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Outline

@ Markov processes
© Classification of states
© Classification of chains

@ Stationary distributions and the limit theorem
@ Stationary distributions
@ Limit theorems

© Reversibility
@ Chains with finitely many states

@ Branching processes revisited
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Outline

@ Markov processes
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Vocabulary

Stochastic process:
e Family {X,; n > 0, n integer} of random variables
@ Family evolving in a random but prescribed manner

@ Here X, € S, where S countable state space with N = |§]|

Discrete time:
@ In this chapter we consider X indexed by n € N, discrete
@ Later continuous time, {X;; t > 0}

Markov evolution:

Conditioned on X,
the evolution does not depend on the past
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Markov chain

— Definition 1. \

Let
e X ={X,; n>0,n integer} stochastic process
We say that X is a Markov chain if

P(X,, = S‘XO = Xo, - - - 7Xn71 = anl)
- P(Xn - 5‘ Xn—l - Xn—l) )

foralln>1and xg,...,%,-1,S€ S

\. J
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Random walk as a Markov chain

,—[Proposition 2.] \
Let
e Xi,...,X, Bernoulli random variables with values £1,

@ The X;'s are independent
@ The random walk defined by So = 0 and

Sn = i Xi
i=1

Then

S is a Markov chain
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Proof of Proposition 2

Decomposition for S,: We write

Sn—l—l = 5.n + Xn+1

Conditional probability: We have

P(Shi1=5/S=x0,.-..,5, = x,)
=P(S,+ Xpi1 =550 =x0,-.-, 50 = xpn)
=P (X1 =5— % So = X0, ..., 50 = Xn)
=P (Xyr1=5—x,)

=P (Sn11 =5/ Sn = x,)

This proves the Markov property
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Alternative formulations for Markov's property

,—[Proposition 3.}

The Markov property is equivalent to any of the following:
Q Forallngy < n<--- < ng < nwe have

P (X, =5s| X0, = Xags oo, Xop = Xn,)
=P (X, = s| Xn, = Xn,)

©Q Forall mn>0,

P(Xm+n:S|X0:Xo,...,Xm:Xm)
=P (Xinin = 5| X = xm)
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Transition probability

Reduction to S C N:
@ Recall that X, € S

@ S countable = S in one-to-one correspondence with S’ C N
e We denote (X, = x;) by (X, =)

Important quantity to describe X: Transition probability, defined by
P(Xn+1 :J.’Xn = i)

It depends on n, i, j
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Andrey Markov

Andrey Markov's life:
@ Lifespan: 1856-1922, ~ St Petersburg
e Not a very good student
— except in math
@ Contributions in analysis and probability

@ Used chains for
— appearance of vowels

@ Professor in St Petersburg
» Suspended after 1908 students riots
» Resumed teaching in 1917

Fact: More than 50 mathematical objects named after Markov!!
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Homogeneous Markov chains

—~ Definition 4. \

Let X be a Markov chain. Then

@ X is homogeneous if for all n, i, we have

P (Xop1 =Jj1 Xa =1) = P(Xy =Jj| Xo = i)
@ If X is homogeneous we define a transition matrix

P = (p,J) with pij = P (Xn+1 :J| Xn = ’)

\ J

,—[Hypothesis 5.] \

In the chapter we always assume that X is homogeneous
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Stochastic matrix

Theorem 6.

The matrix P is stochastic, that is
Q@ p; >0, foralli,j
Q@ ) pj=1foralli
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n-step transition

— Definition 7. | \

Let X be a Markov chain. We set

P(m, m+ n) = (p;(m, m+ n))

ijo
with
pij(mam+ n) - P(Xm—i-n :j’Xm - i)

\ J

Remark:
@ P describes the short term behavior of X
@ P(m, m+ n) describes the long term behavior of X
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Chapman-Kolmogorov equations

—~ Theorem 8. \

Let X be a Markov chain with transition p. Then

@ For m,n;r > 0 we have

pi(m,m+n+r) = Zpik(m,m+”)ij(m+”am+”+’)
k

@ As a matrix,
P(mim+n+r)=P(m m+n)P(m+nm+n+r)

© In particular,

P(m,m+n)=P"
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Proof of Theorem 8 (1)

Preliminary identity:

P(ANB|C)=P(A BN C)P(B|C)

Proof: Start from right hand side,

P(AnBNC) P(BNC(C)
P(BNC) P(C)
P(AnB)Nn ()
P(C)
= P(ANB| ()

P(A|BN C)P(B|C) =
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Proof of Theorem 8 (2)

Computation: We have

p/j(m,m—i—n—i—r) = P(Xm+n+r :.j|Xm = ’)
= > PXoninir = s Xmin = K| X = i)
k

=" PKvtnsr = | Xt = ks X = NP (Xomin = k| X = i)
k

= " PXmentr = i Xmsn = K)PXmin = k| X = 1)
k

- Z pi(m, m+ n)p(m+n,m+n+r)
k
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Law of X,

,—[Proposition 9.] \

Consider the row vector

u" = P(X, =)

Then
M(m+n) _ M(m) pn

In particular,

() = 1,0 po
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Proof of Proposition 9

Computation: Write

MJ(m—i—n) _

Samy T. (Purdue)

P (Xmin

ZP(Xm+n=j|Xm=i)P(Xm:

Zu,

=J)

pii(m, m+ n)

[M(m)P L
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Example: weather in West Lafayette (1)

Model: We choose S = {1,...,6} := {VN,N,SN, SG, G, VG}.

