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Vocabulary

Stochastic process:

Family {Xn; n ≥ 0, n integer} of random variables

Family evolving in a random but prescribed manner

Here Xn ∈ S , where S countable state space with N = |S |

Discrete time:

In this chapter we consider X indexed by n ∈ N, discrete
Later continuous time, {Xt ; t ≥ 0}

Markov evolution:

Conditioned on Xn,
the evolution does not depend on the past
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Markov chain

Let

X = {Xn; n ≥ 0, n integer} stochastic process

We say that X is a Markov chain if

P (Xn = s|X0 = x0, . . . ,Xn−1 = xn−1)

= P (Xn = s|Xn−1 = xn−1) ,

for all n ≥ 1 and x0, . . . , xn−1, s ∈ S

Definition 1.
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Random walk as a Markov chain

Let

X1, . . . ,Xn Bernoulli random variables with values ±1,

P(Xi = 1) = p, P(Xi = −1) = 1− p

The Xi ’s are independent

The random walk defined by S0 = 0 and

Sn =
n∑

i=1

Xi

Then

S is a Markov chain

Proposition 2.
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Proof of Proposition 2

Decomposition for Sn: We write

Sn+1 = Sn + Xn+1

Conditional probability: We have

P (Sn+1 = s| S0 = x0, . . . , Sn = xn)

= P (Sn + Xn+1 = s| S0 = x0, . . . , Sn = xn)

= P (Xn+1 = s − xn| S0 = x0, . . . , Sn = xn)

= P (Xn+1 = s − xn)

= P (Sn+1 = s| Sn = xn)

This proves the Markov property
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Alternative formulations for Markov’s property

The Markov property is equivalent to any of the following:

1 For all n1 < n2 < · · · < nk ≤ n we have

P (Xn = s|Xn1 = xn1 , . . . ,Xnk = xnk )

= P (Xn = s|Xnk = xnk )

2 For all m, n ≥ 0,

P (Xm+n = s|X0 = x0, . . . ,Xm = xm)

= P (Xm+n = s|Xm = xm)

Proposition 3.
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Transition probability

Reduction to S ⊂ N:
Recall that Xn ∈ S

S countable =⇒ S in one-to-one correspondence with S ′ ⊂ N
We denote (Xn = xi) by (Xn = i)

Important quantity to describe X : Transition probability, defined by

P (Xn+1 = j |Xn = i)

It depends on n, i , j
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Andrey Markov

Andrey Markov’s life:

Lifespan: 1856-1922, ≃ St Petersburg

Not a very good student
↪→ except in math

Contributions in analysis and probability

Used chains for
↪→ appearance of vowels

Professor in St Petersburg
▶ Suspended after 1908 students riots
▶ Resumed teaching in 1917

Fact: More than 50 mathematical objects named after Markov!!

Samy T. (Purdue) Markov chains Stochastic processes 10 / 146



Homogeneous Markov chains

Let X be a Markov chain. Then

1 X is homogeneous if for all n, i , j we have

P (Xn+1 = j |Xn = i) = P (X1 = j |X0 = i)

2 If X is homogeneous we define a transition matrix

P = (pij) with pij = P (Xn+1 = j |Xn = i)

Definition 4.

In the chapter we always assume that X is homogeneous

Hypothesis 5.

Samy T. (Purdue) Markov chains Stochastic processes 11 / 146



Stochastic matrix

The matrix P is stochastic, that is

1 pij ≥ 0, for all i , j

2
∑

j pij = 1, for all i

Theorem 6.
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n-step transition

Let X be a Markov chain. We set

P(m,m + n) = (pij(m,m + n))i ,j ,

with
pij(m,m + n) = P (Xm+n = j |Xm = i)

Definition 7.

Remark:

P describes the short term behavior of X

P(m,m + n) describes the long term behavior of X
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Chapman-Kolmogorov equations

Let X be a Markov chain with transition p. Then

1 For m, n, r ≥ 0 we have

pij(m,m+n+ r) =
∑
k

pik(m,m+n)pkj(m+n,m+n+ r)

2 As a matrix,

P(m,m + n + r) = P(m,m + n)P(m + n,m + n + r)

3 In particular,
P(m,m + n) = Pn

Theorem 8.
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Proof of Theorem 8 (1)

Preliminary identity:

P(A ∩ B |C ) = P(A|B ∩ C )P(B |C )

Proof: Start from right hand side,

P(A|B ∩ C )P(B |C ) =
P(A ∩ B ∩ C )

P(B ∩ C )

P(B ∩ C )

P(C )

=
P ((A ∩ B) ∩ C )

P(C )

= P(A ∩ B |C )
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Proof of Theorem 8 (2)

Computation: We have

pij(m,m + n + r) = P(Xm+n+r = j |Xm = i)

=
∑
k

P(Xm+n+r = j , Xm+n = k |Xm = i)

=
∑
k

P(Xm+n+r = j |Xm+n = k , Xm = i)P(Xm+n = k |Xm = i)

=
∑
k

P(Xm+n+r = j |Xm+n = k)P(Xm+n = k |Xm = i)

=
∑
k

pik(m,m + n)pkj(m + n,m + n + r)
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Law of Xn

Consider the row vector

µ
(n)
i = P(Xn = i)

Then
µ(m+n) = µ(m)Pn

In particular,
µ(n) = µ(0)Pn

Proposition 9.
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Proof of Proposition 9

Computation: Write

µ
(m+n)
j = P (Xm+n = j)

=
∑
i

P (Xm+n = j |Xm = i)P (Xm = i)

=
∑
i

µ
(m)
i pij(m,m + n)

=
[
µ(m)Pn

]
j
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Example: weather in West Lafayette (1)

Model: We choose S = {1, . . . , 6} := {VN ,N , SN , SG ,G ,VG}.

