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Defining generating functions

Let

a = {ai ; i ≥ 0} sequence

s ∈ R
Then the generating function of a is

Ga(s) =
∞∑
i=0

ais
i ,

provided the series converges

Definition 1.
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De Moivre’s series

Sequence: We consider θ ∈ [0, 2π] and

an = eınθ = [cos(θ) + ı sin(θ)]n

Generating function: Defined by

Ga(s) =
∞∑
n=0

ans
n =

∞∑
n=0

eınθsn

Computation of the generating function: For |s| < 1 we get

Ga(s) =
1

1− seıθ
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Convolution

Let

a = {ai ; i ≥ 0} and b = {bi ; i ≥ 0} sequences

c sequence defined by

cn =
n∑

i=0

aibn−i

Then we denote
c = a ∗ b

Definition 2.
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Convolution and generating functions

Let

a = {ai ; i ≥ 0} and b = {bi ; i ≥ 0} sequences

c = a ∗ b
Then

Gc(s) = Ga(s)Gb(s)

Proposition 3.
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Proof of Proposition 3

Computation from the definition of Gc : We have

Gc(s) =
∞∑
n=0

cns
n

=
∞∑
n=0

(
n∑

i=0

aibn−i

)
sn

=
∞∑
n=0

n∑
i=0

ais
i bn−is

n−i

=
∞∑
i=0

∞∑
n=i

ais
i bn−is

n−i

= Ga(s)Gb(s)
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Poisson random variable (1)

Notation:

P(λ) for λ ∈ R+

State space:

E = N ∪ {0}

Pmf:

P(X = k) = e−λ λk

k!
, k ≥ 0

Expected value, variance and pgf:

E[X ] = λ, Var(X ) = λ, GX (s) = exp(λ(s − 1))
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Poisson random variable (2)

Use (examples):

# customers getting into a shop from 2pm to 5pm

# buses stopping at a bus stop in a period of 35mn

# jobs reaching a server from 12am to 6am

Empirical rule:
If n → ∞, p → 0 and np → λ, we approximate Bin(n, p) by P(λ).
This is usually applied for

p ≤ 0.1 and np ≤ 5
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Poisson random variable (3)

0 5 10 15
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Figure: Pmf of P(2). x-axis: k. y -axis: P(X = k)
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Poisson random variable (4)
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Figure: Pmf of P(5). x-axis: k. y -axis: P(X = k)
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Siméon Poisson

Some facts about Poisson:

Lifespan: 1781-1840, in ≃ Paris

Engineer, Physicist and Mathematician

Breakthroughs in electromagnetism

Contributions in partial diff. eq
celestial mechanics, Fourier series

Marginal contributions in probability

A quote by Poisson:
Life is good for only two things: doing mathematics and teaching it!!
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Sum of 2 Poisson random variables (1)

Question: Consider

X ∼ P(λ), thus fX (i) = e−λ λi

i!

Y ∼ P(µ), thus fY (i) = e−µ µi

i!

X ⊥⊥ Y

What is the distribution of Z = X + Y ?
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Sum of 2 Poisson random variables (2)

Pmf for Z : We know that

fZ = fX ∗ fY

Generating function for Z : We get

GfZ (s) = GfX (s)GfY (s)

= exp ((λ+ µ)(s − 1))

Conclusion:
Z ∼ P(λ+ µ)
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Probability generating functions

Let

X random variable with values in Z
fX pmf of X

We set
GX (s) = E

[
sX
]
= GfX (s)

Definition 4.
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Properties of the generating function (1)

Some properties:
1 Convergence: There exists R ≥ 0 such that GX (s)

▶ Converges absolutely if |s| < R
▶ Diverges if |s| > R
▶ The sum is uniformly convergent on {s; |s| < R ′} if R ′ < R

2 Differentiation: One can differentiate term by term at s
↪→ such that |s| < R
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Properties of the generating function (2)

Some more properties:
3 Uniqueness: Assume

▶ Ga(s) = Gb(s) for |s| < R ′ ≤ R

Then

(an)n≥0 = (bn)n≥0, and an =
1

n!
G (n)
a (0)

4 Abel theorem: Assume
▶ ai ≥ 0
▶ Ga(s) < ∞ for |s| < 1

Then

lim
s↗1

Ga(s) =
∞∑
i=0

ai
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Bernoulli random variable (1)

Notation:

X ∼ B(p) with p ∈ (0, 1)

State space:

{0, 1}

Pmf:
P(X = 0) = 1− p, P(X = 1) = p

Expected value, variance, generating function:

