Generating functions and their applications

Samy Tindel

Purdue University
Introduction to Stochastic Processes - MA 532

Mostly taken from Probability and Random Processes by Grimmett-Stirzaker

PURDUE

Outline

(1) Generating functions
(2) Random walks
(3) Branching processes

Outline

(1) Generating functions

(2) Random walks

(3) Branching processes

Defining generating functions

Definition 1.

Let

- $a=\left\{a_{i} ; i \geq 0\right\}$ sequence
- $s \in \mathbb{R}$

Then the generating function of a is

$$
G_{a}(s)=\sum_{i=0}^{\infty} a_{i} s^{i}
$$

provided the series converges

De Moivre's series

Sequence: We consider $\theta \in[0,2 \pi]$ and

$$
a_{n}=e^{\imath n \theta}=[\cos (\theta)+\imath \sin (\theta)]^{n}
$$

Generating function: Defined by

$$
G_{a}(s)=\sum_{n=0}^{\infty} a_{n} s^{n}=\sum_{n=0}^{\infty} e^{2 n \theta} s^{n}
$$

Computation of the generating function: For $|s|<1$ we get

$$
G_{a}(s)=\frac{1}{1-s e^{e \theta}}
$$

Convolution

Definition 2.

Let

- $a=\left\{a_{i} ; i \geq 0\right\}$ and $b=\left\{b_{i} ; i \geq 0\right\}$ sequences
- c sequence defined by

$$
c_{n}=\sum_{i=0}^{n} a_{i} b_{n-i}
$$

Then we denote

$$
c=a * b
$$

Convolution and generating functions

Proposition 3.

Let

- $a=\left\{a_{i} ; i \geq 0\right\}$ and $b=\left\{b_{i} ; i \geq 0\right\}$ sequences
- $c=a * b$

Then

$$
G_{c}(s)=G_{a}(s) G_{b}(s)
$$

Proof of Proposition 3

Computation from the definition of G_{c} : We have

$$
\begin{aligned}
G_{c}(s) & =\sum_{n=0}^{\infty} c_{n} s^{n} \\
& =\sum_{n=0}^{\infty}\left(\sum_{i=0}^{n} a_{i} b_{n-i} s^{n}\right. \\
& =\sum_{n=0}^{\infty} \sum_{i=0}^{n} a_{i} s^{i} b_{n-i} s^{n-i} \\
& =\sum_{i=0}^{\infty} \sum_{n=i}^{\infty} a_{i} s^{i} b_{n-i} s^{n-i} \\
& =G_{a}(s) G_{b}(s)
\end{aligned}
$$

Poisson random variable (1)

Notation:

$$
\mathcal{P}(\lambda) \text { for } \lambda \in \mathbb{R}_{+}
$$

State space:

$$
E=\mathbb{N} \cup\{0\}
$$

Pmf:

$$
\mathbf{P}(X=k)=e^{-\lambda} \frac{\lambda^{k}}{k!}, \quad k \geq 0
$$

Expected value, variance and pgf:

$$
\mathbf{E}[X]=\lambda, \quad \operatorname{Var}(X)=\lambda, \quad G_{X}(s)=\exp (\lambda(s-1))
$$

Poisson random variable (2)

Use (examples):

- \# customers getting into a shop from 2 pm to 5 pm
- \# buses stopping at a bus stop in a period of 35 mn
- \# jobs reaching a server from 12am to 6am

Empirical rule:
If $n \rightarrow \infty, p \rightarrow 0$ and $n p \rightarrow \lambda$, we approximate $\operatorname{Bin}(n, p)$ by $\mathcal{P}(\lambda)$. This is usually applied for

$$
p \leq 0.1 \text { and } n p \leq 5
$$

Poisson random variable (3)

Figure: Pmf of $\mathcal{P}(2)$. x-axis: k. y-axis: $\mathbf{P}(X=k)$

Poisson random variable (4)

Figure: Pmf of $\mathcal{P}(5)$. x-axis: k. y-axis: $\mathbf{P}(X=k)$

Siméon Poisson

Some facts about Poisson:

- Lifespan: 1781-1840, in \simeq Paris
- Engineer, Physicist and Mathematician
- Breakthroughs in electromagnetism
- Contributions in partial diff. eq celestial mechanics, Fourier series
- Marginal contributions in probability

POISBDN .

A quote by Poisson:
Life is good for only two things: doing mathematics and teaching it!!

Sum of 2 Poisson random variables (1)

Question: Consider

- $X \sim \mathcal{P}(\lambda)$, thus $f_{X}(i)=e^{-\lambda \frac{\lambda^{i}}{i!}}$
- $Y \sim \mathcal{P}(\mu)$, thus $f_{Y}(i)=e^{-\mu \frac{\mu^{i}}{i!}}$
- $X \Perp Y$

What is the distribution of $Z=X+Y$?

Sum of 2 Poisson random variables (2)

Pmf for Z : We know that

$$
f_{Z}=f_{X} * f_{Y}
$$

Generating function for Z : We get

$$
\begin{aligned}
G_{f_{z}}(s) & =G_{f_{x}}(s) G_{f_{y}}(s) \\
& =\exp ((\lambda+\mu)(s-1))
\end{aligned}
$$

Conclusion:

$$
Z \sim \mathcal{P}(\lambda+\mu)
$$

Probability generating functions

Definition 4.