Transition: from empirical data, we have found

P =


0 1 0 0 0 0
0.4 0.6 0 0 0 0
0.3 0 0.4 0.2 0.1 0
0 0 0 0.3 0.7 0
0 0 0 0.5 0 0.5
0 0 0 0.8 0 0.2
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Example: weather in West Lafayette (2)

Model: We choose S = {1, . . . , 6} := {VN ,N , SN , SG ,G ,VG}.

Prediction for J+2:

P2 =


0.4 0.6 0 0 0 0
0.24 0.76 0 0 0 0
0.12 0.3 0.16 0.19 0.18 0.05
0 0 0 0.44 0.21 0.35
0 0 0 0.55 0.35 0.1
0 0 0 0.4 0.56 0.04
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Example: weather in West Lafayette (3)

Model: We choose S = {1, . . . , 6} := {VN ,N , SN , SG ,G ,VG}.

Prediction for J+28:

P28 =


0.29 0.71 0 0 0 0
0.29 0.71 0 0 0 0
0.14 0.36 7.2× 10−12 0.23 0.16 0.10
0 0 0 0.47 0.33 0.20
0 0 0 0.47 0.33 0.20
0 0 0 0.47 0.33 0.20
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Easy criteria to establish Markov property

Let X be a process such that

Xn+1 = φ(Xn,Zn+1)

Zn+1 ⊥⊥ (X0, . . . ,Xn)

{Zn; n ≥ 1} i.i.d family

φ is a given fixed function

Then

1 X is a Markov chain

2 The transition is given by

pij = P (φ(i ,Z1) = j)

Proposition 10.
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Simple random walk case (1)

State space:
S = Z

Markov property: We have seen

Xn+1 = Xn + Zn+1 = φ(Xn,Zn+1)

φ(x , y) = x + y

{Zn; n ≥ 1} i.i.d family

P(Z1 = 1) = p and P(Z1 = −1) = q

Thus

X is a Markov chain
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Simple random walk case (2)

Transition probability: We have

pij = P (i + Z1 = j)

= P (Z1 = j − i)

=


p, if j = i + 1

q, if j = i − 1

0, otherwise
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Simple random walk case (3)

Expression for Xn: Starting from i , write

Xn = i +
n∑

k=1

Zk

Relation with Bernoulli random variables: We have

Zk = 2Yk − 1, with Zk ∼ B(p)

Thus

Xn = i + 2
n∑

k=1

Yk − n
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Simple random walk case (4)

n-step transition: We obtain

Xn = j ⇐⇒
n∑

k=1

Yk =
1

2
(n + j − i)

Thus

pij(n) =

{(
n

1
2
(n+j−i)

)
p

1
2
(n+j−i)q

1
2
(n−j+i), if n + j − i even

0, otherwise

Conditions on i , j :

−n ≤ j − i ≤ n

j − i has the same parity as n
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Branching process case (1)

State space:
S = N

Markov property: We have seen

Xn+1 =
∑Xn

k=1 Z
(n+1)
k = φ(Xn,Z(n+1))

Z(n) = {Z(n)
k ; k ≥ 1} is a sequence

φ(x , z) =
∑x

k=1 zk

{Z(n); n ≥ 1} i.i.d family

↪→ with (Z
(n)
k )k≥1 i.i.d with common pgf G

Thus

X is a Markov chain

Samy T. (Purdue) Markov chains Stochastic processes 27 / 146



Branching process case (2)

Transition probability: We have

pij = P

(
i∑

k=1

Z
(1)
k = j

)
=

1

j !
× Coefficient of s j in (G (s))i

n-step transition: We obtain

pij(n) =
1

j !
× Coefficient of s j in (Gn(s))

i
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Questions about Markov chains

Main questions

1 Does the MC Xn go to ∞ when n → ∞?

2 Does it return to state i after n = 0?

3 How often does it return to i?

4 What is the range of Xn(ω)?

Methodologies to answer those questions

1 We have seen: pgf’s for random walks and branching

2 Now: Markov chain methods
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Persistent and transient states

Let

X Markov chain

i state in S

Then

1 i is called persistent or recurrent if

P (Xn = i for some n ≥ 1|X0 = i) = 1

2 i is called transient if

P (Xn = i for some n ≥ 1|X0 = i) < 1

Definition 11.
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First passage time probabilities

Let

X Markov chain and i , j states in S

Then we define

1 Probability that
↪→ 1st visit to j starting from i takes place at step n:

fij(n) = P (X1 ̸= j , . . . , Xn−1 ̸= j , Xn = j |X0 = i)

2 Probability that X ever visits j starting from i :

fij =
∞∑
n=1

fij(n)

Definition 12.
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Alternative definition for fij(n)

First visit to j : We set Tj = ∞ if there is no visit to j , and

Tj = inf {n ≥ 1; Xn = j}

Expression for fij(n): We have

fij(n) = P (X1 ̸= j , . . . , Xn−1 ̸= j , Xn = j |X0 = i)

= P (Tj = n|X0 = i)
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Some pgf’s

Pgf’s P and F : We set

Pij(s) =
∞∑
n=0

pij(n)s
n , Fij(s) =

∞∑
n=0

fij(n)s
n

Remarks:

1 Conventions above: pij(0) = δij and fij(0) = 0

2 i persistent iff fii = 1

3 For |s| < 1, the series Pij(s) and Fij(s) are convergent

4 Pij(1) and Fij(1) are defined through Abel’s theorem

5 fij = Fij(1)
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Relation between F and P

Let Xn be a Markov chain with transition p. Then

1 Pii and Fii satisfy

Pii(s) = 1 + Fii(s)Pii(s)

2 For i ̸= j , the function Pij verifies

Pij(s) = Fij(s)Pjj(s)

Theorem 13.
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Proof of Theorem 13 (1)

Events: We set

Am = (Xm = j), Bk = (Tj = k)

Decomposition for Am: We have

Am = Am ∩

(
n⋃

k=1

Bk

)
=

n⋃
k=1

(Am ∩ Bk)
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Proof of Theorem 13 (2)

Preliminary identity: Recall that

P(A ∩ B |C ) = P(A|B ∩ C )P(B |C )

Decomposition for probabilities: We get

P(Am ∩ Bk |X0 = i) = P (Am|Bk , X0 = i) P(Bk |X0 = i)
Markov
= P (Am|Xk = j) P(Bk |X0 = i) (1)
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Proof of Theorem 13 (3)

Convolution relation: Equation (1) can be read as

pij(m) = P(Am|X0 = i)

=
n∑

k=1

P(Am ∩ Bk |X0 = i)

=
n∑

k=1

pjj(m − k)fij(k), for m ≥ 1, and pij(0) = δij

Expression with generating functions: We get

Pij(s)− δij = Fij(s)Pjj(s)
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Criterion for recurrence and transience

Let Xn be a Markov chain with transition p. Then

1 If
∑∞

n=0 pjj(n) = ∞, then
▶ State j is persistent
▶
∑∞

n=0 pij(n) = ∞ for all i ’s such that fij > 0

2 If
∑∞

n=0 pjj(n) < ∞, then
▶ State j is transient
▶
∑∞

n=0 pij(n) < ∞ for all i

Proposition 14.
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Proof of Proposition 14 (1)

Expression for Pjj(s): From Theorem 13 we have

Pjj(s) =
1

1− Fjj(s)
, for |s| < 1

Limit as s ↗ 1: We get

Pjj(s) → ∞ iff Fjj(1) = 1

Fjj(1) = fjj

j persistent iff fjj = 1

Thus

j persistent iff lims↗1 Pjj(s) = ∞
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Proof of Proposition 14 (2)

Recall: We have seen

j persistent iff lims↗1 Pjj(s) = ∞

Application of Abel:

lim
s↗1

Pjj(s) =
∞∑
n=0

pjj(n)

Conclusion:

j persistent iff
∑∞

n=0 pij(n) = ∞
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Proof of Proposition 14 (3)

Another relation for pij(n): We have seen

Pij(s) = Fij(s)Pjj(s)

Taking limits s ↗ 1 we get

∞∑
n=0

pij(n) = fij

∞∑
n=0

pjj(n)

Conclusion: If
∑∞

n=0 pjj(n) = ∞, then∑∞
n=0 pij(n) = ∞ for all i ’s such that fij > 0
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Behavior of pij(n)

Let

X Markov chain with transition p

j transient state

Then
lim
n→∞

pij(n) = 0

Proposition 15.
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Simple random walk case

Let

X simple random walk

Parameters p and q = 1− p

Then

X is persistent iff p = 1
2

Proposition 16.
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Proof of Proposition 16 (1)

Formula for pjj(m): According to (26),

pjj(2n) =

(
2n

n

)
(pq)n, pjj(2n + 1) = 0

Stirling’s formula:
m! ≡

√
2πnn+

1
2 e−n

Equivalent for pjj(2n): We get, as n → ∞,

pjj(2n) ∼
(4pq)n

(πn)1/2
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Proof of Proposition 16 (2)

Recall: We have seen that

pjj(2n) ∼
(4pq)n

(πn)1/2

Case p = 1
2
: We get

pjj(2n) ∼
1

(πn)1/2

Thus
∞∑
n=0

pjj(2n) = ∞ =⇒ State j persistent
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Proof of Proposition 16 (3)

Recall: We have seen that

pjj(2n) ∼
(4pq)n

(πn)1/2

Case p ̸= 1
2
: We get

pjj(2n) ∼
(cp)

n

(πn)1/2
, with cp < 1

Thus
∞∑
n=0

pjj(2n) < ∞ =⇒ State j transient
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Number of visits

Recall: We have seen that

State j is either persistent or transient

Number of visits: We set

N(i) = # times that X visits its starting point i

Fact: We have

P (N(i) = ∞|X0 = i) =

{
1 , if i persistent

0 , if i transient
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Behavior of Tj for a transient state

Recall: We set Tj = ∞ if there is no visit to j , and

Tj = inf {n ≥ 1; Xn = j}

Mean for Tj if j is transient: Whenever j is transient,

P (Tj = ∞|X0 = j) > 0

E [Tj |X0 = j ] = ∞
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Mean recurrence time

Let

X Markov chain

i state in S

Then we set

µi = E [Ti |X0 = i ] =

{∑∞
n=1 n fii(n) , if i is persistent

∞ , if i is transient

Definition 17.
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Null and positive states

Let

X Markov chain

i persistent state in S , with mean recurrence time µi

Then

1 i is said to be null if µi = ∞
2 i is said to be positive if µi < ∞

Definition 18.
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Criterion for nullity

Let

X Markov chain

i persistent state in S

Then

i is null iff limn→∞ pii(n) = 0

Theorem 19.
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Period

Let

X Markov chain, i state in S

Then

1 The period of i is given by

d(i) = gcd {n; pii(n) > 0}

2 The state i is aperiodic if d(i) = 1, periodic if d(i) > 1

Definition 20.