E[X ] = p, Var(X ) = p(1− p), GX (s) = (1− p) + p s
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Bernoulli random variable (2)

Use 1, success in a binary game:

Example 1: coin tossing
▶ X = 1 if H, X = 0 if T
▶ We get X ∼ B(1/2)

Example 2: dice rolling
▶ X = 1 if outcome = 3, X = 0 otherwise
▶ We get X ∼ B(1/6)

Use 2, answer yes/no in a poll

X = 1 if a person feels optimistic about the future

X = 0 otherwise

We get X ∼ B(p), with unknown p
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Jacob Bernoulli

Some facts about Bernoulli:

Lifespan: 1654-1705, in Switzerland

Discovers constant e

Establishes divergence of
∑

1
n

Contributions in diff. eq

First law of large numbers

Bernoulli:
family of 8 prominent mathematicians

Fierce math fights between brothers
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Geometric random variable

Notation:
X ∼ G(p), for p ∈ (0, 1)

State space:
E = N = {1, 2, 3, . . .}

Pmf:
P(X = k) = p (1− p)k−1, k ≥ 1

Expected value, variance and generating function:

E[X ] =
1

p
, Var(X ) =

1− p

p2
, GX (s) =

p s

1− s(1− p)
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Geometric random variable (2)
Use:

Independent trials, with P(success) = p

X = # trials until first success

Example: dice rolling

Set X = 1st roll for which outcome = 6

We have X ∼ G(1/6)

Computing some probabilities for the example:

P(X = 5) =

(
5

6

)4
1

6
≃ 0.08

P(X ≥ 7) =

(
5

6

)6

≃ 0.33
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Geometric random variable (3)

Computation of E[X ]: Set q = 1− p. Then

E[X ] =
∞∑
i=1

iqi−1p

=
∞∑
i=1

(i − 1)qi−1p +
∞∑
i=1

qi−1p

= q E[X ] + 1

Conclusion:

E[X ] =
1

p
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Generating function and moments

Let X be a random variable with generating function GX . Then

1 E[X ] = G ′(1)

2 E[X (X − 1) · · · (X − k + 1)] = G
(k)
X (1)

Theorem 5.

Remark: If the radius of convergence for GX is 1, then

G
(k)
X (1) = lim

s↗1
G

(k)
X (s)
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Computing moments with generating functions

Situation: Consider p ∈ (0, 1) and

X ∼ G(p)

Derivatives of GX : We find

G ′
X (s) =

p

(1− (1− p)s)2

G ′′
X (s) =

2p(1− p)

(1− (1− p)s)3

Moments: We get

E[X ] =
1

p
, Var(X ) =

1− p

p2
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Generating function for a sum

Let

X ,Y random variables

X ⊥⊥ Y

Then
GX+Y (s) = GX (s)GY (s)

Theorem 6.
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Binomial random variable (1)

Notation:

X ∼ Bin(n, p), for n ≥ 1, p ∈ (0, 1)

State space:

{0, 1, . . . , n}

Pmf:

P(X = k) =

(
n

k

)
pk (1− p)n−k , 0 ≤ k ≤ n

Expected value, variance and generating function:

E[X ] = np, Var(X ) = np(1− p), GX (s) = [(1− p) + p s]n
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Binomial random variable (2)

Use 1, Number of successes in a Bernoulli trial:

Example: Roll a dice 9 times.

X = # of 3 obtained

We get X ∼ Bin(9, 1/6)

P(X = 2) = 0.28

Use 2: Counting a feature in a repeated trial:

Example: stock of 1000 pants with 10% defects

Draw 15 times a pant at random

X = # of pants with a defect

We get X ∼ Bin(15, 1/10)
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Binomial random variable (3)
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Figure: Pmf for Bin(6; 0.5). x-axis: k. y -axis: P(X = k)
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Binomial random variable (4)
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Figure: Pmf for Bin(30; 0.5). x-axis: k. y -axis: P(X = k)
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Computation for GX

Generating function for Bernoulli: If Y ∼ B(p) then

GY (s) = (1− p) + p s

Decomposition of Binomial: If X ∼ Bin(n, p) one can write

X =
n∑

i=1

Yi , with Yi i.i.d, Yi ∼ B(p)

Computing GX : We get

GX (s) =
n∏

i=1

GYi
(s) = [(1− p) + p s]n
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Joint generating functions