Transition: from empirical data, we have found

o 1 0 0 0 O
04 06 0 0 0 O
p_ 03 0 04 02 01 O
0 0 0 0307 O
0 0 0 05 0 05
0 0 0 08 0 02
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Example: weather in West Lafayette (2)

Model: We choose S = {1,...,6} :={VN,N,SN, SG, G, VG}.

Prediction for J+2:

P2 =

Samy T. (Purdue)

04 06 O 0

024 076 O 0

0.12 03 0.16 0.19
0 0 0 044
0 0 0 055
0 0 0 04
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0
0
0.18
0.21
0.35
0.56

0
0
0.05
0.35
0.1
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Example: weather in West Lafayette (3)

Model: We choose S = {1,...,6} :={VN,N,SN, SG, G, VG}.

Prediction for J+28:

0.29 0.71 0 0
0.29 0.71 0 0
pos _ | 014 036 7.2x 1071 0.23
0 0 0 0.47
0 0 0 0.47
0 0 0 0.47
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Easy criteria to establish Markov property

,—[Proposition 10.] \
Let X be a process such that
@ Xpp1 = SO(Xn, Zn+1)
e Z,.1 U (Xo,..., X,)
e {Z,; n>1} i.id family

@ ( is a given fixed function

Then
@ X is a Markov chain
© The transition is given by

Pij = P (o(i, Z1) = J)
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Simple random walk case (1)

State space:
S=7

Markov property: We have seen
o Xn+1 = Xn + Zn+1 = @(Xna Zn+1)

° p(x,y)=x+y
e {Z,; n>1}iid family
e P(Zi=1)=pand P(Z1=-1)=gq

Thus

X is a Markov chain
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Simple random walk case (2)

Transition probability: We have

p;y = P(i+2 =]

= P(Zi=j-i)
p, ifj=i+1
= {q, ifj=i-1

0, otherwise
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Simple random walk case (3)

Expression for X,: Starting from i, write

Xo=i+) Z
k=1
Relation with Bernoulli random variables: We have
Zk = 2Yk — 1, with Zk ~ B(p)

Thus .
xn:i+22 Y, —n
k=1
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Simple random walk case (4)

n-step transition: We obtain
Xo=j <= DY Yi=z(n+j—1)

Thus

pi(n) = (%(nﬁj—i))P%("H_i)q%("_jH), if n4j — i even
’ 0, otherwise

Conditions on i, :
e n<j—i<n

@ j — i has the same parity as n
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Branching process case (1)

State space:
S=N

Markov property: We have seen
0 Xpi1 = fl1 Z;EHH) = (X, Z("tD)
o Z(M = {Z\"; k > 1} is a sequence
° o(x,z) =>4z
o {Z(M: n>1}iid family
< with (Z{")4>1 i.i.d with common pgf G
Thus

X is a Markov chain
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Branching process case (2)

Transition probability: We have

pj = P(Zzﬁl)zj)
k=1

1 , ,
= - X Coefficient of s’ in (G(s))'
J!

n-step transition: We obtain

1 ‘ '
pi(n) = i x Coefficient of s/ in (G,(s))’
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Questions about Markov chains

Main questions
@ Does the MC X, go to oo when n — oc0?
© Does it return to state / after n = 07
© How often does it return to /7
© What is the range of X,(w)?

Methodologies to answer those questions
© We have seen: pgf's for random walks and branching
© Now: Markov chain methods
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Persistent and transient states

~ Definition 11. ] .

Let
@ X Markov chain

@ /statein S

Then

© / is called persistent or recurrent if
P(X,=iforsomen>1|Xy=1i)=1
@ ./ is called transient if

P(X,=iforsomen>1Xs=1i)<1
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First passage time probabilities

~ Definition 12. \
Let
@ X Markov chain and 7, states in S

Then we define

© Probability that
— 1st visit to j starting from / takes place at step n:

f;(n):P(Xl #j,...,Xn_l 7éj/ Xn:J|X0:’)

© Probability that X ever visits j starting from i:

o

fj=_ fi(n)
n=1

\ J
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Alternative definition for f;(n)

First visit to j: We set T; = oo if there is no visit to j, and

Ti=inf{n>1; X, =}

Expression for f;(n): We have

f;(n) = P(Xl #_j,---,xn—l #J’ X":-I’XOZI)
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Some pgf's

Pgf's P and F: We set

Pi(s) = py(n)s",  Fy(s)=) fy(n)s"

