closed
Information about the classes: We find

All states in C_{1}, C_{3} (closed class) are positive persistent State 2 in C_{2} transient

Outline

(1) Markov processes

(2) Classification of states

(3) Classification of chains
(4) Stationary distributions and the limit theorem

- Stationary distributions
- Limit theorems
(5) Reversibility
(6) Chains with finitely many states
(4) Branching processes revisited

Outline

(1) Markov processes

(2) Classification of states

(3) Classification of chains
(4) Stationary distributions and the limit theorem

- Stationary distributions
- Limit theorems
(5) Reversibility
(6) Chains with finitely many states
(7) Branching processes revisited

Stationary distribution

Definition 32.

Let

- X Markov chain with matrix transition P
- π vector

Then π is a stationary distribution if
(1) $\pi_{j} \geq 0$ for all $j \in S$ and $\sum_{j \in S} \pi_{j}=1$
(2) π satisfies $\pi=\pi P$, that is

$$
\pi_{j}=\sum_{i \in S} \pi_{i} p_{i j}, \quad \text { for all } \quad j \in S
$$

Interpretation of stationary distribution

Proposition 33.

Let

- X Markov chain with matrix transition P
- π invariant distribution

Then

$$
X_{0} \sim \pi \quad \Longrightarrow \quad X_{n} \sim \pi \quad \text { for all } n \geq 0
$$

Otherwise stated,

$$
\mathbf{P}\left(X_{n}=j \mid X_{0} \sim \pi\right)=\pi_{j}
$$

Proof of Proposition 33

Distribution of X_{1} : We have

$$
\begin{aligned}
\mathbf{P}\left(X_{1}=j \mid X_{0} \sim \pi\right) & =\sum_{i \in S} \mathbf{P}\left(X_{1}=j \mid X_{0}=i\right) \pi_{i} \\
& =(\pi P)_{j} \\
& =\pi_{j}
\end{aligned}
$$

Distribution of X_{n} : Use a recursion and

$$
\mathbf{P}\left(X_{n+1}=j\right)=\sum_{i \in S} \mathbf{P}\left(X_{n+1}=j \mid X_{n}=i\right) \mathbf{P}\left(X_{n}=i\right)
$$

Stationary distributions and persistent chains

Theorem 34.
Let

- X Markov chain with matrix transition P
- X irreducible

Then
X has a stationary distribution
All states are non-null persistent

Stationary distributions and return times

Theorem 35.
Let

- X Markov chain with matrix transition P
- X irreducible
- X admits a stationary distribution π

Then

$$
\pi_{i}=\frac{1}{\mu_{i}}=\frac{1}{\mathrm{E}\left[T_{i} \mid X_{0}=i\right]}
$$

Hints about the proof

Main ingredient: Prove that

$$
\mu_{k}=\sum_{i \in S} \rho_{i}(k), \quad \text { with } \quad \rho_{i}(k)=\sum_{n=1}^{\infty} \mathbf{P}\left(X_{n}=i, T_{k} \geq n \mid X_{0}=k\right)
$$

is solution to $\mu=\mu P$
Idea for $\pi_{i}=\left(\mu_{i}\right)^{-1}$: One writes

$$
\begin{aligned}
\pi_{i} & =" \text { Average time spent at } i " \\
& \simeq \frac{1}{" A v e r a g e ~ t i m e ~ t o ~ r e t u r n ~ a t ~} i "
\end{aligned}
$$

Example (1)

Definition of the chain: Take $S=\{1,2,3,4\}$ (hence $|S|<\infty$) and

$$
P=\left(\begin{array}{cccc}
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
0 & 0 & 1 & 0 \\
0 & 1 / 2 & 0 & 1 / 2 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Example (2)

Related classes:
$C_{1}=\{1\}, C_{2}=\{2,3,4\}$
$\hookrightarrow C_{1}$ closed C_{2} non closed.
Partial conclusion: C_{1} transient, at least one recurrent state in C_{2}.
Invariant measure:
Solve the system $\pi=\pi P$ and $\langle\pi, \mathbf{1}\rangle=1$. We find

$$
\pi=(0,1 / 4,1 / 2,1 / 4)
$$

Conclusion: All states in C_{2} are non-null persistent

Example (3)