Let

X1,X2 random variables

X1,X2 take values in Z
Then the pgf for (X1,X2) is

GX1,X2(s1, s2) = E
[
sX1
1 sX2

2

]

Definition 7.
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Characterization of independence

Let

X1,X2 random variables

GX1,X2 the corresponding pgf

Then we have

X1 ⊥⊥ X2 ⇐⇒ GX1,X2(s1, s2) = GX1(s1)GX2(s2) for all s1, s2

Theorem 8.
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Definition of random walk

Let

X1, . . . ,Xn Bernoulli random variables with values ±1,

P(Xi = 1) = p, P(Xi = −1) = 1− p

The Xi ’s are independent

We set S0 = 0 and

Sn =
n∑

i=1

Xi

Then S is called simple random walk

Definition 9.
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Symmetric random walk

Let

X1, . . . ,Xn Bernoulli random variables with values ±1,

P(Xi = 1) =
1

2
, P(Xi = −1) =

1

2

The Xi ’s are independent

We set S0 = 0 and

Sn =
n∑

i=1

Xi

Then S is called symmetric random walk

Definition 10.
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Illustration: 30 steps of a random walk

Samy T. (Purdue) Generating functions Stochastic processes 38 / 90



Illustration: chaotic path (Brownian motion)
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Questions about random walks

Main questions

1 Does the walk Sn go to ∞ when n → ∞?

2 Does it return to 0 after n = 0?

3 How often does it return to 0?

4 What is the range of Sn(ω)?

Methodologies to answer those questions

1 Elementary methods based on generating functions

2 Later: Markov chain methods

3 Also useful: martingale methods
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Notation (1)

Return time to 0: We set T0 = ∞ if there is no return to 0, and

T0 = inf {n > 0; Sn = 0}

Probability to be at origin after n steps: We set

p0(n) = P(Sn = 0)

Probability that 1st return occurs after n steps: Define

f0(n) = P(T0 = n) = P(S1 ̸= 0, . . . , Sn−1 ̸= 0, Sn = 0)
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Notation (2)

Generating functions: We set

P0(s) =
∞∑
n=0

p0(n)s
n , F0(s) =

∞∑
n=1

f0(n)s
n

Probabilistic interpretation: We have

F0(s) = E
[
sT0
]

Warning: T0 is a defective random variable. Thus we have

sT0 = 0 if T0 = ∞ if s ∈ [0, 1)

This is also valid as s ↗ 1 (hence ”1∞ = 0” here)

Thus F0(1) = P(T0 < ∞)
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Computing P0 and F0

Let Sn be the random walk with parameters p and q = 1 − p.
Then

1 P0 and F0 satisfy

P0(s) = 1 + P0(s)F0(s)

2 P0 verifies

P0(s) =
1

(1− 4pqs2)1/2

3 F0 is given by

F0(s) = 1−
(
1− 4pqs2

)1/2

Theorem 11.
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Proof of Theorem 11 (1)

Events: We set

A = (Sn = 0), Bk = (T0 = k)

Decomposition for A: We have

A = A ∩

(
n⋃

k=1

Bk

)
=

n⋃
k=1

(A ∩ Bk)

Decomposition for P(A): We get

P(A) =
n∑

k=1

P (A ∩ Bk) =
n∑

k=1

P (A|Bk) P(Bk) (1)
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Proof of Theorem 11 (2)

Convolution relation: Equation (1) can be read as

p0(n) =
n∑

k=1

p0(n − k)f0(k), for n ≥ 1, and p0(0) = 1

Expression with generating functions: We get

P0(s) = 1 + P0(s)F0(s)
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Proof of Theorem 11 (3)

Computing p0(n): We have

1 For n odd,
p0(n) = 0

2 For n even, one argue that
▶ (Sn = 0) ⇐⇒ equal # steps up and steps down
▶ There is

( n
n/2

)
ways to choose the up steps

▶ Probability of each sequence leading to 0: (p q)n/2

Thus for n even we have

p0(n) = P(Sn = 0) =

(
n

n/2

)
(p q)n/2
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Proof of Theorem 11 (4)
First expression for P0: We have found

P0(n) =
∞∑

m=0

(
2m

m

)
(p q)ms2m =

∞∑
m=0

(2m)!

(m!)2
(p q s2)m

A binomial series: We have

1

(1 + x)1/2
=

∞∑
m=0

(−1)m(2m)!

4m(m!)2
xm =

∞∑
m=0

(2m)!