Remarks:
@ Conventions above: p;;(0) = d; and £;(0) =0
© / persistent iff f; =1
@ For |s| < 1, the series Pj(s) and Fj(s) are convergent
@ Pj(1) and Fj(1) are defined through Abel’s theorem
O fj = Fy(1)
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Relation between F and P

r—[Theorem 13.} \

Let X, be a Markov chain with transition p. Then
Q@ Pj; and Fj; satisfy
Pi(s) =1+ Fi(s)Pi(s)
@ For i # j, the function Pj verifies

Pi(s) = Fij(s)Pj(s)

Samy T. (Purdue) Markov chains Stochastic processes 35/146



Proof of Theorem 13 (1)

Events: We set

Decomposition for A,,: We have

An=AnN (O Bk> :O(AmmBk)

k=1

Samy T. (Purdue) Markov chains Stochastic processes 36 /146



Proof of Theorem 13 (2)
Preliminary identity: Recall that
P(AnB|C)=P(A| BN C)P(B| ()

Decomposition for probabilities: We get

PAnNB Xo=1) = P (An B, Xo = i) P(Bi| Xo = i)
M P (A Xe = J) P(Bll Xo = 1) (1)
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Proof of Theorem 13 (3)

Convolution relation: Equation (1) can be read as
pi(m) = P(An|Xo =1)

= ) P(AnN B X =)

k=1

= ijj(m — k)fj(k), for m>1, and p;(0)=9;
k=1

Expression with generating functions: We get

Pij(s) — 05 = Fij(s)Py(s)
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Criterion for recurrence and transience

,—[Proposition 14.] \

Let X, be a Markov chain with transition p. Then
Q If > pji(n) = oo, then

» State j is persistent
> > o2 Pii(n) = oo for all i's such that f;j >0

Q If Y2 pji(n) < oo, then

» State j is transient
> > oo pii(n) < oo forall i
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Proof of Proposition 14 (1)

Expression for Pj(s): From Theorem 13 we have

:DJJ(S) = T for |S| <1

Limit ass 1. We get
® Pj(s) = ocoiff Fj(1) =1
o Fi(1) = 1
@ j persistent iff f; =1

Thus

J persistent iff lim; - Pj(s) = oo
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Proof of Proposition 14 (2)

Recall: We have seen

J persistent iff lims » Pj(s) = oo

Application of Abel:

SI'/ml Py(s Z pji(n)

Conclusion:

J persistent iff ">/ p;i(n) = oo
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Proof of Proposition 14 (3)

Another relation for p;(n): We have seen

Pi(s) = Fi(s)Py(s)

Taking limits s 1 we get
> pi(n) = £y pyi(n)
n=0 n=0

Conclusion: If >~77 ) p;i(n) = oo, then

> oo Pij(n) = oo for all i's such that f; >0
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Behavior of p;(n)

,—[Proposition 15.} \

Let
@ X Markov chain with transition p

@ j transient state

Then
lim p;(n) =0

n—o0

Samy T. (Purdue) Markov chains Stochastic processes 43 /146



Simple random walk case

,—[Proposition 16.] \

Let
@ X simple random walk

@ Parameters pandg=1—p

Then

X is persistent iff p = %
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Proof of Proposition 16 (1)
Formula for p;;(m): According to (26),
pii(2n) = <2nn> (pq)",  pi(2n+1)=0

Stirling’s formula:
m! = 2rn"Tie "

Equivalent for p;(2n): We get, as n — oo,

pjj(zn) ~ ((:2);71)/,;
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Proof of Proposition 16 (2)

Recall: We have seen that

pylan) ~ o

Case p = 3: We get
1
pii(2n) ~ (en)172
Thus

ijj(2n) =00 = Statej persistent
n=0
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Proof of Proposition 16 (3)

Recall: We have seen that

pytan) ~ 2

Case p # 3: We get

(Cp)n

Thus

ijj(2n) < oo == State transient
n=0
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Number of visits
Recall: We have seen that
State j is either persistent or transient

Number of visits: We set

N(i) = # times that X visits its starting point /

Fact: We have

P (N(i) = oo Xo = i) =

1, if i persistent
0, if / transient
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Behavior of T; for a transient state

Recall: We set T; = oo if there is no visit to j, and

Ti=inf{n>1; X, =}
Mean for T; if j is transient: Whenever j is transient,

P(TJ-ZOO|X0=j) > 0
E[Ti)| Xo=j] = o0
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Mean recurrence time

~ Definition 17. ]
Let
@ X Markov chain
@ jstatein S

Then we set

Yo nfi(n), if iis persistent

i=E[Ti| X =1]=
1 [Ti] Xo = 1] {OO, if i is transient
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Null and positive states

~ Definition 18. ] .
Let
@ X Markov chain

@ |/ persistent state in S, with mean recurrence time y;

Then
© /is said to be null if y; = o0
@ / is said to be positive if y; < oo
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Criterion for nullity

r—[Theorem 19.} \
Let
@ X Markov chain

@ / persistent state in S

Then

i is null iff lim, . p;i(n) =0

Samy T. (Purdue) Markov chains Stochastic processes 52 /146



Period

~ Definition 20. | \
Let
@ X Markov chain, i state in S
Then

© The period of / is given by
d(i) = ged {n; pi(n) > 0}

@ The state i is aperiodic if d(i) = 1, periodic if d(i) > 1

\. J

Interpretation: The period describes
— Times at which returns to /i are possible
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Ergodic states