Remark:

- It is almost always easier to solve the system

$$
\pi=\pi p \quad \text { and } \quad\langle\pi, \mathbf{1}\rangle=1
$$

than to compute $\mathbf{E}_{i}\left[T_{i}\right]$

- However, in the current case a direct computation is possible

Example (4)

Direct analysis: We find

- $\mathbf{E}_{1}\left[T_{1}\right]=\infty$ since 1 is transient
- $\mathbf{E}_{3}\left[T_{3}\right]=2$ since $T_{3}=2$ under \mathbf{P}_{3}.
- In order to compute $\mathbf{E}_{2}\left[T_{2}\right]$:

$$
\begin{aligned}
& \mathbf{E}_{2}\left[\mathbf{1}_{\left(T_{2}>2 k+2\right)}\right]=\mathbf{E}_{2}\left[\mathbf{1}_{\left(T_{2}>2 k\right)} \mathbf{1}_{\left(T_{2}>2 k+2\right)}\right] \\
& =\mathbf{E}_{2}\left\{\mathbf{1}_{\left(T_{2}>2 k\right)} \mathbf{E}_{X_{2 k}}\left[\mathbf{1}_{\left.\left(T_{2}\left(A^{2 k}\right)>2\right)\right]}\right]\right\} \\
& =\mathbf{E}_{2}\left\{\mathbf{1}_{\left(T_{2}>2 k\right)} \mathbf{E}_{4}\left[\mathbf{1}_{\left.\left(T_{2}\left(A^{2 k}\right)>2\right)\right]}\right]\right\} \\
& =\mathbf{E}_{2}\left[\mathbf{1}_{\left(T_{2}>2 k\right)} p_{4,3} p_{3,4}\right]=\frac{1}{2} \mathbf{E}_{2}\left[\mathbf{1}_{\left(T_{2}>2 k\right)}\right]
\end{aligned}
$$

We deduce $\mathbf{P}_{2}\left(T_{2}>2 k\right)=1 / 2^{k}$ and $\mathbf{E}_{2}\left[T_{2}\right]=4=\mathbf{E}_{4}\left[T_{4}\right]$.

Criterion for positivity/nullity

Theorem 36.

Let

- X Markov chain with matrix transition P
- X irreducible
- X recurrent

Then
(1) There exists a measure x satisfying $x=x P$
(2) x is unique up to multiplicative constant
(3) x has strictly positive entries
(9) The chain is positive if $\sum_{i \in S} x_{i}<\infty$
(5) The chain is null if $\sum_{i \in S} x_{i}=\infty$

Criterion for transience

Theorem 37.
Let

- X Markov chain with matrix transition P
- X irreducible
- s any state in S

Then

X is transient

There exists a non zero solution $\left\{y_{i} ; i \neq s\right\}$

$$
\text { to } y_{i}=\sum_{j \neq s} p_{i j} y_{j}, \text { with }\left|y_{i}\right| \leq 1
$$

Random walk with retaining barrier (1)

Model: Random walk on \mathbb{N}
\hookrightarrow With retaining barrier at 0
Transition probability: We get

$$
p_{00}=q, \quad p_{i, i+1}=p, \text { if } i \geq 0, \quad p_{i, i-1}=q, \text { if } i \geq 1
$$

Notation: We set

$$
\rho=\frac{p}{q}
$$

Random walk with retaining barrier (2)

Proposition 38.