Let

- X random variable with values in \mathbb{Z}
- $f_{X} \operatorname{pmf}$ of X

We set

$$
G_{X}(s)=\mathbf{E}\left[s^{X}\right]=G_{f_{X}}(s)
$$

Properties of the generating function (1)

Some properties:
(1) Convergence: There exists $R \geq 0$ such that $G_{X}(s)$

- Converges absolutely if $|s|<R$
- Diverges if $|s|>R$
- The sum is uniformly convergent on $\left\{s ;|s|<R^{\prime}\right\}$ if $R^{\prime}<R$
(2) Differentiation: One can differentiate term by term at s \hookrightarrow such that $|s|<R$

Properties of the generating function (2)

Some more properties:
(3) Uniqueness: Assume

- $G_{a}(s)=G_{b}(s)$ for $|s|<R^{\prime} \leq R$

Then

$$
\left(a_{n}\right)_{n \geq 0}=\left(b_{n}\right)_{n \geq 0}, \quad \text { and } \quad a_{n}=\frac{1}{n!} G_{a}^{(n)}(0)
$$

(4) Abel theorem: Assume

- $a_{i} \geq 0$
- $G_{a}(s)<\infty$ for $|s|<1$

Then

$$
\lim _{s \not \subset 1} G_{a}(s)=\sum_{i=0}^{\infty} a_{i}
$$

Bernoulli random variable (1)

Notation:

$$
X \sim \mathcal{B}(p) \text { with } p \in(0,1)
$$

State space:

$$
\{0,1\}
$$

Pmf:

$$
\mathbf{P}(X=0)=1-p, \quad \mathbf{P}(X=1)=p
$$

Expected value, variance, generating function:

$$
\mathbf{E}[X]=p, \quad \operatorname{Var}(X)=p(1-p), \quad G_{X}(s)=(1-p)+p s
$$

Bernoulli random variable (2)

Use 1, success in a binary game:

- Example 1: coin tossing
- $X=1$ if $\mathrm{H}, X=0$ if T
- We get $X \sim \mathcal{B}(1 / 2)$
- Example 2: dice rolling
- $X=1$ if outcome $=3, X=0$ otherwise
- We get $X \sim \mathcal{B}(1 / 6)$

Use 2, answer yes/no in a poll

- $X=1$ if a person feels optimistic about the future
- $X=0$ otherwise
- We get $X \sim \mathcal{B}(p)$, with unknown p

Jacob Bernoulli

Some facts about Bernoulli:

- Lifespan: 1654-1705, in Switzerland
- Discovers constant e
- Establishes divergence of $\sum \frac{1}{n}$
- Contributions in diff. eq
- First law of large numbers
- Bernoulli:
family of 8 prominent mathematicians
- Fierce math fights between brothers

Geometric random variable

Notation:

$$
X \sim \mathcal{G}(p), \quad \text { for } p \in(0,1)
$$

State space:

$$
E=\mathbb{N}=\{1,2,3, \ldots\}
$$

Pmf:

$$
\mathbf{P}(X=k)=p(1-p)^{k-1}, \quad k \geq 1
$$

Expected value, variance and generating function:

$$
\mathbf{E}[X]=\frac{1}{p}, \quad \operatorname{Var}(X)=\frac{1-p}{p^{2}}, \quad G_{X}(s)=\frac{p s}{1-s(1-p)}
$$

Geometric random variable (2)

Use:

- Independent trials, with \mathbf{P} (success) $=p$
- $X=\#$ trials until first success

Example: dice rolling

- Set $X=1$ st roll for which outcome $=6$
- We have $X \sim \mathcal{G}(1 / 6)$

Computing some probabilities for the example:

$$
\begin{aligned}
& \mathbf{P}(X=5)=\left(\frac{5}{6}\right)^{4} \frac{1}{6} \simeq 0.08 \\
& \mathbf{P}(X \geq 7)=\left(\frac{5}{6}\right)^{6} \simeq 0.33
\end{aligned}
$$

Geometric random variable (3)

Computation of $\mathbf{E}[X]$: Set $q=1-p$. Then

$$
\begin{aligned}
\mathbf{E}[X] & =\sum_{i=1}^{\infty} i q^{i-1} p \\
& =\sum_{i=1}^{\infty}(i-1) q^{i-1} p+\sum_{i=1}^{\infty} q^{i-1} p \\
& =q \mathbf{E}[X]+1
\end{aligned}
$$

Conclusion:

$$
\mathrm{E}[X]=\frac{1}{p}
$$

Generating function and moments

Theorem 5.