~ Definition 21. \
Let
@ X Markov chain
@ jstatein S

Then i is said to be ergodic if

i is persistent, positive and aperiodic
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Simple random walk case

,—[Proposition 22.] \

Let
@ X simple random walk

@ Parameters pandg=1—-p

Then the states are
© Periodic with period 2
@ Transient if p # %
© Null persistent if p = %
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Proof of Proposition 22 (1)

Transience if p £ %:
This has been established in Proposition 16

Null recurrence if p = %:
@ This has been established
— in Generating functions - Proposition 12
@ We have seen that E[To| = oo
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Proof of Proposition 22 (2)

Another way to look at null recurrence: If p = % we have seen

pii(2n) ~ (wn)i/2’

p,-,-(2n + 1) =0
Hence
Jim_pii(n) =0

According to Theorem 19, / is recurrent null

Period 2: The fact that d(/) = 2 stems from

p,-,-(2n) > 0, p,-,-(2n + 1) =0
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Branching process case

,—[Proposition 23.] \

Consider a branching process with
@ 7y ~ f, f with pgf G
e P(Z;=0)=1(0)>0

Then
@ 0 is an absorbing state:

P(X,=0forall n|Xo=1i)=1

@ Other states are transient
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Communication

Recall: For a Markov chain X, we have seen that

P (X, = j| Xo = i) = p;(n)

Communication:
We say that / communicates with j if

There exists n > 0 such that P (X, = j| Xo = i) = p;j(n) > 0.

Notation: i — j.
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Intercommunication

Intercommunication:
If i — j and j — i, we say that / and j intercommunicate.
Notation: i <> J.

Remarks:
@ Forall i €S, we have i <+ i, since p°(i, i) = 1.
Q@ Ifi—jandj — k, then i — k.
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Graph related to a Markov chain

~ Definition 24.

Let X be a Markov chain with transition p.
We define a graph G(X) given by

@ G(X) is an oriented graph
@ The vertices of G(X) are points in S.
@ The edges of G(X) are given by the set

V= {(i,j); i £, p(i,j) > 0}
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Example

Definition of the chain: Take S ={1,2,3,4,5} and

1/3 0 2/3 0 0
1/4 1/2 1/4 0 0
p=|1/2 0 12 0 0
0o 0 0 0 1
0 0 0 2/31/3

Related graph: to be done in class
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Graph and communication

,—[Proposition 25.] \

Let X be a Markov chain with transition p. Then
I —J
iff
i = j or there exists an oriented path from i to j in G(X)
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Proof of Proposition 25

Relation with the graph: If i £ j we have
(i = j) < There exists n > 1 such that p;;(n) >0
< There exists n > 1 such that

Z Piiy " Pin_yj >0

f1yeesin—1€E

< There exists n > 1 and iy,...,i,_1 € E such that

< There exists an oriented path from i to j in G(X)
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Irreducible classes

,—[Proposition 26.]

Let

@ X Markov chain with transition p

Then

© The relation <> is an equivalence relation.

@ Denote (i, ..., C the equivalence classes for <+ in S.
Then — is a partial order relation between classes:

C1—>C23ndC2—>C3:>C1—)C3

©Q© G — Giffdie ¢ andj € G such that i — .

© The classes are called irreducible
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Example (1)

Definition of the chain: Take E = {1,2,3,4,5} and

1/3 0 2/3 0 0
1/4 1/2 1/4 0 0
p=|1/2 0 12 0 o0
o 0 0 0 1
0 0 0 2/31/3
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Example (2)

Recall: We have E = {1,2,3,4,5} and

1/3 0 2/3 0 0
1/4 1/2 1/4 0 0
p=|1/2 0 12 0 o0
0o 0 0 0 1
0 0 0 2/31/3

Related classes:
Cl = {1,3}, C2 = {2} and C3 = {4,5}
We have G, — G
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Nature of intercommunicating states

r—[Theorem 27.] \

Let
@ X Markov chain with transition p
@ /,j such that j <+

Then
© /,j have the same period
@ |/ transient iff j transient
© / null persistent iff j null persistent
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Proof of Theorem 27 — item 2 (1)
A positive quantity: If i <+ j, then there exists m, n > 1 such that
a = p;(m)p;i(n) >0
Application of Chapman-Kolmogorov: We get
pil(m + r+ n) > py(m)py(r)pji(n) = o pj;(r)

Summing over r: We get

[o.@] oo
E pi(r) <oo = E pji(r) < oo
r=0 r=0
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Proof of Theorem 27 — item 2 (2)

Conclusion:

| transient —

J transient
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Closed class

Definition 28.}

An equivalent class C is closed if:

Forall i€ C and j ¢ C, we have i /4 .