Interpretation: The period describes
↪→ Times at which returns to i are possible
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Ergodic states

Let

X Markov chain

i state in S

Then i is said to be ergodic if

i is persistent, positive and aperiodic

Definition 21.
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Simple random walk case

Let

X simple random walk

Parameters p and q = 1− p

Then the states are

1 Periodic with period 2

2 Transient if p ̸= 1
2

3 Null persistent if p = 1
2

Proposition 22.
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Proof of Proposition 22 (1)

Transience if p ̸= 1
2
:

This has been established in Proposition 16

Null recurrence if p = 1
2
:

This has been established
↪→ in Generating functions - Proposition 12

We have seen that E[T0] = ∞
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Proof of Proposition 22 (2)

Another way to look at null recurrence: If p = 1
2
we have seen

pii(2n) ∼
1

(πn)1/2
, pii(2n + 1) = 0

Hence
lim
n→∞

pii(n) = 0

According to Theorem 19, i is recurrent null

Period 2: The fact that d(i) = 2 stems from

pii(2n) > 0, pii(2n + 1) = 0
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Branching process case

Consider a branching process with

Z1 ∼ f , f with pgf G

P(Z1 = 0) = f (0) > 0

Then

1 0 is an absorbing state:

P(Xn = 0 for all n|X0 = i) = 1

2 Other states are transient

Proposition 23.
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Proof of Proposition 23

Proof:

Done in Exercise 2
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Communication

Recall: For a Markov chain X , we have seen that

P (Xn = j |X0 = i) = pij(n)

Communication:
We say that i communicates with j if

There exists n ≥ 0 such that P (Xn = j |X0 = i) = pij(n) > 0.

Notation: i → j .
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Intercommunication

Intercommunication:
If i → j and j → i , we say that i and j intercommunicate.
Notation: i ↔ j .

Remarks:

1 For all i ∈ S , we have i ↔ i , since p0(i , i) = 1.

2 If i → j and j → k , then i → k .
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Graph related to a Markov chain

Let X be a Markov chain with transition p.
We define a graph G(X ) given by

G(X ) is an oriented graph

The vertices of G(X ) are points in S .

The edges of G(X ) are given by the set

V ≡ {(i , j); i ̸= j , p(i , j) > 0} .

Definition 24.
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Example

Definition of the chain: Take S = {1, 2, 3, 4, 5} and

p =


1/3 0 2/3 0 0
1/4 1/2 1/4 0 0
1/2 0 1/2 0 0
0 0 0 0 1
0 0 0 2/3 1/3


Related graph: to be done in class
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Graph and communication

Let X be a Markov chain with transition p. Then

i → j
iff

i = j or there exists an oriented path from i to j in G(X )

Proposition 25.
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Proof of Proposition 25

Relation with the graph: If i ̸= j we have

(i → j) ⇔ There exists n ≥ 1 such that pij(n) > 0

⇔ There exists n ≥ 1 such that∑
i1,...,in−1∈E

pi ,i1 · · · pin−1,j > 0

⇔ There exists n ≥ 1 and i1, . . . , in−1 ∈ E such that

pi ,i1 · · · pin−1,j > 0

⇔ There exists an oriented path from i to j in G(X )
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Irreducible classes

Let

X Markov chain with transition p

Then

1 The relation ↔ is an equivalence relation.

2 Denote C1, . . . ,Cl the equivalence classes for ↔ in S .
Then → is a partial order relation between classes:

C1 → C2 and C2 → C3 =⇒ C1 → C3

3 C1 → C2 iff ∃ i ∈ C1 and j ∈ C2 such that i → j .

4 The classes are called irreducible

Proposition 26.
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Example (1)

Definition of the chain: Take E = {1, 2, 3, 4, 5} and

p =


1/3 0 2/3 0 0
1/4 1/2 1/4 0 0
1/2 0 1/2 0 0
0 0 0 0 1
0 0 0 2/3 1/3
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Example (2)

Recall: We have E = {1, 2, 3, 4, 5} and

p =


1/3 0 2/3 0 0
1/4 1/2 1/4 0 0
1/2 0 1/2 0 0
0 0 0 0 1
0 0 0 2/3 1/3


Related classes:
C1 = {1, 3}, C2 = {2} and C3 = {4, 5}.
We have C2 → C1
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Nature of intercommunicating states

Let

X Markov chain with transition p

i , j such that i ↔ j

Then

1 i , j have the same period

2 i transient iff j transient

3 i null persistent iff j null persistent

Theorem 27.
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Proof of Theorem 27 – item 2 (1)

A positive quantity: If i ↔ j , then there exists m, n ≥ 1 such that

α ≡ pij(m)pji(n) > 0

Application of Chapman-Kolmogorov: We get

pii(m + r + n) ≥ pij(m)pjj(r)pji(n) = α pjj(r)

Summing over r : We get

∞∑
r=0

pii(r) < ∞ =⇒
∞∑
r=0

pjj(r) < ∞
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Proof of Theorem 27 – item 2 (2)

Conclusion:

i transient =⇒ j transient

Samy T. (Purdue) Markov chains Stochastic processes 72 / 146



Closed class

An equivalent class C is closed if:

For all i ∈ C and j ̸∈ C , we have i ̸→ j .