Let X be a random variable with generating function G_{X}. Then
(1) $\mathrm{E}[X]=G^{\prime}(1)$
(2) $\mathrm{E}[X(X-1) \cdots(X-k+1)]=G_{X}^{(k)}(1)$

Remark: If the radius of convergence for G_{X} is 1 , then

$$
G_{X}^{(k)}(1)=\lim _{s \neq 1} G_{X}^{(k)}(s)
$$

Computing moments with generating functions

Situation: Consider $p \in(0,1)$ and

$$
X \sim \mathcal{G}(p)
$$

Derivatives of G_{X} : We find

$$
\begin{aligned}
G_{X}^{\prime}(s) & =\frac{p}{(1-(1-p) s)^{2}} \\
G_{X}^{\prime \prime}(s) & =\frac{2 p(1-p)}{(1-(1-p) s)^{3}}
\end{aligned}
$$

Moments: We get

$$
\mathbf{E}[X]=\frac{1}{p}, \quad \operatorname{Var}(X)=\frac{1-p}{p^{2}}
$$

Generating function for a sum

Theorem 6.

Let

- X, Y random variables
- $X \Perp Y$

Then

$$
G_{X+Y}(s)=G_{X}(s) G_{Y}(s)
$$

Binomial random variable (1)

Notation:

$$
X \sim \operatorname{Bin}(n, p), \text { for } n \geq 1, p \in(0,1)
$$

State space:

$$
\{0,1, \ldots, n\}
$$

Pmf:

$$
\mathbf{P}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad 0 \leq k \leq n
$$

Expected value, variance and generating function:

$$
\mathbf{E}[X]=n p, \quad \operatorname{Var}(X)=n p(1-p), \quad G_{X}(s)=[(1-p)+p s]^{n}
$$

Binomial random variable (2)

Use 1, Number of successes in a Bernoulli trial:

- Example: Roll a dice 9 times.
- $X=\#$ of 3 obtained
- We get $X \sim \operatorname{Bin}(9,1 / 6)$
- $\mathbf{P}(X=2)=0.28$

Use 2: Counting a feature in a repeated trial:

- Example: stock of 1000 pants with 10% defects
- Draw 15 times a pant at random
- $X=\#$ of pants with a defect
- We get $X \sim \operatorname{Bin}(15,1 / 10)$

Binomial random variable (3)

Figure: Pmf for $\operatorname{Bin}(6 ; 0.5)$. x-axis: k. y-axis: $\mathbf{P}(X=k)$

Binomial random variable (4)

Figure: Pmf for $\operatorname{Bin}(30 ; 0.5)$. x-axis: k. y-axis: $\mathbf{P}(X=k)$

Computation for G_{X}

Generating function for Bernoulli: If $Y \sim \mathcal{B}(p)$ then

$$
G_{Y}(s)=(1-p)+p s
$$

Decomposition of Binomial: If $X \sim \operatorname{Bin}(n, p)$ one can write

$$
X=\sum_{i=1}^{n} Y_{i}, \quad \text { with } \quad Y_{i} \text { i.i.d, } Y_{i} \sim \mathcal{B}(p)
$$

Computing G_{X} : We get

$$
G_{X}(s)=\prod_{i=1}^{n} G_{Y_{i}}(s)=[(1-p)+p s]^{n}
$$

Joint generating functions

Definition 7.

Let

- X_{1}, X_{2} random variables
- X_{1}, X_{2} take values in \mathbb{Z}

Then the pgf for $\left(X_{1}, X_{2}\right)$ is

$$
G_{X_{1}, X_{2}}\left(s_{1}, s_{2}\right)=\mathbf{E}\left[s_{1}^{X_{1}} s_{2}^{X_{2}}\right]
$$

Characterization of independence

Theorem 8.

Let

- X_{1}, X_{2} random variables
- $G_{X_{1}, X_{2}}$ the corresponding pgf

Then we have

$$
X_{1} \Perp X_{2} \Longleftrightarrow G_{X_{1}, X_{2}}\left(s_{1}, s_{2}\right)=G_{X_{1}}\left(s_{1}\right) G_{X_{2}}\left(s_{2}\right) \text { for all } s_{1}, s_{2}
$$

Outline

(1) Generating functions

(2) Random walks

(3) Branching processes

Definition of random walk

Definition 9.

Let

- X_{1}, \ldots, X_{n} Bernoulli random variables with values ± 1,

$$
\mathbf{P}\left(X_{i}=1\right)=p, \quad \mathbf{P}\left(X_{i}=-1\right)=1-p
$$

- The X_{i} 's are independent

We set $S_{0}=0$ and

$$
S_{n}=\sum_{i=1}^{n} X_{i}
$$

Then S is called simple random walk

Symmetric random walk

Definition 10.

Let

- X_{1}, \ldots, X_{n} Bernoulli random variables with values ± 1,

$$
\mathbf{P}\left(X_{i}=1\right)=\frac{1}{2}, \quad \mathbf{P}\left(X_{i}=-1\right)=\frac{1}{2}
$$

- The X_{i} 's are independent

We set $S_{0}=0$ and

$$
S_{n}=\sum_{i=1}^{n} X_{i}
$$

Then S is called symmetric random walk

Illustration: 30 steps of a random walk

Simple Random Walk n=30

Illustration: chaotic path (Brownian motion)

Illustration: random path (Brownian motion)

Questions about random walks

Main questions
(1) Does the walk S_{n} go to ∞ when $n \rightarrow \infty$?
(2) Does it return to 0 after $n=0$?
(3) How often does it return to 0 ?
(9) What is the range of $S_{n}(\omega)$?