(m!)2

(
−x

4

)m
Second expression for P0: We get

P0(s) =
1

(1− 4pqs2)1/2
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Proof of Theorem 11 (5)

Summary: We have obtained

P0(s) = 1 + P0(s)F0(s)

P0(s) =
1

(1− 4pqs2)1/2

Conclusion: We easily get

F0(s) = 1−
(
1− 4pqs2

)1/2
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Information on T0

Recall that
T0 = inf {n > 0; Sn = 0}

Then

1 We have
P(T0 < ∞) = 1− |p − q|

2 In particular T0 < ∞ almost surely iff p = q = 1
2

3 If p = 1
2
, then

E[T0] = ∞

Proposition 12.
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Proof of Proposition 12 (1)
Expression for F0: We have seen

F0(s) = 1−
(
1− 4pqs2

)1/2
Expression for P(T0 < ∞): We have also seen that

P(T0 < ∞) = F0(1)

Hence

P(T0 < ∞) = F0(1)

= 1− (1− 4pq)1/2

= 1− |2p − 1|
= 1− |p − q|

Samy T. (Purdue) Generating functions Stochastic processes 51 / 90



Proof of Proposition 12 (2)
F0 for p = 1/2: When p = q = 1

2
we have

F0(s) = 1−
(
1− s2

)1/2
Expression for E[T0]: We have seen that

E[T0] = F ′
0(1)

Computation of F ′
0: We get

F ′
0(s) =

s

(1− s2)1/2

Conclusion: We have

E[T0] = F ′
0(1) = ∞
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Vocabulary

Persistent or recurrent: the random walk is said to be recurrent
↪→ iff P(T0 < ∞) = 1

Transient: the random walk is said to be transient
↪→ iff P(T0 < ∞) < 1

Summarizing our result: We have seen that

Random walk is persistent ⇐⇒ p = 1
2
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Visits to point r

The first time to visit r is defined by

Tr = inf {n > 0; Sn = r}

Then we set

fr (n) = P(Tr = n) = P(S1 ̸= r , . . . , Sn−1 ̸= r , Sn = r)

and

Fr (s) =
∞∑
n=1

fr (n)s
n

Definition 13.
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Generating function for Tr

For r ≥ 1 we have
Fr (s) = [F1(s)]

r

with

F1(s) =
1− (1− 4pqs2)

1/2

2q

Theorem 14.
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Proof of Theorem 14 (1)

Events: We set, for r > 1,

A = (Tr = n), Bk = (Tr−1 = n − k)

Decomposition for A: We have

A = A ∩

(
n−1⋃
k=1

Bk

)
=

n−1⋃
k=1

(A ∩ Bk)

Decomposition for P(A): We get

P(A) =
n−1∑
k=1

P (A ∩ Bk) =
n−1∑
k=1

P (A|Bk) P(Bk) (2)
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Proof of Theorem 14 (2)

Convolution relation: Equation (2) can be read as

fr (n) =
n−1∑
k=1

f1(k)fr−1(n − k), for n ≥ 1, and fr (0) = 0

Expression with generating functions: We get

Fr (s) = F1(s)Fr−1(s)

Conclusion for Fr : Iterating the above relation we get

Fr (s) = [F1(s)]
r
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Proof of Theorem 14 (3)
Conditioning on X1: For n > 1 we have

P(T1 = n) = P(T1 = n|X1 = 1)p + P(T1 = n|X1 = −1)q

= 0 + P (1st visit to 1 takes n − 1 steps| S0 = −1) q

= P(T2 = n − 1)q

Relation on pmf’s: We get, for n > 1

f1(n) = qf2(n − 1)

Relation on generating functions: Multiplying by sn we obtain

F1(s) = ps + sqF2(s)

= ps + sq (F1(s))
2
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Proof of Theorem 14 (4)

Recall: We have obtained

F1(s) = ps + sq (F1(s))
2

Expression for F1:
Solving for F1(s) in the quadratic equation we get

F1(s) =
1− (1− 4pqs2)

1/2

2q
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Visits to the upper half plane

Let Sn be the random walk
↪→ with parameters p and q = 1− p.