Definition 28.

Some rules for closedness:

If there exists a unique class C , it is closed

There exists a unique closed class C
⇔ There exists a class C s.t for all i ∈ E , we have i → C .
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Example ctd (1)

Definition of the chain: Take E = {1, 2, 3, 4, 5} and

p =


1/3 0 2/3 0 0
1/4 1/2 1/4 0 0
1/2 0 1/2 0 0
0 0 0 0 1
0 0 0 2/3 1/3
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Example ctd (2)

Recall: The related classes are
C1 = {1, 3}, C2 = {2} and C3 = {4, 5}.
We have C2 → C1

Closed classes: We find

C1,C3 closed, and C2 not closed
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Random walk example

Let

X simple random walk

Parameters p and q = 1− p

Then

1 There is a unique class, C = Z
2 This class is closed

3 If one state is transient, all the states are transient

4 If one state is null pers., all the states are null pers.

5 All the states have the same period

Proposition 29.
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Decomposition theorem

Let

X Markov chain with transition p

S state space

Then S can be partitioned uniquely as

S = T ∪ C1 ∪ C2 ∪ · · · ,
where

T ≡ Set of transient states

Ck ≡ irreducible closed class of persistent states

Theorem 30.
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Finite state space case

Let

X Markov chain with transition p

S finite state space with S = T ∪ C1 ∪ C2 ∪ · · ·

Then

1 At least 1 state in S is persistent

2 All persistent states are positive

3 Later we will see: every state in Ck is positive persistent

Proposition 31.
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Proof of Proposition 31

Recall: We have seen in Proposition 15 that

j transient state =⇒ limn→∞ pij(n) = 0

Assume all states are transient: Then for i ∈ Ck ,

lim
n→∞

∑
j∈Ck

pij(n) = 0

Contradiction: If Ck is closed,

lim
n→∞

∑
j∈Ck

pij(n) = 1
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Example ctd (1)

Definition of the chain: Take E = {1, 2, 3, 4, 5} and

p =


1/3 0 2/3 0 0
1/4 1/2 1/4 0 0
1/2 0 1/2 0 0
0 0 0 0 1
0 0 0 2/3 1/3
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Example ctd (2)

Recall: The related classes are
C1 = {1, 3}, C2 = {2} and C3 = {4, 5}.
C1,C3 closed, and C2 not closed

Information about the classes: We find

All states in C1,C3 (closed class) are positive persistent
State 2 in C2 transient
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1 Markov processes
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Stationary distributions
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6 Chains with finitely many states

7 Branching processes revisited
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Stationary distribution

Let

X Markov chain with matrix transition P

π vector

Then π is a stationary distribution if

1 πj ≥ 0 for all j ∈ S and
∑

j∈S πj = 1

2 π satisfies π = πP , that is

πj =
∑
i∈S

πipij , for all j ∈ S

Definition 32.
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Interpretation of stationary distribution

Let

X Markov chain with matrix transition P

π invariant distribution

Then
X0 ∼ π =⇒ Xn ∼ π for all n ≥ 0

Otherwise stated,

P (Xn = j |X0 ∼ π) = πj

Proposition 33.
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Proof of Proposition 33

Distribution of X1: We have

P (X1 = j |X0 ∼ π) =
∑
i∈S

P (X1 = j |X0 = i) πi

= (πP)j
= πj

Distribution of Xn: Use a recursion and

P (Xn+1 = j) =
∑
i∈S

P (Xn+1 = j |Xn = i)P (Xn = i)
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Stationary distributions and persistent chains

Let

X Markov chain with matrix transition P

X irreducible

Then

X has a stationary distribution
⇐⇒

All states are non-null persistent

Theorem 34.
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Stationary distributions and return times

Let

X Markov chain with matrix transition P

X irreducible

X admits a stationary distribution π

Then

πi =
1

µi
=

1

E[Ti |X0 = i ]

Theorem 35.
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Hints about the proof

Main ingredient: Prove that

µk =
∑
i∈S

ρi(k), with ρi(k) =
∞∑
n=1

P (Xn = i ,Tk ≥ n|X0 = k) ,

is solution to µ = µP

Idea for πi = (µi)
−1: One writes

πi = ”Average time spent at i”

≃ 1

”Average time to return at i”
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Example (1)

Definition of the chain: Take S = {1, 2, 3, 4} (hence |S | < ∞) and

P =


1/4 1/4 1/4 1/4
0 0 1 0
0 1/2 0 1/2
0 0 1 0
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Example (2)

Related classes:
C1 = {1}, C2 = {2, 3, 4}
↪→ C1 closed C2 non closed.

Partial conclusion: C1 transient, at least one recurrent state in C2.

Invariant measure:
Solve the system π = π P and ⟨π, 1⟩ = 1. We find

π = (0, 1/4, 1/2, 1/4) .

Conclusion: All states in C2 are non-null persistent
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Example (3)

Remark:

It is almost always easier to solve the system

π = π p and ⟨π, 1⟩ = 1

than to compute Ei [Ti ]

However, in the current case a direct computation is possible
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Example (4)

Direct analysis: We find

E1[T1] = ∞ since 1 is transient

E3[T3] = 2 since T3 = 2 under P3.