Methodologies to answer those questions
(1) Elementary methods based on generating functions
(2) Later: Markov chain methods
(3) Also useful: martingale methods

Notation (1)

Return time to 0 : We set $T_{0}=\infty$ if there is no return to 0 , and

$$
T_{0}=\inf \left\{n>0 ; S_{n}=0\right\}
$$

Probability to be at origin after n steps: We set

$$
p_{0}(n)=\mathbf{P}\left(S_{n}=0\right)
$$

Probability that 1 st return occurs after n steps: Define

$$
f_{0}(n)=\mathbf{P}\left(T_{0}=n\right)=\mathbf{P}\left(S_{1} \neq 0, \ldots, S_{n-1} \neq 0, S_{n}=0\right)
$$

Notation (2)

Generating functions: We set

$$
P_{0}(s)=\sum_{n=0}^{\infty} p_{0}(n) s^{n}, \quad F_{0}(s)=\sum_{n=1}^{\infty} f_{0}(n) s^{n}
$$

Probabilistic interpretation: We have

$$
F_{0}(s)=\mathbf{E}\left[s^{T_{0}}\right]
$$

Warning: T_{0} is a defective random variable. Thus we have

- $s^{T_{0}}=0$ if $T_{0}=\infty$ if $s \in[0,1)$
- This is also valid as $s \nearrow 1$ (hence " $1^{\infty}=0$ " here)
- Thus $F_{0}(1)=\mathbf{P}\left(T_{0}<\infty\right)$

Computing P_{0} and F_{0}

Theorem 11.

Let S_{n} be the random walk with parameters p and $q=1-p$. Then
(1) P_{0} and F_{0} satisfy

$$
P_{0}(s)=1+P_{0}(s) F_{0}(s)
$$

(2) P_{0} verifies

$$
P_{0}(s)=\frac{1}{\left(1-4 p q s^{2}\right)^{1 / 2}}
$$

(3) F_{0} is given by

$$
F_{0}(s)=1-\left(1-4 p q s^{2}\right)^{1 / 2}
$$

Proof of Theorem 11 (1)

Events: We set

$$
A=\left(S_{n}=0\right), \quad B_{k}=\left(T_{0}=k\right)
$$

Decomposition for A : We have

$$
A=A \cap\left(\bigcup_{k=1}^{n} B_{k}\right)=\bigcup_{k=1}^{n}\left(A \cap B_{k}\right)
$$

Decomposition for $\mathbf{P}(A)$: We get

$$
\begin{equation*}
\mathbf{P}(A)=\sum_{k=1}^{n} \mathbf{P}\left(A \cap B_{k}\right)=\sum_{k=1}^{n} \mathbf{P}\left(A \mid B_{k}\right) \mathbf{P}\left(B_{k}\right) \tag{1}
\end{equation*}
$$

Proof of Theorem 11 (2)

Convolution relation: Equation (1) can be read as

$$
p_{0}(n)=\sum_{k=1}^{n} p_{0}(n-k) f_{0}(k), \quad \text { for } \quad n \geq 1, \quad \text { and } \quad p_{0}(0)=1
$$

Expression with generating functions: We get

$$
P_{0}(s)=1+P_{0}(s) F_{0}(s)
$$

Proof of Theorem 11 (3)

Computing $p_{0}(n)$: We have
(1) For n odd,

$$
p_{0}(n)=0
$$

(2) For n even, one argue that

- $\left(S_{n}=0\right) \Longleftrightarrow$ equal \# steps up and steps down
- There is $\binom{n}{n / 2}$ ways to choose the up steps
- Probability of each sequence leading to $0:(p q)^{n / 2}$

Thus for n even we have

$$
p_{0}(n)=\mathbf{P}\left(S_{n}=0\right)=\binom{n}{n / 2}(p q)^{n / 2}
$$

Proof of Theorem 11 (4)

First expression for P_{0} : We have found

$$
P_{0}(n)=\sum_{m=0}^{\infty}\binom{2 m}{m}(p q)^{m} s^{2 m}=\sum_{m=0}^{\infty} \frac{(2 m)!}{(m!)^{2}}\left(p q s^{2}\right)^{m}
$$

A binomial series: We have

$$
\frac{1}{(1+x)^{1 / 2}}=\sum_{m=0}^{\infty} \frac{(-1)^{m}(2 m)!}{4^{m}(m!)^{2}} x^{m}=\sum_{m=0}^{\infty} \frac{(2 m)!}{(m!)^{2}}\left(-\frac{x}{4}\right)^{m}
$$

Second expression for P_{0} : We get

$$
P_{0}(s)=\frac{1}{\left(1-4 p q s^{2}\right)^{1 / 2}}
$$

Proof of Theorem 11 (5)

Summary: We have obtained

$$
\begin{aligned}
P_{0}(s) & =1+P_{0}(s) F_{0}(s) \\
P_{0}(s) & =\frac{1}{\left(1-4 p q s^{2}\right)^{1 / 2}}
\end{aligned}
$$

Conclusion: We easily get

$$
F_{0}(s)=1-\left(1-4 p q s^{2}\right)^{1 / 2}
$$

Information on T_{0}

Proposition 12.