Let X be the random walk with retaining barrier. Then
(1) If $p>\frac{1}{2}$, the chain is transient
(2) If $p<\frac{1}{2}$, the chain is non-null persistent
\hookrightarrow with stationary distribution given by

$$
\pi=\operatorname{Nbin}(1,1-\rho)
$$

(3) If $p=\frac{1}{2}$, the chain is null persistent

Proof of Proposition 38 (1)

Case $q<p$: One verifies that

$$
y_{i}=1-\rho^{-i} \quad \text { solves } \quad y_{i}=\sum_{j \neq s} p_{i j} y_{j}
$$

Thus X transient
Case $q>p$: One sees that

$$
\pi=\operatorname{Nbin}(1,1-\rho) \quad \text { is such that } \quad \pi P=\pi
$$

Thus X non-null persistent

Proof of Proposition 38 (2)

Computation for $q<p$: For $i \geq 1$ we have

$$
\begin{aligned}
\sum_{j \neq i} p_{i j} y_{j} & =p_{i, i-1} y_{i-1}+p_{i, i+1} y_{i+1} \\
& =q\left(1-\frac{1}{\rho^{i-1}}\right)+p\left(1-\frac{1}{\rho^{i+1}}\right) \\
& =1-\frac{1}{\rho^{i+1}}\left(q \rho^{2}+p\right) \\
& =1-\frac{1}{\rho^{i+1}}\left(\frac{p^{2}}{q}+p\right) \\
& =1-\frac{p}{\rho^{i+1}}\left(\frac{p}{q}+1\right) \\
& =1-\frac{1}{\rho^{i-1}} \\
& =y_{i}
\end{aligned}
$$

Proof of Proposition 38 (3)

$\operatorname{Nbin}(1,1-\rho)$ distribution: Defined for $k \geq 0$ by

$$
\pi_{k}=\rho^{k}(1-\rho)
$$

Verifying $\pi P=\pi$ for $q>p$: For $j \geq 1$ we have

$$
\begin{aligned}
\sum_{i \geq 0} \pi_{i} p_{i j} & =\pi_{j-1} p+\pi_{j+1} q \\
& =\rho^{j-1}(1-\rho) p+\rho^{j+1}(1-\rho) q \\
& =\rho^{j-1}(1-\rho)\left(p+\rho^{2} q\right) \\
& =\rho^{j}(1-\rho) \\
& =\pi_{j}
\end{aligned}
$$

Proof of Proposition 38 (4)

Case $q=p$: We have
(1) X persistent since

- $Y \equiv$ random walk is persistent
- $X=|Y|$
(2) X null-persistent since since $x=\mathbf{1}$ is such that

$$
x=x P, \quad \text { and } \quad \sum_{i \in S} x_{i}=\infty
$$

Outline

(1) Markov processes

C Classification of states

(3) Classification of chains
(4) Stationary distributions and the limit theorem

- Stationary distributions
- Limit theorems
(5) Reversibility
(6) Chains with finitely many states
(5) Branching processes revisited

Main objective

Aim in this section:
(1) Get expressions for

$$
\lim _{n \rightarrow \infty} p_{i j}(n)
$$

(2) Link with stationary distributions

Problem with parity (1)

Example: Take $S=\{1,2\}$ and

$$
P=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Question: Can we get

$$
\lim _{n \rightarrow \infty} p_{i j}(n) ?
$$

Problem with parity (2)

Example: Take $S=\{1,2\}$ and

$$
P=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Behavior of P^{n} and parity: We find

$$
p_{11}(n)=p_{22}(n)= \begin{cases}0, & \text { if } n \text { is odd } \\ 1, & \text { if } n \text { is even }\end{cases}
$$

Thus
$p_{i i}(n)$ does not converge
Problem comes from periodicity

Aperiodic assumption

Hypothesis 39.
Until further notice we assume
X is an irreducible and aperiodic Markov chain

Stationary distributions and return times

Theorem 40.