In order to compute E2[T2]:

E2

[
1(T2>2k+2)

]
= E2

[
1(T2>2k) 1(T2>2k+2)

]
= E2

{
1(T2>2k) EX2k

[
1(T2(A2k )>2)

]}
= E2

{
1(T2>2k) E4

[
1(T2(A2k )>2)

]}
= E2

[
1(T2>2k) p4,3 p3,4

]
=

1

2
E2

[
1(T2>2k)

]
We deduce P2(T2 > 2k) = 1/2k and E2[T2] = 4 = E4[T4].
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Criterion for positivity/nullity

Let

X Markov chain with matrix transition P

X irreducible

X recurrent

Then

1 There exists a measure x satisfying x = x P

2 x is unique up to multiplicative constant

3 x has strictly positive entries

4 The chain is positive if
∑

i∈S xi < ∞
5 The chain is null if

∑
i∈S xi = ∞

Theorem 36.
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Criterion for transience

Let

X Markov chain with matrix transition P

X irreducible

s any state in S

Then

X is transient
⇐⇒

There exists a non zero solution {yi ; i ̸= s}
to yi =

∑
j ̸=s pijyj , with |yi | ≤ 1

Theorem 37.
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Random walk with retaining barrier (1)

Model: Random walk on N
↪→ With retaining barrier at 0

Transition probability: We get

p00 = q, pi ,i+1 = p, if i ≥ 0, pi ,i−1 = q, if i ≥ 1

Notation: We set
ρ =

p

q
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Random walk with retaining barrier (2)

Let X be the random walk with retaining barrier. Then

1 If p > 1
2
, the chain is transient

2 If p < 1
2
, the chain is non-null persistent

↪→ with stationary distribution given by

π = Nbin(1, 1− ρ)

3 If p = 1
2
, the chain is null persistent

Proposition 38.
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Proof of Proposition 38 (1)

Case q < p: One verifies that

yi = 1− ρ−i solves yi =
∑
j ̸=s

pijyj

Thus X transient

Case q > p: One sees that

π = Nbin(1, 1− ρ) is such that πP = π

Thus X non-null persistent
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Proof of Proposition 38 (2)
Computation for q < p: For i ≥ 1 we have∑

j ̸=i

pijyj = pi ,i−1 yi−1 + pi ,i+1 yi+1

= q

(
1− 1

ρi−1

)
+ p

(
1− 1

ρi+1

)
= 1− 1

ρi+1

(
qρ2 + p

)
= 1− 1

ρi+1

(
p2

q
+ p

)
= 1− p

ρi+1

(
p

q
+ 1

)
= 1− 1

ρi−1

= yi
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Proof of Proposition 38 (3)

Nbin(1, 1− ρ) distribution: Defined for k ≥ 0 by

πk = ρk(1− ρ)

Verifying πP = π for q > p: For j ≥ 1 we have∑
i≥0

πipij = πj−1 p + πj+1 q

= ρj−1(1− ρ)p + ρj+1(1− ρ)q

= ρj−1(1− ρ)
(
p + ρ2q

)
= ρj(1− ρ)

= πj
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Proof of Proposition 38 (4)

Case q = p: We have
1 X persistent since

▶ Y ≡ random walk is persistent
▶ X = |Y |

2 X null-persistent since since x = 1 is such that

x = xP , and
∑
i∈S

xi = ∞
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Main objective

Aim in this section:

1 Get expressions for
lim
n→∞

pij(n)

2 Link with stationary distributions
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Problem with parity (1)

Example: Take S = {1, 2} and

P =

(
0 1
1 0

)
Question: Can we get

lim
n→∞

pij(n) ?
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Problem with parity (2)

Example: Take S = {1, 2} and

P =

(
0 1
1 0

)
Behavior of Pn and parity: We find

p11(n) = p22(n) =

{
0 , if n is odd

1 , if n is even

Thus

pii(n) does not converge
Problem comes from periodicity
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Aperiodic assumption

Until further notice we assume

X is an irreducible and aperiodic Markov chain

Hypothesis 39.
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Stationary distributions and return times

Let

X Markov chain with matrix transition P

X irreducible and aperiodic

Then for all i , j we have

lim
n→∞

pij(n) =
1

µj
=

1

E[Tj |X0 = j ]

Theorem 40.
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Some remarks (1)

Persistent null case: If the Markov chain X is persistent null then

lim
n→∞

pij(n) = 0

We had seen this result in Proposition 15

Forgetting the past: If the Markov chain X is non-null persistent then

lim
n→∞

P (Xn = j |X0 = i) = lim
n→∞

pij(n) = 0 = πj =
1

µj

Thus the initial condition is forgotten
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Some remarks (2)

Case with initial distribution: Assume

X is non-null persistent

X0 ∼ ν

Then

lim
n→∞

P (Xn = j |X0 ∼ µ) = lim
n→∞

∑
i∈S

νipij(n) =
1

µj
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Example
Definition of the chain: Take S = {1, 2, 3} and

P =

1/3 0 2/3
1/4 1/2 1/4
1/2 0 1/2


Invariant measure: One finds

π =
(
.43 0 .57

)
Large time behavior: One finds (e.g with R)

P30 =

43 0 .57
43 9× 10−10 .57
43 0 .57
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Periodic case

Let

X Markov chain with matrix transition P

X irreducible

X periodic with period d

Then we have

1 Y = {Yn = Xnd ; n ≥ 0} irreducible aperiodic

2 The following limit holds true:

lim
n→∞

pij(nd) = lim
n→∞

P (Yn = j |Y0 = j) =
d

µj

Theorem 41.
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Reversed chain

Let

X irreducible non-null persistent chain

Transition for X is P , invariant measure is π

Hypothesis: Xn ∼ π for all n

Set Yn = XN−n for 0 ≤ n ≤ N

Then

1 Y is a Markov chain

2 The transition for Y is

P (Yn+1 = j |Yn = i) =
πj

πi
pji

Theorem 42.
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Proof of Theorem 42