Recall that

$$
T_{0}=\inf \left\{n>0 ; S_{n}=0\right\}
$$

Then
(1) We have

$$
\mathbf{P}\left(T_{0}<\infty\right)=1-|p-q|
$$

(2) In particular $T_{0}<\infty$ almost surely iff $p=q=\frac{1}{2}$
(3) If $p=\frac{1}{2}$, then

$$
\mathbf{E}\left[T_{0}\right]=\infty
$$

Proof of Proposition 12 (1)

Expression for F_{0} : We have seen

$$
F_{0}(s)=1-\left(1-4 p q s^{2}\right)^{1 / 2}
$$

Expression for $\mathbf{P}\left(T_{0}<\infty\right)$: We have also seen that

$$
\mathbf{P}\left(T_{0}<\infty\right)=F_{0}(1)
$$

Hence

$$
\begin{aligned}
\mathbf{P}\left(T_{0}<\infty\right) & =F_{0}(1) \\
& =1-(1-4 p q)^{1 / 2} \\
& =1-|2 p-1| \\
& =1-|p-q|
\end{aligned}
$$

Proof of Proposition 12 (2)

F_{0} for $p=1 / 2$: When $p=q=\frac{1}{2}$ we have

$$
F_{0}(s)=1-\left(1-s^{2}\right)^{1 / 2}
$$

Expression for $\mathbf{E}\left[T_{0}\right]$: We have seen that

$$
\mathbf{E}\left[T_{0}\right]=F_{0}^{\prime}(1)
$$

Computation of F_{0}^{\prime} : We get

$$
F_{0}^{\prime}(s)=\frac{s}{\left(1-s^{2}\right)^{1 / 2}}
$$

Conclusion: We have

$$
\mathbf{E}\left[T_{0}\right]=F_{0}^{\prime}(1)=\infty
$$

Vocabulary

Persistent or recurrent: the random walk is said to be recurrent \hookrightarrow iff $\mathbf{P}\left(T_{0}<\infty\right)=1$

Transient: the random walk is said to be transient
\hookrightarrow iff $\mathbf{P}\left(T_{0}<\infty\right)<1$
Summarizing our result: We have seen that
Random walk is persistent $\Longleftrightarrow p=\frac{1}{2}$

Visits to point r

Definition 13.

The first time to visit r is defined by

$$
T_{r}=\inf \left\{n>0 ; S_{n}=r\right\}
$$

Then we set

$$
f_{r}(n)=\mathbf{P}\left(T_{r}=n\right)=\mathbf{P}\left(S_{1} \neq r, \ldots, S_{n-1} \neq r, S_{n}=r\right)
$$

and

$$
F_{r}(s)=\sum_{n=1}^{\infty} f_{r}(n) s^{n}
$$

Generating function for T_{r}

Theorem 14.

For $r \geq 1$ we have

$$
F_{r}(s)=\left[F_{1}(s)\right]^{r}
$$

with

$$
F_{1}(s)=\frac{1-\left(1-4 p q s^{2}\right)^{1 / 2}}{2 q}
$$

Proof of Theorem 14 (1)

Events: We set, for $r>1$,

$$
A=\left(T_{r}=n\right), \quad B_{k}=\left(T_{r-1}=n-k\right)
$$

Decomposition for A : We have

$$
A=A \cap\left(\bigcup_{k=1}^{n-1} B_{k}\right)=\bigcup_{k=1}^{n-1}\left(A \cap B_{k}\right)
$$

Decomposition for $\mathbf{P}(A)$: We get

$$
\begin{equation*}
\mathbf{P}(A)=\sum_{k=1}^{n-1} \mathbf{P}\left(A \cap B_{k}\right)=\sum_{k=1}^{n-1} \mathbf{P}\left(A \mid B_{k}\right) \mathbf{P}\left(B_{k}\right) \tag{2}
\end{equation*}
$$

Proof of Theorem 14 (2)

Convolution relation: Equation (2) can be read as

$$
f_{r}(n)=\sum_{k=1}^{n-1} f_{1}(k) f_{r-1}(n-k), \quad \text { for } \quad n \geq 1, \quad \text { and } \quad f_{r}(0)=0
$$

Expression with generating functions: We get

$$
F_{r}(s)=F_{1}(s) F_{r-1}(s)
$$

Conclusion for F_{r} : Iterating the above relation we get

$$
F_{r}(s)=\left[F_{1}(s)\right]^{r}
$$

Proof of Theorem 14 (3)

Conditioning on X_{1} : For $n>1$ we have

$$
\begin{aligned}
\mathbf{P}\left(T_{1}=n\right) & =\mathbf{P}\left(T_{1}=n \mid X_{1}=1\right) p+\mathbf{P}\left(T_{1}=n \mid X_{1}=-1\right) q \\
& =0+\mathbf{P}\left(1 \text { st visit to } 1 \text { takes } n-1 \text { steps } \mid S_{0}=-1\right) q \\
& =\mathbf{P}\left(T_{2}=n-1\right) q
\end{aligned}
$$

Relation on pmf's: We get, for $n>1$

$$
f_{1}(n)=q f_{2}(n-1)
$$

Relation on generating functions: Multiplying by s^{n} we obtain

$$
\begin{aligned}
F_{1}(s) & =p s+s q F_{2}(s) \\
& =p s+s q\left(F_{1}(s)\right)^{2}
\end{aligned}
$$

Proof of Theorem 14 (4)

Recall: We have obtained

$$
F_{1}(s)=p s+s q\left(F_{1}(s)\right)^{2}
$$

Expression for F_{1} :
Solving for $F_{1}(s)$ in the quadratic equation we get

$$
F_{1}(s)=\frac{1-\left(1-4 p q s^{2}\right)^{1 / 2}}{2 q}
$$

Visits to the upper half plane

Proposition 15.