Then

P(At least one visit to the upper half plane) = min

(
1,

p

q

)

Proposition 15.
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Proof of Proposition 16
Notation: Set

A = At least one visit to the upper half plane

Expression with generating function: We have

P(A) = P(T1 < ∞)

= F1(1)

=
1− |p − q|

2q

Conclusion: Separating cases p > q and p ≤ q we get

P(A) = min

(
1,

p

q

)
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Hitting time theorem

Let

Sn be the random walk with parameters p and q = 1− p

b ∈ Z∗ and n ≥ 1

Tb = inf {n > 0; Sn = b}

Then

P(Tb = n) =
|b|
n
P(Sb = n)

Theorem 16.
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Model

Model for population evolution:

Zn ≡ # individuals of n-th generation

At n-th generation: each member gives birth
↪→ To a # individuals of (n + 1)-th generation

Family size: random variable
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Assumptions on the model

Main hypotheses:

1 Family sizes form collection of ⊥⊥ random variables

2 Family sizes have same pmf f
↪→ with generating function G

3 Z0 = 1
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Generating functions for random sums

Let

{Xj ; j ≥ 1} sequence of i.i.d random variables

GX ≡ common generating function

N random variable, with N ⊥⊥ (Xj)j≥1 and N ∈ {0, 1, . . .}
GN ≡ generating function for N

Z =
∑N

j=1 Xj

Then
GZ (s) = GN(GX (s))

Theorem 17.
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Proof of Theorem 17
Computation: We have

GZ (s) = E[sZ ]

=
∞∑
n=0

E
[
sZ |N = n

]
P(N = n)

=
∞∑
n=0

E
[
s
∑N

j=1 Xj |N = n
]
P(N = n)

=
∞∑
n=0

E
[
s
∑n

j=1 Xj

]
P(N = n)

=
∞∑
n=0

(GX (s))
n fN(n)

= GN(GX (s))
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Generating function for the branching process

For the branching process, recall that

Zn = # individuals of n-th generation

G = generating function for the offspring f

We set
Gn(s) = E

[
sZn
]

Then
Gm+n(s) = Gm(Gn(s)) = Gn(Gm(s))

Thus
Gn(s) = G ◦(n)(s)

Theorem 18.
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Proof of Theorem 18 (1)

Decomposition of Zn+m: Write

Zn+m = Y1 + · · ·+ YZm

=
Zm∑
j=1

Yj ,

where

Yj = # individuals in generation (n +m) which stem
from individual j in m-th generation
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Proof of Theorem 18 (2)

Recall:

Zn+m =
Zm∑
j=1

Yj

Information on the random variables Yj :

Yj ’s are independent

Yj ’s are independent of Zm

Yj
(d)
= Zn

Application of Theorem 17:

Gm+n(s) = Gm(GY1(s)) = Gm(Gn(s))
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Moments of Zn

For the branching process with offspring Z1 ∼ f set

µ = E[Z1], σ2 = Var(Z1)

Then
E[Zn] = µn

and

Var(Zn) =

{
n σ2 if µ = 1
σ2(µn−1)µn−1

µ−1
if µ ̸= 1

Proposition 19.

Samy T. (Purdue) Generating functions Stochastic processes 71 / 90



Proof of Proposition 19 (1)

Method of computation: We use

E[Zn] = G ′
n(1)

Recursive relation: Recall that

Gn(s) = G (Gn−1(s))
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Proof of Proposition 19 (2)

Recall: We have
Gn(s) = G (Gn−1(s))

Differentiate: We have

G ′
n(s) = G ′ (Gn−1(s))G

′
n−1(s)

Thus at s = 1 we get

E[Zn] = G ′(1)E[Zn−1] = µE[Zn−1]

Conclusion: Since E[Z0] = 1, we get

E[Zn] = µn
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Proof of Proposition 19 (3)
Method for the variance: We use

E[Zn(Zn − 1)] = G ′′
n (1)

or
Var(Zn) = G ′′

n (1) + G ′
n(1)− (G ′

n(1))
2

Recursive relation: We differentiate twice the relation

Gn(s) = G (Gn−1(s))

We get a linear recursion (to be solved)

G ′′
n (1) = G ′′(1)

(
G ′
n−1(1)

)2
+ G ′(1)G ′′

n−1(1)

=
(
σ2 + µ(µ− 1)

)
µ2(n−1) + µG ′′

n−1(1)
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Negative binomial random variable (1)

Notation:

X ∼ Nbin(r , p), for r ∈ N∗, p ∈ (0, 1)

State space:

{0, 1, 2 . . .}

Pmf:

P(X = k) =

(
k + r − 1

k

)
pr qk , k ≥ 0

Expected value, variance and pgf:

E[X ] =
r q

p
, Var(X ) =

r q

p2
, GX (s) =

(
p

1− (1− p)s

)r
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Negative binomial random variable (2)

Use:

Independent trials, with P(success) = p

X = # failures until r successes

Justification:

(X = k)
=

((r − 1) successes in (k + r − 1) 1st trials)
∩ ((k + r)-th trial is a success)

Thus

P(X = k) =

(
k − 1

r − 1

)
pr qk
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Negative binomial random variable (3)
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Negative binomial random variable for r = 1

Notation:

X ∼ Nbin(1, p), for r ∈ N∗, p ∈ (0, 1)

State space:

{0, 1, 2 . . .}

Pmf:
P(X = k) = p qk , k ≥ 0

Expected value, variance and pgf:

E[X ] =
q

p
, Var(X ) =

q

p2
, GX (s) =

p

1− (1− p)s
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Branching with negative binomial offspring

For the branching process with Z1 ∼ Nbin(1, p) we have

1 The generating function Gn is given by

Gn(s) =

{
n−(n−1)s
n+1−ns

if p = 1
2

q(pn−qn)−ps(pn−1−qn−1)
pn+1−qn+1−ps(pn−qn)

if p ̸= 1
2

2 The probability of extinction is

P(Ultimate extinction) =

{
1 if p ≤ 1

2
q
p

if p > 1
2

Proposition 20.
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Proof of Proposition 20 (1)

Pgf for Z1: Since Z1 ∼ Nbin(1, p) we have

GZ1(s) =
p

1− (1− p)s

Expression for Gn: One can check that

G (Gn(s)) = Gn+1(s)
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Proof of Proposition 20 (2)

Ultimate extinction: We set

A = (Ultimate extinction occurs)

Then
A =

⋃
n≥1

An, with An = (Zn = 0)

P(A) as a limit: We have

An ⊂ An+1 =⇒ P(A) = lim
n→∞

P(An)
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Proof of Proposition 20 (3)

Expression for P(An): We have

P(An) = Gn(0) =

{
n

n+1
if p = 1

2
q(pn−qn)
pn+1−qn+1 if p ̸= 1

2

Expression for P(A): We obtain

P(A) = lim
n→∞

P(An) =

{
1 if p ≤ 1

2
q
p

if p > 1
2
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Ultimate extinction in the general case

Consider a branching process with

Z1 ∼ f , f with pgf G

µ = E[Z1] and σ2 = Var(Z1)

Let

η ≡ smallest non-negative root of s = G (s)

Then

1 P(Ultimate extinction) = η

2 η = 1 if µ < 1

3 η < 1 if µ > 1

4 η = 1 if µ = 1 and σ2 > 0

Theorem 21.
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Galton-Watson process

Historical facts:

Francis Galton proposed Theorem 21 as a problem in 1869

Galton was interested in survival of family names

Problem solved by Watson in 1874

Watson’s solution used a method still presented today

{Zn; n ≥ 0} is often referred to as Galton-Watson process
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Francis Galton: the bright side

Some facts about Galton:

Lifespan: 1822-1911, in England

Polymath

First use of stats in surveys

Founded psychometry

Founded meteorology

Invented Galton whistle

Was Darwin’s cousin
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Francis Galton: the dark side

Uneasy facts about Galton:

Founded eugenics
↪→ Twist on Darwin’s theory

Coined the term eugenics

”Nature vs nurture”

Very controversial views on race

UCL removed his name in 2020
↪→ From a large lecture room
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Proof of Theorem 21 (1)

Ultimate extinction: Recall that we have set

A = (Ultimate extinction occurs)

Then
A =

⋃
n≥1

An, with An = (Zn = 0)

P(A) as a limit: We have An ⊂ An+1. Thus

ηn ≡ P(An) is ↗ , and P(A) = limn→∞ ηn
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Proof of Theorem 21 (2)
Claim when µ > 1:

G (0) ∈ [0, 1) , G ′(0) ∈ [0, 1) , G ′(1) > 1 , G convex on [0, 1]
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Proof of Theorem 21 (3)

Claim G (0) ∈ [0, 1): We have

G (0) = P(Z1 = 0) < 1 (otherwise trivial extinction)

Claim G ′(0) ∈ [0, 1): Write

G ′(0) = P(Z1 = 1) < 1 (or trivial offspring = 1)

Claim G ′(1) > 1: One argues

G ′(1) = µ > 1

Claim G convex on [0, 1]: We compute

G ′′(s) = E
[
Z1(Z1 − 1)sZ1−2

]
≥ 0
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Proof of Theorem 21 (4)

Conclusion: Follows classical lines for sequences

ηn+1 = G (ηn) =⇒ lim
n→∞

ηn = η
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