Let

- X Markov chain with matrix transition P
- X irreducible and aperiodic

Then for all i, j we have

$$
\lim _{n \rightarrow \infty} p_{i j}(n)=\frac{1}{\mu_{j}}=\frac{1}{\mathbf{E}\left[T_{j} \mid X_{0}=j\right]}
$$

Some remarks (1)

Persistent null case: If the Markov chain X is persistent null then

$$
\lim _{n \rightarrow \infty} p_{i j}(n)=0
$$

We had seen this result in Proposition 15
Forgetting the past: If the Markov chain X is non-null persistent then

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left(X_{n}=j \mid X_{0}=i\right)=\lim _{n \rightarrow \infty} p_{i j}(n)=0=\pi_{j}=\frac{1}{\mu_{j}}
$$

Thus the initial condition is forgotten

Some remarks (2)

Case with initial distribution: Assume

- X is non-null persistent
- $X_{0} \sim \nu$

Then

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left(X_{n}=j \mid X_{0} \sim \mu\right)=\lim _{n \rightarrow \infty} \sum_{i \in S} \nu_{i} p_{i j}(n)=\frac{1}{\mu_{j}}
$$

Example

Definition of the chain: Take $S=\{1,2,3\}$ and

$$
P=\left(\begin{array}{ccc}
1 / 3 & 0 & 2 / 3 \\
1 / 4 & 1 / 2 & 1 / 4 \\
1 / 2 & 0 & 1 / 2
\end{array}\right)
$$

Invariant measure: One finds

$$
\pi=\left(\begin{array}{lll}
.43 & 0 & .57
\end{array}\right)
$$

Large time behavior: One finds (e.g with R)

$$
P^{30}=\left(\begin{array}{ccc}
43 & 0 & .57 \\
43 & 9 \times 10^{-10} & .57 \\
43 & 0 & .57
\end{array}\right)
$$

Periodic case

Theorem 41.
Let

- X Markov chain with matrix transition P
- X irreducible
- X periodic with period d

Then we have
(1) $Y=\left\{Y_{n}=X_{n d} ; n \geq 0\right\}$ irreducible aperiodic
(2) The following limit holds true:

$$
\lim _{n \rightarrow \infty} p_{i j}(n d)=\lim _{n \rightarrow \infty} \mathbf{P}\left(Y_{n}=j \mid Y_{0}=j\right)=\frac{d}{\mu_{j}}
$$

Outline

(1) Markov processes

- Classification of states
(3) Classification of chains
(4) Stationary distributions and the limit theorem
- Stationary distributions
- Limit theorems
(5) Reversibility
(6) Chains with finitely many states
(7) Branching processes revisited

Reversed chain

Theorem 42.

Let

- X irreducible non-null persistent chain
- Transition for X is P, invariant measure is π
- Hypothesis: $X_{n} \sim \pi$ for all n
- Set $Y_{n}=X_{N-n}$ for $0 \leq n \leq N$

Then
(1) Y is a Markov chain
(2) The transition for Y is

$$
\mathbf{P}\left(Y_{n+1}=j \mid Y_{n}=i\right)=\frac{\pi_{j}}{\pi_{i}} p_{j i}
$$

Proof of Theorem 42

Computing conditional probabilities: We have

$$
\begin{aligned}
& \mathbf{P}\left(Y_{n+1}=i_{n+1} \mid Y_{n}=i_{n}, \ldots, Y_{0}=i_{0}\right) \\
& =\frac{\mathbf{P}\left(Y_{0}=i_{0}, Y_{1}=i_{1}, \ldots, Y_{n+1}=i_{n+1}\right)}{\mathbf{P}\left(Y_{0}=i_{0}, Y_{1}=i_{1}, \ldots, Y_{n}=i_{n}\right)} \\
& =\frac{\mathbf{P}\left(X_{N-n-1}=i_{n+1}, X_{N-n}=i_{n}, \ldots, X_{N}=i_{0}\right)}{\mathbf{P}\left(X_{N-n}=i_{n}, \ldots, X_{N}=i_{0}\right)} \\
& =\frac{\pi_{i_{n+1}} p_{i_{n+1} i_{n}} p_{i_{n} i_{n-1}} \cdots p_{i_{1} i_{0}}}{\pi_{i_{n}} p_{i_{n} i_{n-1}} \cdots p_{i_{1} i_{0}}} \\
& =\frac{\pi_{i_{n+1}} p_{i_{n+1} i_{n}}}{\pi_{i_{n}}} \\
& =\mathbf{P}\left(Y_{n+1}=i_{n+1} \mid Y_{n}=i_{n}\right)
\end{aligned}
$$

This gives the Markov property and the transition

Reversed chain

Definition 43.