Let S_{n} be the random walk \hookrightarrow with parameters p and $q=1-p$.
Then
$\mathbf{P}($ At least one visit to the upper half plane $)=\min \left(1, \frac{p}{q}\right)$

Proof of Proposition 16

Notation: Set

$$
A=\text { At least one visit to the upper half plane }
$$

Expression with generating function: We have

$$
\begin{aligned}
\mathbf{P}(A) & =\mathbf{P}\left(T_{1}<\infty\right) \\
& =F_{1}(1) \\
& =\frac{1-|p-q|}{2 q}
\end{aligned}
$$

Conclusion: Separating cases $p>q$ and $p \leq q$ we get

$$
\mathbf{P}(A)=\min \left(1, \frac{p}{q}\right)
$$

Hitting time theorem

Theorem 16.

Let

- S_{n} be the random walk with parameters p and $q=1-p$
- $b \in \mathbb{Z}^{*}$ and $n \geq 1$
- $T_{b}=\inf \left\{n>0 ; S_{n}=b\right\}$

Then

$$
\mathbf{P}\left(T_{b}=n\right)=\frac{|b|}{n} \mathbf{P}\left(S_{b}=n\right)
$$

Outline

(1) Generating functions

(2) Random walks

(3) Branching processes

Model

Model for population evolution:

- $Z_{n} \equiv \#$ individuals of n-th generation
- At n-th generation: each member gives birth \hookrightarrow To a \# individuals of $(n+1)$-th generation
- Family size: random variable

Assumptions on the model

Main hypotheses:
(1) Family sizes form collection of \Perp random variables
(2) Family sizes have same pmf f
\hookrightarrow with generating function G
(3) $Z_{0}=1$

Generating functions for random sums

Theorem 17.

Let

- $\left\{X_{j} ; j \geq 1\right\}$ sequence of i.i.d random variables
- $G_{X} \equiv$ common generating function
- N random variable, with $N \Perp\left(X_{j}\right)_{j \geq 1}$ and $N \in\{0,1, \ldots\}$
- $G_{N} \equiv$ generating function for N
- $Z=\sum_{j=1}^{N} X_{j}$

Then

$$
G_{Z}(s)=G_{N}\left(G_{X}(s)\right)
$$

Proof of Theorem 17

Computation: We have

$$
\begin{aligned}
G_{Z}(s) & =\mathbf{E}\left[s^{Z}\right] \\
& =\sum_{n=0}^{\infty} \mathbf{E}\left[s^{Z} \mid N=n\right] \mathbf{P}(N=n) \\
& =\sum_{n=0}^{\infty} \mathbf{E}\left[s^{\sum_{j=1}^{N} x_{j}} \mid N=n\right] \mathbf{P}(N=n) \\
& =\sum_{n=0}^{\infty} \mathbf{E}\left[s^{\sum_{j=1}^{n} x_{j}}\right] \mathbf{P}(N=n) \\
& =\sum_{n=0}^{\infty}\left(G_{X}(s)\right)^{n} f_{N}(n) \\
& =G_{N}\left(G_{X}(s)\right)
\end{aligned}
$$

Generating function for the branching process

Theorem 18.

For the branching process, recall that

- $Z_{n}=\#$ individuals of n-th generation
- $G=$ generating function for the offspring f

We set

$$
G_{n}(s)=\mathbf{E}\left[s^{Z_{n}}\right]
$$

Then

$$
G_{m+n}(s)=G_{m}\left(G_{n}(s)\right)=G_{n}\left(G_{m}(s)\right)
$$

Thus

$$
G_{n}(s)=G^{\circ(n)}(s)
$$

Proof of Theorem 18 (1)

Decomposition of Z_{n+m} : Write

$$
\begin{aligned}
Z_{n+m} & =Y_{1}+\cdots+Y_{Z_{m}} \\
& =\sum_{j=1}^{Z_{m}} Y_{j}
\end{aligned}
$$

where

$$
\begin{gathered}
Y_{j}=\# \text { individuals in generation }(n+m) \text { which stem } \\
\text { from individual } j \text { in } m \text {-th generation }
\end{gathered}
$$

Proof of Theorem 18 (2)

Recall:

$$
Z_{n+m}=\sum_{j=1}^{Z_{m}} Y_{j}
$$

Information on the random variables Y_{j} :

- Y_{j} 's are independent
- Y_{j} 's are independent of Z_{m}
- $Y_{j} \stackrel{(d)}{=} Z_{n}$

Application of Theorem 17:

$$
G_{m+n}(s)=G_{m}\left(G_{Y_{1}}(s)\right)=G_{m}\left(G_{n}(s)\right)
$$

Moments of Z_{n}

Proposition 19.