Some rules for closedness:
o If there exists a unique class C, it is closed

@ There exists a unique closed class C
& There exists a class C s.t for all i € E, we have | — C.
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Example ctd (1)

Definition of the chain: Take E = {1,2,3,4,5} and

1/3 0 2/3 0 0
1/4 1/2 1/4 0 0
p=|1/2 0 12 0 o0
o 0 0 0 1
0 0 0 2/31/3
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Example ctd (2)

Recall: The related classes are
Cl = {1,3}, C2 = {2} and C3 = {4,5}
We have C2 — C1

Closed classes: We find

(1, G5 closed, and G, not closed
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Random walk example

,—[Proposition 29.]
Let
@ X simple random walk

@ Parameters pand g=1—p

Then
© There is a unique class, C =7
© This class is closed
© |If one state is transient, all the states are transient
© If one state is null pers., all the states are null pers.
© All the states have the same period
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Decomposition theorem

r—[Theorem 30.} \
Let

@ X Markov chain with transition p

e S state space
Then S can be partitioned uniquely as
S=TUGUGU:---,
where

@ T = Set of transient states
@ C, = irreducible closed class of persistent states
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Finite state space case

,—[Proposition 31.] \

Let
@ X Markov chain with transition p
@ S finite state spacewith S=TUGUGU---

Then
© At least 1 state in S is persistent
© All persistent states are positive

© Later we will see: every state in C is positive persistent
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Proof of Proposition 31
Recall: We have seen in Proposition 15 that

J transient state = lim,_,o p;(n) =0

Assume all states are transient: Then for i € Cy,

lim > py(n) =0

Je€Ck

Contradiction: If Cy is closed,

lim > py(n) =1

JECK
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Example ctd (1)

Definition of the chain: Take E = {1,2,3,4,5} and

1/3 0 2/3 0 0
1/4 1/2 1/4 0 0
p=|1/2 0 12 0 o0
o 0 0 0 1
0 0 0 2/31/3
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Example ctd (2)

Recall: The related classes are
G ={1,3}, GG ={2} and G = {4,5}.
C, G closed, and G, not closed

Information about the classes: We find

All states in Cy, G; (closed class) are positive persistent
State 2 in G, transient
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Outline

@ Stationary distributions and the limit theorem
@ Stationary distributions
@ Limit theorems
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Outline

@ Stationary distributions and the limit theorem
@ Stationary distributions
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Stationary distribution

r—[Definition 32.] \
Let
@ X Markov chain with matrix transition P

@ T vector

Then 7 is a stationary distribution if
Q@ m;>0foralljeSand) ; sm=1

@ 1 satisfies m = 7P, that is

= Zwip,-j, forall j €5
ieS
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Interpretation of stationary distribution

,—[Proposition 33.] \

Let
@ X Markov chain with matrix transition P

@ 7 invariant distribution

Then
Xo~nm — X,~m foralln>0

Otherwise stated,

P(X,=j|Xo~7)=m;
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Proof of Proposition 33

Distribution of X;: We have

PXi=j|Xo~m) = > P(Xi=j|Xo=i)m
i€eS
= (7TP)j

Distribution of X,: Use a recursion and

n+1—J ZP n+1_J|X_’) ( ’)

ieS

Samy T. (Purdue) Markov chains Stochastic processes

86 /146



Stationary distributions and persistent chains

r—[ Theorem 34.} \
Let

@ X Markov chain with matrix transition P

@ X irreducible

Then

X has a stationary distribution
<~
All states are non-null persistent
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Stationary distributions and return times

~ Theorem 35. |

Let

@ X irreducible

Then

T —

@ X Markov chain with matrix transition P

e X admits a stationary distribution 7

1 1

1 E[Ti| X =]

Samy T. (Purdue)
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Hints about the proof

Main ingredient: Prove that

Mk:ZPi(k)a with Pi(k):ZP(Xn:i:TkZ”|X0:k)7

ieS n=1
is solution to = uP

Idea for m; = (p1;)~": One writes

m; = "Average time spent at /"
1

" Average time to return at /"

12
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Example (1)

Definition of the chain: Take S = {1,2,3,4} (hence |S| < o0) and

1/4 1/4 1/4 1/4
0 0 1 0
0 1/2 0 1/2
0 0 1 0

pP=
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Example (2)

Related classes:
G ={1}, G =1{2,3,4}
— (; closed G non closed.

Partial conclusion: C; transient, at least one recurrent state in G.

Invariant measure:
Solve the system 7 = 7 P and (7, 1) = 1. We find

7 =(0,1/4,1/2,1/4).

Conclusion: All states in C, are non-null persistent
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Example (3)

Remark:

@ It is almost always easier to solve the system
m=mp and (m 1)=1
than to compute E;[T}]

@ However, in the current case a direct computation is possible
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Example (4)

Direct analysis: We find
@ E;[T;] = oo since 1 is transient
@ E;[T3] = 2 since T3 = 2 under Ps.
@ In order to compute E;[T5]:

Ex [1(ro2c12)] = B2 [L(om2k) L(Tos2k42)]
= Ex {1(n,526) Exy [L(ry(a2952)] }
= Es {1(7,52) Ea [L(1,(42952)) }

1
= Ex [1(7,526) Pa3 P34 = §E2 (11,520

We deduce Po(T, > 2k) = 1/2K and E,[T,] = 4 = E4[T4].