Let

- X irreducible non-null persistent chain
- Transition for X is P, invariant measure is π
- Hypothesis: $X_{n} \sim \pi$ for all n
- Set $Y_{n}=X_{N-n}$ for $0 \leq n \leq N$

Then
(1) X is said to be reversible if Y has transition P
(2) This is equivalent to

$$
\pi_{i} p_{i j}=\pi_{j} p_{j i}, \quad \text { for all } \quad i, j \in S
$$

Vocabulary

Detailed balance: Let

- P transition matrix
- λ distribution

Then P, λ are in detailed balance if

$$
\lambda_{i} p_{i j}=\lambda_{j} p_{j i}, \quad \text { for all } \quad i, j \in S
$$

Reversible in equilibrium: If X is such that

- P, π are in detailed balance,
then X is said to be reversible in equilibrium

Invariant measure and reversibility

Theorem 44.

Let

- X irreducible Markov chain with transition P
- Hypothesis: There exists a distribution π such that

$$
\begin{equation*}
\pi_{i} p_{i j}=\pi_{j} p_{j i}, \quad \text { for all } \quad i, j \in S \tag{2}
\end{equation*}
$$

Then
(1) π is a stationary distribution
(2) X is reversible in equilibrium

Proof of Theorem 44

Computation of πP : We have

$$
\begin{aligned}
(\pi P)_{j} & =\sum_{i \in S} \pi_{i} p_{i j} \\
& =\sum_{i \in S} \pi_{j} p_{j i} \\
& =\pi_{j} \sum_{i \in S} p_{j i} \\
& =\pi_{j}
\end{aligned}
$$

Conclusion:
(1) π is invariant
(2) X is reversible in equilibrium from (2)

Ehrenfest diffusion model (1)

Model: We consider

- Two boxes A and B
- Total of N gas molecules in $A \cup B$
- At time n, one molecule is picked from the N molecules
- This molecule changes box

Process: We set
$X_{n} \equiv \#$ molecules in Box A at time n

Ehrenfest diffusion model (2)

Box A
Box B

Ehrenfest diffusion model (2)

Proposition 45.

For Ehrenfest's model,
(1) X is a Markov chain with

$$
p_{i, i+1}=1-\frac{i}{m}, \quad \text { and } \quad p_{i, i-1}=\frac{i}{m}
$$

(2) X is reversible in equilibrium with

$$
\pi=\operatorname{Bin}\left(N, \frac{1}{2}\right), \quad \text { that is } \quad \pi_{i}=\binom{N}{i}\left(\frac{1}{2}\right)^{m}
$$

Tatyana and Paul Ehrenfest

Some facts about the Ehrenfest:

- Lifespan:
- Tatyana: 1876-1964
- Paul: 1880-1933
- Born in:
- Tatyana: Russian empire
- Paul: Austrian empire
- Contributions in statistical physics
- Problems due to (lack of) religion:
- Could not marry
- Difficult to find a job
- Settled down in Netherlands

Proof of Proposition 45 (1)

Markov chain: One can write

$$
X_{n+1}=X_{n}-\left(2 Y_{n+1}-1\right), \quad \text { where } \quad Y_{n+1} \sim \mathcal{B}\left(\frac{X_{n}}{N}\right)
$$

Otherwise stated: We also have

$$
X_{n+1}=X_{n}-\mathbf{1}_{\left(U_{n+1} \leq \frac{x_{n}}{N}\right)}+\mathbf{1}_{\left(U_{n+1}>\frac{x_{n}}{N}\right)} \equiv \varphi\left(X_{n}, U_{n+1}\right)
$$

where $\left\{U_{k} ; k \geq 1\right\}$ are i.i.d $\mathcal{U}([0,1])$
Conclusion: X is a Markov chain with

$$
p_{i, i+1}=1-\frac{i}{m}, \quad \text { and } \quad p_{i, i-1}=\frac{i}{m}
$$

Proof of Proposition 45 (2)