For the branching process with offspring $Z_{1} \sim f$ set

$$
\mu=\mathbf{E}\left[Z_{1}\right], \quad \sigma^{2}=\operatorname{Var}\left(Z_{1}\right)
$$

Then

$$
\mathbf{E}\left[Z_{n}\right]=\mu^{n}
$$

and

$$
\operatorname{Var}\left(Z_{n}\right)= \begin{cases}n \sigma^{2} & \text { if } \mu=1 \\ \frac{\sigma^{2}\left(\mu^{n}-1\right) \mu^{n-1}}{\mu-1} & \text { if } \mu \neq 1\end{cases}
$$

Proof of Proposition 19 (1)

Method of computation: We use

$$
\mathrm{E}\left[Z_{n}\right]=G_{n}^{\prime}(1)
$$

Recursive relation: Recall that

$$
G_{n}(s)=G\left(G_{n-1}(s)\right)
$$

Proof of Proposition 19 (2)

Recall: We have

$$
G_{n}(s)=G\left(G_{n-1}(s)\right)
$$

Differentiate: We have

$$
G_{n}^{\prime}(s)=G^{\prime}\left(G_{n-1}(s)\right) G_{n-1}^{\prime}(s)
$$

Thus at $s=1$ we get

$$
\mathbf{E}\left[Z_{n}\right]=G^{\prime}(1) \mathbf{E}\left[Z_{n-1}\right]=\mu \mathbf{E}\left[Z_{n-1}\right]
$$

Conclusion: Since $\mathbf{E}\left[Z_{0}\right]=1$, we get

$$
\mathbf{E}\left[Z_{n}\right]=\mu^{n}
$$

Proof of Proposition 19 (3)

Method for the variance: We use

$$
\mathbf{E}\left[Z_{n}\left(Z_{n}-1\right)\right]=G_{n}^{\prime \prime}(1)
$$

or

$$
\operatorname{Var}\left(Z_{n}\right)=G_{n}^{\prime \prime}(1)+G_{n}^{\prime}(1)-\left(G_{n}^{\prime}(1)\right)^{2}
$$

Recursive relation: We differentiate twice the relation

$$
G_{n}(s)=G\left(G_{n-1}(s)\right)
$$

We get a linear recursion (to be solved)

$$
\begin{aligned}
G_{n}^{\prime \prime}(1) & =G^{\prime \prime}(1)\left(G_{n-1}^{\prime}(1)\right)^{2}+G^{\prime}(1) G_{n-1}^{\prime \prime}(1) \\
& =\left(\sigma^{2}+\mu(\mu-1)\right) \mu^{2(n-1)}+\mu G_{n-1}^{\prime \prime}(1)
\end{aligned}
$$

Negative binomial random variable (1)

Notation:

$$
X \sim \operatorname{Nbin}(r, p), \text { for } r \in \mathbb{N}^{*}, p \in(0,1)
$$

State space:

$$
\{0,1,2 \ldots\}
$$

Pmf:

$$
\mathbf{P}(X=k)=\binom{k+r-1}{k} p^{r} q^{k}, \quad k \geq 0
$$

Expected value, variance and pgf:

$$
\mathrm{E}[X]=\frac{r q}{p}, \quad \operatorname{Var}(X)=\frac{r q}{p^{2}}, \quad G_{X}(s)=\left(\frac{p}{1-(1-p) s}\right)^{r}
$$

Negative binomial random variable (2)

Use:

- Independent trials, with \mathbf{P} (success) $=p$
- $X=\#$ failures until r successes

Justification:

$$
\begin{gathered}
(X=k) \\
= \\
((r-1) \text { successes in }(k+r-1) 1 \text { st trials }) \\
\cap((k+r) \text {-th trial is a success })
\end{gathered}
$$

Thus

$$
\mathbf{P}(X=k)=\binom{k-1}{r-1} p^{r} q^{k}
$$

Negative binomial random variable (3)

Negative binomial random variable for $r=1$

Notation:

$$
X \sim \operatorname{Nbin}(1, p), \text { for } r \in \mathbb{N}^{*}, p \in(0,1)
$$

State space:

$$
\{0,1,2 \ldots\}
$$

Pmf:

$$
\mathbf{P}(X=k)=p q^{k}, \quad k \geq 0
$$

Expected value, variance and pgf:

$$
\mathbf{E}[X]=\frac{q}{p}, \quad \operatorname{Var}(X)=\frac{q}{p^{2}}, \quad G_{X}(s)=\frac{p}{1-(1-p) s}
$$

Branching with negative binomial offspring

Proposition 20.