Samy T. (Purdue) Markov chains Stochastic processes 93 /146



Criterion for positivity /nullity

r—[Theorem 36.} )
Let

@ X Markov chain with matrix transition P

@ X irreducible

@ X recurrent

Then
© There exists a measure x satisfying x = x P
@ x is unique up to multiplicative constant
© x has strictly positive entries
@ The chain is positive if Eies X; < 00
© The chainis null if 37, .o x; = 00
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Criterion for transience

r—[Theorem 37.} w
Let
@ X Markov chain with matrix transition P

o X irreducible

@ s any statein S

Then
X is transient
—
There exists a non zero solution {y;; i # s}
to yi = D jus Pii¥jy With |yi| <1
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Random walk with retaining barrier (1)

Model: Random walk on N
— With retaining barrier at 0

Transition probability: We get

poo =q, piis1=p, if71 >0, pji1=gq,ifi>1

Notation: We set
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Random walk with retaining barrier (2)

,—[Proposition 38.] \

Let X be the random walk with retaining barrier. Then
Q Ifp> % the chain is transient

@ If p < 1, the chain is non-null persistent
— with stationary distribution given by

7 = Nbin(1,1 — p)

Q Ifp= % the chain is null persistent
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Proof of Proposition 38 (1)

Case g < p: One verifies that

—i

yi=1—p~" solves y,-:Zp,-jyj

J#s
Thus X transient
Case g > p: One sees that

m = Nbin(1,1 — p) issuch that 7P =7

Thus X non-null persistent

Samy T. (Purdue) Markov chains Stochastic processes

98 /146



Proof of Proposition 38 (2)

Computation for g < p: For i > 1 we have

Z PijY;

J#

Samy T. (Purdue)
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Proof of Proposition 38 (3)
Nbin(1,1 — p) distribution: Defined for k > 0 by

T = (1= p)

Veritying 1P = m for ¢ > p: For j > 1 we have

Z'fripij = T-1P+Tjq

i>0
= P l-pp+ 1 -p)q
= P71 -p)(p+rq)

= P(1-p)
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Proof of Proposition 38 (4)

Case g = p: We have
@ X persistent since

» Y = random walk is persistent

@ X null-persistent since since x = 1 is such that

x =xP, and Zx,-:oo

i€S
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Outline

@ Stationary distributions and the limit theorem

@ Limit theorems
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Main objective

Aim in this section:
© Get expressions for
lim p;(n)

n—o0

@ Link with stationary distributions
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Problem with parity (1)

Example: Take S = {1,2} and
01
7= (1)

1 .. ?
lim_pj(n)

Question: Can we get

Samy T. (Purdue) Markov chains
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Problem with parity (2)
Example: Take S = {1,2} and
01
> (1)
Behavior of P” and parity: We find

0, if nis odd

1, if niseven

p11(n) = p2(n) = {

Thus

pii(n) does not converge
Problem comes from periodicity
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Aperiodic assumption

Hypothesis 39.]

Until further notice we assume

X is an irreducible and aperiodic Markov chain
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Stationary distributions and return times

r—[Theorem 40.} \
Let

@ X Markov chain with matrix transition P

@ X irreducible and aperiodic

Then for all i,j we have

i ( ) 1 1
im pi(n)=— = ————
n—oo ” pi E[T;| Xo =]
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Some remarks (1)

Persistent null case: If the Markov chain X is persistent null then
lim p;(n) =0
n—oo

We had seen this result in Proposition 15

Forgetting the past: If the Markov chain X is non-null persistent then

1
lim P (X, =j|Xo=1i)= lim pj(n) =0=m; = —
n—o0

n—o0 /’[‘J

Thus the initial condition is forgotten
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Some remarks (2)

Case with initial distribution: Assume
@ X is non-null persistent

CXONV

Then
1

lim P (X, =j| Xo ~ ) = lim Y " vipj(n) =
n—o0 MJ

n—00 -
i€S
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Example
Definition of the chain: Take S = {1,2,3} and

1/3 0 2/3
P=1|1/4 1/2 1/4
1/2 0 1/2

Invariant measure: One finds

m= (43 0 .57)

Large time behavior: One finds (e.g with R)

43 0 57
PP =43 9x1071° 57
43 0 b7
Samy T. (Purdue) Markov chains
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Periodic case

r—[Theorem 41.}
Let

@ X Markov chain with matrix transition P

@ X irreducible

@ X periodic with period d

Then we have
Q@ Y ={Y, = X,4; n> 0} irreducible aperiodic
© The following limit holds true:

lim p;(nd) = lim P(Y,=j]Yo=J) = d
n—00 n—00 Hj
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e Reversib“ity
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Reversed chain

r—[Theorem 42.}

Let

@ X irreducible non-null persistent chain
@ Transition for X is P, invariant measure is 7
@ Hypothesis: X, ~ m for all n
@ Set Y, =Xy_,for0<n<N
Then
© Y is a Markov chain
@ The transition for Y is

. . T
P(Yori=jlYa=1)= ;J'Pji
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Proof of Theorem 42