Reversible in equilibrium: One checks that

$$
\begin{aligned}
\pi_{i} p_{i, i+1} & =\pi_{i+1} p_{i+1, i} \\
\pi_{i} p_{i, i-1} & =\pi_{i-1} p_{i-1, i}
\end{aligned}
$$

Outline

(1) Markov processes

- Classification of states
(3) Classification of chains
(4) Stationary distributions and the limit theorem
- Stationary distributions
- Limit theorems
(5) Reversibility
(6) Chains with finitely many states
(7) Branching processes revisited

Irreducible case

Theorem 46.
Let

- X irreducible Markov chain with transition P
- S finite

Then:

X is non-null persistent

Perron-Frobenius theorem

Theorem 47.

Let

- X irreducible Markov chain with transition P
- S finite with $|S|=N, X$ has period d

Then:
(1) $\lambda_{1}=1$ is an eigenvalue of P
(2) Let $\omega=e^{\frac{2 \pi i}{d}}$. Then the following are eigenvalues of P :

$$
\lambda_{k}=\omega^{k-1}, \quad \text { for } \quad k=1, \ldots, d
$$

(3) Remaining eigenvalues:

$$
\lambda_{d+1}, \ldots, \lambda_{N}, \quad \text { with } \quad\left|\lambda_{j}\right|<1
$$

Large time behavior

Theorem 48.

Let

- X irreducible Markov chain with transition P
- S finite with $|S|=N$
- $\Lambda=\operatorname{Diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right)$ eigenvalue matrix
- Hyp: Eigenvalues λ_{j} all distinct
- $V=\left[v_{1}, \ldots, v_{n}\right]$ eigenvector matrix

Then:
(1) $P^{n}=V \wedge^{n} V^{-1}$
(2) If X is aperiodic we have

$$
\lim _{n \rightarrow \infty} P^{n}=V \operatorname{Diag}(1,0, \ldots, 0) V^{-1}
$$

Inbreeding model (1)

Model:

- Spinach population
- Genetic information contained in chromosomes
- 6+6 identical pairs of chromosomes
- Sites C_{1}, \ldots, C_{M} for chromosomes
\hookrightarrow We just look at C_{1} for 1 chromosome
- $C_{1} \in\{a, A\}$ for each pair
- Types: given by $S=\{A A, a A, a a\}$
- $X_{n} \equiv$ Value of type at generation n for a typical spinach
- Self reproduction model with meiosis
\hookrightarrow shuffle of C_{i} 's between pairs

Inbreeding model (2)

Transition rules: If all shuffles are equally likely we get

- $A A \times A A \longrightarrow A A$, with $p=1$
- $a A \times a A \longrightarrow$ aa with $p=\frac{1}{4}, a A$ with $p=\frac{1}{2}, A A$ with $p=\frac{1}{4}$
- $a \mathrm{aa} \times \mathrm{aa} \longrightarrow a a$, with $p=1$

Transition matrix: We get

$$
P=\left(\begin{array}{ccc}
1 & 0 & 0 \\
\frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\
0 & 0 & 1
\end{array}\right)
$$

Inbreeding model (3)

Classification of states: With the graph we find

- aa and AA are persistent
- aA is transient

Eigenvalues: We find

$$
\lambda_{1}=1, \quad \lambda_{2}=1, \quad \lambda_{3}=\frac{1}{2}
$$

Eigenvectors: We get

$$
V=\left(\begin{array}{ccc}
2 & -1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \quad \text { and } \quad V^{-1}=\left(\begin{array}{ccc}
\frac{1}{2} & 0 & \frac{1}{2} \\
0 & 0 & 1 \\
-\frac{1}{2} & 1 & -\frac{1}{2}
\end{array}\right)
$$

Inbreeding model (4)