For the branching process with $Z_{1} \sim \operatorname{Nbin}(1, p)$ we have
(1) The generating function G_{n} is given by

$$
G_{n}(s)= \begin{cases}\frac{n-(n-1) s}{n+1-n s} & \text { if } p=\frac{1}{2} \\ \frac{\left.q+p^{n}-q^{n}\right)-p s\left(p^{n-1}-q^{n-1}\right)}{p^{n+1}-q^{n+1}-p s\left(p^{n}-q^{n}\right)} & \text { if } p \neq \frac{1}{2}\end{cases}
$$

(2) The probability of extinction is

$$
\mathbf{P}(\text { Ultimate extinction })= \begin{cases}1 & \text { if } p \leq \frac{1}{2} \\ \frac{q}{p} & \text { if } p>\frac{1}{2}\end{cases}
$$

Proof of Proposition 20 (1)

Pgf for Z_{1} : Since $Z_{1} \sim \operatorname{Nbin}(1, p)$ we have

$$
G_{Z_{1}}(s)=\frac{p}{1-(1-p) s}
$$

Expression for G_{n} : One can check that

$$
G\left(G_{n}(s)\right)=G_{n+1}(s)
$$

Proof of Proposition 20 (2)

Ultimate extinction: We set

$$
A=\text { (Ultimate extinction occurs })
$$

Then

$$
A=\bigcup_{n \geq 1} A_{n}, \quad \text { with } \quad A_{n}=\left(Z_{n}=0\right)
$$

$\mathbf{P}(A)$ as a limit: We have

$$
A_{n} \subset A_{n+1} \Longrightarrow \mathbf{P}(A)=\lim _{n \rightarrow \infty} \mathbf{P}\left(A_{n}\right)
$$

Proof of Proposition 20 (3)

Expression for $\mathbf{P}\left(A_{n}\right)$: We have

$$
\mathbf{P}\left(A_{n}\right)=G_{n}(0)= \begin{cases}\frac{n}{n+1} & \text { if } p=\frac{1}{2} \\ \frac{q\left(p^{n}-q^{n}\right)}{p^{n+1}-q^{n+1}} & \text { if } p \neq \frac{1}{2}\end{cases}
$$

Expression for $\mathbf{P}(A)$: We obtain

$$
\mathbf{P}(A)=\lim _{n \rightarrow \infty} \mathbf{P}\left(A_{n}\right)= \begin{cases}1 & \text { if } p \leq \frac{1}{2} \\ \frac{q}{p} & \text { if } p>\frac{1}{2}\end{cases}
$$

Ultimate extinction in the general case

Theorem 21.

Consider a branching process with

- $Z_{1} \sim f, f$ with pgf G
- $\mu=\mathbf{E}\left[Z_{1}\right]$ and $\sigma^{2}=\operatorname{Var}\left(Z_{1}\right)$

Let

- $\eta \equiv$ smallest non-negative root of $s=G(s)$

Then
(1) $\mathbf{P}($ Ultimate extinction $)=\eta$
(2) $\eta=1$ if $\mu<1$
(3) $\eta<1$ if $\mu>1$
(9) $\eta=1$ if $\mu=1$ and $\sigma^{2}>0$

Galton-Watson process

Historical facts:

- Francis Galton proposed Theorem 21 as a problem in 1869
- Galton was interested in survival of family names
- Problem solved by Watson in 1874
- Watson's solution used a method still presented today
- $\left\{Z_{n} ; n \geq 0\right\}$ is often referred to as Galton-Watson process

Francis Galton: the bright side

Some facts about Galton:

- Lifespan: 1822-1911, in England
- Polymath
- First use of stats in surveys
- Founded psychometry
- Founded meteorology
- Invented Galton whistle
- Was Darwin's cousin

Francis Galton: the dark side

Uneasy facts about Galton:

- Founded eugenics
\hookrightarrow Twist on Darwin's theory
- Coined the term eugenics
- "Nature vs nurture"
- Very controversial views on race
- UCL removed his name in 2020
\hookrightarrow From a large lecture room

Proof of Theorem 21 (1)

Ultimate extinction: Recall that we have set

$$
A=\text { (Ultimate extinction occurs) }
$$

Then

$$
A=\bigcup_{n \geq 1} A_{n}, \quad \text { with } \quad A_{n}=\left(Z_{n}=0\right)
$$

$\mathbf{P}(A)$ as a limit: We have $A_{n} \subset A_{n+1}$. Thus

$$
\eta_{n} \equiv \mathbf{P}\left(A_{n}\right) \text { is } \nearrow, \quad \text { and } \quad \mathbf{P}(A)=\lim _{n \rightarrow \infty} \eta_{n}
$$

Proof of Theorem 21 (2)

Claim when $\mu>1$:

$$
G(0) \in[0,1), G^{\prime}(0) \in[0,1), G^{\prime}(1)>1, G \text { convex on }[0,1]
$$

Proof of Theorem 21 (3)

Claim $G(0) \in[0,1)$: We have

$$
G(0)=\mathbf{P}\left(Z_{1}=0\right)<1 \quad \text { (otherwise trivial extinction) }
$$

Claim $G^{\prime}(0) \in[0,1)$: Write

$$
G^{\prime}(0)=\mathbf{P}\left(Z_{1}=1\right)<1 \quad(\text { or trivial offspring }=1)
$$

Claim $G^{\prime}(1)>1$: One argues

$$
G^{\prime}(1)=\mu>1
$$

Claim G convex on $[0,1]$: We compute

$$
G^{\prime \prime}(s)=\mathbf{E}\left[Z_{1}\left(Z_{1}-1\right) s^{Z_{1}-2}\right] \geq 0
$$

Proof of Theorem 21 (4)

Conclusion: Follows classical lines for sequences

$$
\eta_{n+1}=G\left(\eta_{n}\right) \quad \Longrightarrow \quad \lim _{n \rightarrow \infty} \eta_{n}=\eta
$$