Computing conditional probabilities: We have

P (Yn+1 = in+1|Yn = in, . . . ,Y0 = i0)

=
P (Y0 = i0, Y1 = i1, . . . ,Yn+1 = in+1)

P (Y0 = i0, Y1 = i1, . . . ,Yn = in)

=
P (XN−n−1 = in+1, XN−n = in, . . . ,XN = i0)

P (XN−n = in, . . . ,XN = i0)

=
πin+1 pin+1in pinin−1 · · · pi1i0

πin pinin−1 · · · pi1i0
=

πin+1 pin+1in

πin

= P (Yn+1 = in+1|Yn = in)

This gives the Markov property and the transition
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Reversed chain

Let

X irreducible non-null persistent chain

Transition for X is P , invariant measure is π

Hypothesis: Xn ∼ π for all n

Set Yn = XN−n for 0 ≤ n ≤ N

Then

1 X is said to be reversible if Y has transition P

2 This is equivalent to

πi pij = πj pji , for all i , j ∈ S

Definition 43.
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Vocabulary

Detailed balance: Let

P transition matrix

λ distribution

Then P , λ are in detailed balance if

λi pij = λj pji , for all i , j ∈ S

Reversible in equilibrium: If X is such that

P , π are in detailed balance,

then X is said to be reversible in equilibrium
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Invariant measure and reversibility

Let

X irreducible Markov chain with transition P

Hypothesis: There exists a distribution π such that

πi pij = πj pji , for all i , j ∈ S (2)

Then

1 π is a stationary distribution

2 X is reversible in equilibrium

Theorem 44.
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Proof of Theorem 44

Computation of π P : We have

(π P)j =
∑
i∈S

πipij

=
∑
i∈S

πjpji

= πj

∑
i∈S

pji

= πj

Conclusion:

1 π is invariant

2 X is reversible in equilibrium from (2)
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Ehrenfest diffusion model (1)

Model: We consider

Two boxes A and B

Total of N gas molecules in A ∪ B

At time n, one molecule is picked from the N molecules

This molecule changes box

Process: We set

Xn ≡ # molecules in Box A at time n
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Ehrenfest diffusion model (2)
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Ehrenfest diffusion model (2)

For Ehrenfest’s model,

1 X is a Markov chain with

pi ,i+1 = 1− i

m
, and pi ,i−1 =

i

m

2 X is reversible in equilibrium with

π = Bin

(
N ,

1

2

)
, that is πi =

(
N

i

)(
1

2

)m

Proposition 45.
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Tatyana and Paul Ehrenfest

Some facts about the Ehrenfest:

Lifespan:
▶ Tatyana: 1876-1964
▶ Paul: 1880-1933

Born in:
▶ Tatyana: Russian empire
▶ Paul: Austrian empire

Contributions in statistical physics

Problems due to (lack of) religion:
▶ Could not marry
▶ Difficult to find a job
▶ Settled down in Netherlands
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Proof of Proposition 45 (1)

Markov chain: One can write

Xn+1 = Xn − (2Yn+1 − 1), where Yn+1 ∼ B
(
Xn

N

)
Otherwise stated: We also have

Xn+1 = Xn − 1(Un+1≤Xn
N )

+ 1(Un+1>
Xn
N )

≡ φ(Xn,Un+1),

where {Uk ; k ≥ 1} are i.i.d U([0, 1])

Conclusion: X is a Markov chain with

pi ,i+1 = 1− i

m
, and pi ,i−1 =

i

m
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Proof of Proposition 45 (2)

Reversible in equilibrium: One checks that

πi pi ,i+1 = πi+1 pi+1,i

πi pi ,i−1 = πi−1 pi−1,i
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Irreducible case

Let

X irreducible Markov chain with transition P

S finite

Then:

X is non-null persistent

Theorem 46.
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Perron-Frobenius theorem

Let

X irreducible Markov chain with transition P

S finite with |S | = N , X has period d

Then:

1 λ1 = 1 is an eigenvalue of P

2 Let ω = e
2πı
d . Then the following are eigenvalues of P :

λk = ωk−1, for k = 1, . . . , d

3 Remaining eigenvalues:

λd+1, . . . , λN , with |λj | < 1

Theorem 47.
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Large time behavior

Let

X irreducible Markov chain with transition P

S finite with |S | = N

Λ = Diag(λ1, . . . , λN) eigenvalue matrix

Hyp: Eigenvalues λj all distinct

V = [v1, . . . , vn] eigenvector matrix

Then:

1 Pn = V ΛnV−1

2 If X is aperiodic we have

lim
n→∞

Pn = V Diag(1, 0, . . . , 0)V−1

Theorem 48.
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Inbreeding model (1)

Model:

Spinach population

Genetic information contained in chromosomes

6+6 identical pairs of chromosomes

Sites C1, . . . ,CM for chromosomes
↪→ We just look at C1 for 1 chromosome

C1 ∈ {a,A} for each pair

Types: given by S = {AA, aA, aa}
Xn ≡ Value of type at generation n for a typical spinach

Self reproduction model with meiosis
↪→ shuffle of Ci ’s between pairs
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Inbreeding model (2)