Large time behavior: We get

$$
\begin{aligned}
P^{n} & =V^{-1}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \left(\frac{1}{2}\right)^{n}
\end{array}\right) V \\
& =\left(\begin{array}{ccc}
1 & 0 & 0 \\
\frac{1}{2}-\left(\frac{1}{2}\right)^{n+1} & \left(\frac{1}{2}\right)^{n} & \frac{1}{2}-\left(\frac{1}{2}\right)^{n+1} \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Limiting behavior: We have

$$
\lim _{n \rightarrow \infty} P^{n}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
\frac{1}{2} & 0 & \frac{1}{2} \\
0 & 0 & 1
\end{array}\right)
$$

Outline

(1) Markov processes

- Classification of states
(3) Classification of chains
(4) Stationary distributions and the limit theorem
- Stationary distributions
- Limit theorems
(5) Reversibility
(6) Chains with finitely many states
(7) Branching processes revisited

Assumptions on the model

Main hypotheses:
(1) Family sizes are \Perp random variables $\left\{X_{i}^{(n)} ; i, n \geq 1\right\}$
(2) Family sizes have same pmf f
\hookrightarrow with generating function G
(3) $Z_{0}=1$ and

$$
Z_{n+1}=\sum_{i=1}^{z_{n}} X_{i}^{(n+1)}
$$

Applying the general theory of Markov chains

What can be said:
(1) 0 is an absorbing state, thus persistent non-null
(2) All other states are transient
(3) Unique invariant measure $\pi=\delta_{0}$

Partial conclusion:

- This doesn't say much about the behavior of the chain

Combining with generating functions

What more can be said:
(1) \mathbf{P} (Ultimate extinction) $=\eta$
(2) $\eta \equiv$ smallest non-negative root of $s=G(s)$
(3) If extinction occurs, then $\lim _{n \rightarrow \infty} Z_{n}=0$
(4) If extinction does not occur, then $\lim _{n \rightarrow \infty} Z_{n}=\infty$

Particular case: If $Z_{1} \sim \operatorname{Nbin}(1, p)$ then

$$
\eta= \begin{cases}1 & \text { if } p \leq \frac{1}{2} \\ \frac{q}{p} & \text { if } p>\frac{1}{2}\end{cases}
$$

Conditioning

Time of extinction: Define

$$
T=\inf \left\{n ; Z_{n}=0\right\} \quad(\text { possibly } T=\infty)
$$

and

$$
E_{n}=\{n<T<\infty\}
$$

Conditioning: We set

$$
\hat{p}_{j}(n)=\mathbf{P}\left(Z_{n}=j \mid E_{n}\right)
$$

Quantity of interest: We wish to compute

$$
\hat{\pi}_{j} \equiv \lim _{n \rightarrow \infty} \hat{p}_{j}(n)
$$

Limit of the conditional distribution

Proposition 49.

Consider

- Z branching process
- Hypothesis $\mathbf{E}\left[Z_{1}\right]<\infty$

Then
(1) $\hat{\pi}_{j} \equiv \lim _{n \rightarrow \infty} \hat{p}_{j}(n)$ exists
(2) Let $G_{\hat{\pi}} \equiv$ generating function of $\hat{\pi}$. It solves

$$
G_{\hat{\pi}}\left(\frac{G(\eta(s))}{\eta}\right)=m G_{\hat{\pi}}(s)+1-m, \quad \text { where } \quad m=G^{\prime}(\eta)
$$

Partial proof of Proposition 49 (1)

Definition of \hat{G}_{n} : We set

$$
\hat{G}_{n}(s)=\mathbf{E}\left[s^{Z_{n}} \mid E_{n}\right]=\sum_{j=0}^{\infty} \hat{p}_{j}(n) s^{j}
$$