Computing conditional probabilities: We have

P(Yn+1 = in+1| Yn = in,. R YO = Io)
P(Yo = i(), Yl = il,. cey Yn_|_1 - in_|_1)
P(Yo=1io, Yi=i1,...,Yn=1p)
. P (XN—n—l = in—i—la XN—n = ina cee 7XN = ’0)
P(Xnp = in- s Xn = io)
Tiny1 Pinyvin Pinin—1 *** Pivi
Tin Pinin—1 " " * Pirio
— Tipg1 Pipyain
= —7rin

=P (Yn+1 - in—',—l’ Yn - ln)

This gives the Markov property and the transition
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Reversed chain

~ Definition 43. )
Let

e X irreducible non-null persistent chain
@ Transition for X is P, invariant measure is 7
@ Hypothesis: X, ~ m for all n
@ SetY,=Xy_,for0<n<N
Then

@ X is said to be reversible if Y has transition P
© This is equivalent to

i Pij = T Pji, forall i,j€S8
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Vocabulary

Detailed balance: Let
@ P transition matrix
@ ) distribution

Then P, X are in detailed balance if
)\,-p,-j: j Pjis forall i,j€S5

Reversible in equilibrium: If X is such that
@ P, 7 are in detailed balance,

then X is said to be reversible in equilibrium
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Invariant measure and reversibility

r—[Theorem 44.] N
Let
@ X irreducible Markov chain with transition P

@ Hypothesis: There exists a distribution 7 such that
T Pij = T} Pji, forall i,j€S8 (2)

Then
© 1 is a stationary distribution

© X is reversible in equilibrium
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Proof of Theorem 44

Computation of 7 P: We have

(mP), = > mipy

i€s
= E i Pji

i€eS

= 7 E Pji
i€S
Conclusion:
@ 7 is invariant

@ X is reversible in equilibrium from (2)
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Ehrenfest diffusion model (1)

Model: We consider
@ Two boxes A and B
@ Total of N gas molecules in AU B
@ At time n, one molecule is picked from the N molecules
@ This molecule changes box

Process: We set

X, = # molecules in Box A at time n
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Ehrenfest diffusion model (2)

Box A Box B
© © o %) o o ©
N % ngg)o o ooﬁp [5) N-n¢
5
o °%06° ° 8 9 © o © o =
Do&googgmo %000 ° S
0gp, 58 RBY 28 © ol ke il
= ¢ °% 8.0 °g e o
©
o 00 0o
SEXIRE o8 o o B
Che oot E %
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Ehrenfest diffusion model (2)

,—[Proposition 45.] \
For Ehrenfest’s model,

@ X is a Markov chain with
] i
pii+1=1——, and pjj1=—
m m

@ X is reversible in equilibrium with

1 N 1\"
=Bin (N, = hatis m; = -
T m( ,2>, that Is (/) <2)
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Tatyana and Paul Ehrenfest

Some facts about the Ehrenfest:
o Lifespan:

» Tatyana: 1876-1964
» Paul: 1880-1933

e Born in:

» Tatyana: Russian empire

» Paul: Austrian empire
@ Contributions in statistical physics
@ Problems due to (lack of) religion:

» Could not marry
» Difficult to find a job
» Settled down in Netherlands
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Proof of Proposition 45 (1)

Markov chain: One can write

Xn
Xn+1 = Xn - (2 Yn+1 - 1)7 where Yn+1 ~ B <N)

Otherwise stated: We also have
Xn+1 = Xn - 1(Un+1§%) + 1(Un+1>%) = (p(Xr” Un+1)7
where {Uy; k > 1} are i.i.d U([0, 1])

Conclusion: X is a Markov chain with

I I
pii+1=1——, and p;;1=—
m m

Samy T. (Purdue) Markov chains Stochastic processes 123 /146



Proof of Proposition 45 (2)

Reversible in equilibrium: One checks that

TiPii+1 = Tit1 Pi+1,i

TiPii—1 = Ti—1Pi-1,i
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@ Chains with finitely many states
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Irreducible case

r—[Theorem 46.}

Let

e S finite

Then:

X is non-null persistent

@ X irreducible Markov chain with transition P
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Perron-Frobenius theorem

r—[Theorem 47.}
Let
@ X irreducible Markov chain with transition P
o S finite with |S| = N, X has period d

Then:
@ )\ = 1is an eigenvalue of P

k—1

Ak =W for k=1,...,d

© Remaining eigenvalues:

>\d+17'--7)\N7 with ’)\J’ <1

@ Let w = e". Then the following are eigenvalues of P:
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Large time behavior

r—[Theorem 48.}
Let

@ X irreducible Markov chain with transition P
o S finite with [S| =N
e A = Diag(\y, ..., Ay) eigenvalue matrix
e Hyp: Eigenvalues ); all distinct
o V =|[w,...,v,] eigenvector matrix
Then:
Q@ P =VAV
@ If X is aperiodic we have

lim P" = V Diag(1,0,...,0)V !

n—o0

J
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Inbreeding model (1)

Model:

@ Spinach population

@ Genetic information contained in chromosomes
@ 6-+6 identical pairs of chromosomes
°