Transition rules: If all shuffles are equally likely we get

AA× AA −→ AA, with p = 1

aA× aA −→ aa with p = 1
4
, aA with p = 1

2
, AA with p = 1

4

aa × aa −→ aa, with p = 1

Transition matrix: We get

P =

1 0 0
1
4

1
2

1
4

0 0 1
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Inbreeding model (3)

Classification of states: With the graph we find

aa and AA are persistent

aA is transient

Eigenvalues: We find

λ1 = 1, λ2 = 1, λ3 =
1

2

Eigenvectors: We get

V =

2 −1 0
1 0 1
0 1 0

 , and V−1 =

 1
2

0 1
2

0 0 1
−1

2
1 −1

2
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Inbreeding model (4)
Large time behavior: We get

Pn = V−1

1 0 0
0 1 0
0 0

(
1
2

)n
V

=

 1 0 0
1
2
−
(
1
2

)n+1 (
1
2

)n 1
2
−
(
1
2

)n+1

0 0 1


Limiting behavior: We have

lim
n→∞

Pn =

1 0 0
1
2

0 1
2

0 0 1
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Assumptions on the model

Main hypotheses:

1 Family sizes are ⊥⊥ random variables {X (n)
i ; i , n ≥ 1}

2 Family sizes have same pmf f
↪→ with generating function G

3 Z0 = 1 and

Zn+1 =
Zn∑
i=1

X
(n+1)
i
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Applying the general theory of Markov chains

What can be said:

1 0 is an absorbing state, thus persistent non-null

2 All other states are transient

3 Unique invariant measure π = δ0

Partial conclusion:

This doesn’t say much about the behavior of the chain
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Combining with generating functions

What more can be said:

1 P(Ultimate extinction) = η

2 η ≡ smallest non-negative root of s = G (s)

3 If extinction occurs, then limn→∞ Zn = 0

4 If extinction does not occur, then limn→∞ Zn = ∞

Particular case: If Z1 ∼ Nbin(1, p) then

η =

{
1 if p ≤ 1

2
q
p

if p > 1
2

Samy T. (Purdue) Markov chains Stochastic processes 136 / 146



Conditioning

Time of extinction: Define

T = inf{n; Zn = 0} (possibly T = ∞)

and
En = {n < T < ∞}

Conditioning: We set

p̂j(n) = P (Zn = j |En)

Quantity of interest: We wish to compute

π̂j ≡ lim
n→∞

p̂j(n)
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Limit of the conditional distribution

Consider

Z branching process

Hypothesis E[Z1] < ∞

Then

1 π̂j ≡ limn→∞ p̂j(n) exists

2 Let Gπ̂ ≡ generating function of π̂. It solves

Gπ̂

(
G (η(s))

η

)
= mGπ̂(s) + 1−m, where m = G ′(η)

Proposition 49.
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Partial proof of Proposition 49 (1)

Definition of Ĝn: We set

Ĝn(s) = E
[
sZn |En

]
=

∞∑
j=0

p̂j(n)s
j

More explicit version: We have

Ĝn(s) =
∞∑
j=0

P ((Zn = j) ∩ En)

P(En)
s j

=

∑∞
j=0P ((Zn = j) ∩ En) s

j

P(En)
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Partial proof of Proposition 49 (2)

Expression for P((Zn = j) ∩ En) for j ≥ 1: We have

P ((Zn = j) ∩ En) = P ((Zn = j), all lines after time n die out)

= P ( all lines after time n die out |Zn = j) P (Zn = j)

= ηjP (Zn = j)

Case j = 0: It is easily seen that

P ((Zn = 0) ∩ En) = 0
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Partial proof of Proposition 49 (3)

Partial conclusion: We have obtained

∞∑
j=0

P ((Zn = j) ∩ En)

P(En)
s j = Gn(sη)− Gn(0)

Expression for P(En): Write

P(En) = P(T < ∞)− P(T ≤ n) = η − Gn(0)

Expression for Ĝn(s): We end up with

Ĝn(s) =
Gn(sη)− Gn(0)

η − Gn(0)
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Partial proof of Proposition 49 (4)

Remainder of the proof: Start from

Ĝn(s) =
Gn(sη)− Gn(0)

η − Gn(0)

Then

Use Gn+1(s) = G (Gn(s))

Analysis in order to get derivatives from the ratio above
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More on the limiting conditional distribution

Consider

Z branching process

Set µ = E[Z1]

Then

1 If µ ̸= 1 we have
∞∑
j=0

π̂j = 1

2 If µ = 1 we have

π̂j = 0, for all j ≥ 0

Proposition 50.
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Interpretation of Proposition 50

Interpretation:

If µ ̸= 1
▶ The distribution L(Zn) converges to π̂

↪→ Conditionally on future extinction

If µ = 1
▶ limn→∞ P(Zn = j) = 0, since extinction is certain
▶ limn→∞ P(Zn = j |En) = 0, since Zn → ∞

↪→ Conditionally extinction in the future
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Limit in the critical case

Consider

Z branching process

Hypothesis: µ = 1 and G ′′(1) < ∞
Set Yn =

Zn

n σ2 and σ2 = Var(Z1)

Then
lim
n→∞

P(Yn ≤ y |En) = 1− e−2y

Theorem 51.
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Interpretation of Theorem 51

Interpretation: Given En we have

lim
n→∞

L(Yn) = E(2)

Samy T. (Purdue) Markov chains Stochastic processes 146 / 146


	Markov processes
	Classification of states
	Classification of chains
	Stationary distributions and the limit theorem
	Stationary distributions
	Limit theorems

	Reversibility
	Chains with finitely many states
	Branching processes revisited