More explicit version: We have

$$
\begin{aligned}
\hat{G}_{n}(s) & =\sum_{j=0}^{\infty} \frac{\mathbf{P}\left(\left(Z_{n}=j\right) \cap E_{n}\right)}{\mathbf{P}\left(E_{n}\right)} s^{j} \\
& =\frac{\sum_{j=0}^{\infty} \mathbf{P}\left(\left(Z_{n}=j\right) \cap E_{n}\right) s^{j}}{\mathbf{P}\left(E_{n}\right)}
\end{aligned}
$$

Partial proof of Proposition 49 (2)

Expression for $\mathbf{P}\left(\left(Z_{n}=j\right) \cap E_{n}\right)$ for $j \geq 1$: We have

$$
\mathbf{P}\left(\left(Z_{n}=j\right) \cap E_{n}\right)=\mathbf{P}\left(\left(Z_{n}=j\right), \text { all lines after time } n \text { die out }\right)
$$

$=\mathbf{P}\left(\right.$ all lines after time n die out $\left.\mid Z_{n}=j\right) \mathbf{P}\left(Z_{n}=j\right)$
$=\eta^{j} \mathbf{P}\left(Z_{n}=j\right)$
Case $j=0$: It is easily seen that

$$
\mathbf{P}\left(\left(Z_{n}=0\right) \cap E_{n}\right)=0
$$

Partial proof of Proposition 49 (3)

Partial conclusion: We have obtained

$$
\sum_{j=0}^{\infty} \frac{\mathbf{P}\left(\left(Z_{n}=j\right) \cap E_{n}\right)}{\mathbf{P}\left(E_{n}\right)} s^{j}=G_{n}(s \eta)-G_{n}(0)
$$

Expression for $\mathbf{P}\left(E_{n}\right)$: Write

$$
\mathbf{P}\left(E_{n}\right)=\mathbf{P}(T<\infty)-\mathbf{P}(T \leq n)=\eta-G_{n}(0)
$$

Expression for $\hat{G}_{n}(s)$: We end up with

$$
\hat{G}_{n}(s)=\frac{G_{n}(s \eta)-G_{n}(0)}{\eta-G_{n}(0)}
$$

Partial proof of Proposition 49 (4)

Remainder of the proof: Start from

$$
\hat{G}_{n}(s)=\frac{G_{n}(s \eta)-G_{n}(0)}{\eta-G_{n}(0)}
$$

Then

- Use $G_{n+1}(s)=G\left(G_{n}(s)\right)$
- Analysis in order to get derivatives from the ratio above

More on the limiting conditional distribution

Proposition 50.

Consider

- Z branching process
- Set $\mu=\mathbf{E}\left[Z_{1}\right]$

Then
(1) If $\mu \neq 1$ we have

$$
\sum_{j=0}^{\infty} \hat{\pi}_{j}=1
$$

(2) If $\mu=1$ we have

$$
\hat{\pi}_{j}=0, \quad \text { for all } j \geq 0
$$

Interpretation of Proposition 50

Interpretation:

- If $\mu \neq 1$
- The distribution $\mathcal{L}\left(Z_{n}\right)$ converges to $\hat{\pi}$ \hookrightarrow Conditionally on future extinction
- If $\mu=1$
- $\lim _{n \rightarrow \infty} \mathbf{P}\left(Z_{n}=j\right)=0$, since extinction is certain
- $\lim _{n \rightarrow \infty} \mathbf{P}\left(Z_{n}=j \mid E_{n}\right)=0$, since $Z_{n} \rightarrow \infty$
\hookrightarrow Conditionally extinction in the future

Limit in the critical case

Theorem 51.

Consider

- Z branching process
- Hypothesis: $\mu=1$ and $G^{\prime \prime}(1)<\infty$
- Set $Y_{n}=\frac{Z_{n}}{n \sigma^{2}}$ and $\sigma^{2}=\operatorname{Var}\left(Z_{1}\right)$

Then

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left(Y_{n} \leq y \mid E_{n}\right)=1-e^{-2 y}
$$

Interpretation of Theorem 51

Interpretation: Given E_{n} we have

$$
\lim _{n \rightarrow \infty} \mathcal{L}\left(Y_{n}\right)=\mathcal{E}(2)
$$