Sites (i, ..., Cy for chromosomes
— We just look at C; for 1 chromosome

G, € {a, A} for each pair
o Types: given by S = {AA, aA, aa}
e X, = Value of type at generation n for a typical spinach

@ Self reproduction model with meiosis
— shuffle of C;'s between pairs
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Inbreeding model (2)

Transition rules: If all shuffles are equally likely we get
o AAX AA — AA withp=1

oanaA—>aawithp:%, aA with p =

@ aa X aa— aa, withp=1

AA with p =1

1
2! 4

Transition matrix: We get

p—

O nlm
OoONI- O
A )
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Inbreeding model (3)

Classification of states: With the graph we find
@ aa and AA are persistent
@ aA is transient

Eigenvalues: We find

)\1:1, /\2:1, )\3:

N

Eigenvectors: We get

-1

2 0 3 0 3
V=|(1 0 1|, and V=0 0 1
0 1 0 -1 -1
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Inbreeding model (4)

Large time behavior: We get

10 0
P = v1il01 O
00 (3)
1 0
n+1
= [:-3)" ()

o
o

Limiting behavior: We have

lim P" =

n—oo

ONIE =

Samy T. (Purdue) Markov chains
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@ Branching processes revisited
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Assumptions on the model

Main hypotheses:

© Family sizes are Il random variables {X,.(");

@ Family sizes have same pmf f
— with generating function G

QZ():land

Zn
Zpi1 = ZX’_(n—H)
i=1

I

T——Tlfﬁ’_T

Samy T. (Purdue) Markov chains
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Applying the general theory of Markov chains

What can be said:
@ 0 is an absorbing state, thus persistent non-null
@ All other states are transient

© Unique invariant measure m = 4y

Partial conclusion:

@ This doesn’t say much about the behavior of the chain
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Combining with generating functions

What more can be said:
@ P(Ultimate extinction) = n
@ 17 = smallest non-negative root of s = G(s)
@ If extinction occurs, then lim,_o. Z, =0
@ If extinction does not occur, then lim,_., Z, = 00

Particular case: If Z; ~ Nbin(1, p) then

1 ifp<
= if p>

T lQ
N= N
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Conditioning
Time of extinction: Define
T =inf{n;, Z, =0} (possibly T = o0)

and
E,={n<T <o}

Conditioning: We set
pi(n) = P(Z, = j| En)
Quantity of interest: We wish to compute

= nli_}n;O pi(n)
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Limit of the conditional distribution

,—[Proposition 49.] \

Consider
@ Z branching process
@ Hypothesis E[Z;] < o0

Then
Q 7 = lim,_, pj(n) exists
@ Let G; = generating function of 7. It solves

AM:mAs —m, where m=G’
GW< 77) Gi(s)+1—m, wh G'(n)
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Partial proof of Proposition 49 (1)
Definition of GA,,: We set

Go(s) =E [s%n

E,] = Zﬁj(")sj

More explicit version: We have

GA,-,(S) — Z P((Zn :_j)ﬂ En) sj

‘= P(E,)
YR P((Zo=)NE) S
N P(E,)
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Partial proof of Proposition 49 (2)

Expression for P((Z, = j) N E,) for j > 1: We have

P((Z,=Jj)NE,) =P((Z,=), all lines after time n die out)
= P ( all lines after time n die out | Z, = j) P (Z, =)
=P (Z, =)

Case j = 0: It is easily seen that

P((Z,=0)NE,) =0
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Partial proof of Proposition 49 (3)

Partial conclusion: We have obtained

> BB 6en - 60

Jj=0

Expression for P(E,): Write

P(En) = P(T <o00) = P(T < n) =n— Gy(0)

Expression for G,(s): We end up with

Gn(s1) — Gn(0)
n— Gn(o)

é,,(s) =
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Partial proof of Proposition 49 (4)

Remainder of the proof: Start from

2y _ Gnlsn) — Ga(0)
Gn(S) B n— Gn(o)

Then
o Use Gpi1(s) = G(G,(s))
@ Analysis in order to get derivatives from the ratio above
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More on the limiting conditional distribution

,—{Proposition 50.]

Consider
@ Z branching process
e Set = E[Z]

Then
Q If u# 1 we have

D fi=1
j=0
Q If u =1 we have

7;=0, forallj>0
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Interpretation of Proposition 50

Interpretation:

o If u#1

» The distribution £(Z,) converges to 7
— Conditionally on future extinction

o lf p=1
» limy00 P(Z, =) = 0, since extinction is certain
» limp00 P(Z, = Jj|E,) =0, since Z, — o0
— Conditionally extinction in the future
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Limit in the critical case

r—[Theorem 51.}

Consider
@ Z branching process
@ Hypothesis: p =1 and G"(1) < ¢
o Set Y, = -2 and 0% = Var(Z;)

no?

Then
lim P(Y, <y|E,) =1—e?

n—o00

Samy T. (Purdue) Markov chains
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Samy T. (Purdue)

Interpretation of Theorem 51
Interpretation: Given E, we have

n—oo

lim £(Y,) = £(2)

Markov chains
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