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Defining generating functions

—~ Definition 1. N

Let
e a={a; i > 0} sequence
escR

Then the generating function of a is

Ga(s) = i ais',
i=0

provided the series converges

Samy T. (Purdue) Generating functions Stochastic processes 4/90



De Moivre's series
Sequence: We consider 6 € [0, 27] and
a, = € = [cos(6) + 2sin(6)]"

Generating function: Defined by

Ga(s) = Z a,s" = Z e sn

Computation of the generating function: For |s| < 1 we get

1
1 — se?

Ga(s) =
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Convolution

~ Definition 2. .

Let
@ a={a; i >0} and b= {b;; i > 0} sequences
@ c sequence defined by

n
Ch = E aibn—i
i=0

Then we denote
c=axb
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Convolution and generating functions

,—[Proposition 3.} \
Let
@ a={a; i >0} and b= {b;; i > 0} sequences
@ec=axb
Then
Ge(s) = Ga(s) Gp(s)

Samy T. (Purdue) Generating functions Stochastic processes 7/90



Proof of Proposition 3

Computation from the definition of G.: We have

Gc(s) = ic,,s"
n=0

o n

= Z ( a,-b,,_,-> s"
n=0 i=0
o0 n

= Z Z a;s' b, ;s"'

n=0 i=0

o0 oo
= E E a;s' b,_;js"'

i=0 n=i

= G,(s) Gp(s)
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Poisson random variable (1)

Notation:
P(A) for A € Ry

State space:

E =NU{0}
Pmf:
)\k
P(X:k):e*AF, k>0

Expected value, variance and pgf:

E[X] = A, Var(X) = A, Gx(s) = exp(A(s — 1))
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Poisson random variable (2)

Use (examples):
@ # customers getting into a shop from 2pm to 5pm
@ 7+ buses stopping at a bus stop in a period of 35mn

@ # jobs reaching a server from 12am to 6am

Empirical rule:
If n— 0o, p— 0 and np — A, we approximate Bin(n, p) by P(}\).
This is usually applied for

p<01 and np<5H
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Poisson random variable (3)
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Poisson random variable (4)
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Figure: Pmf of P(5). x-axis: k. y-axis: P(X = k)
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Siméon Poisson

Some facts about Poisson:

@ Lifespan: 1781-1840, in ~ Paris

@ Engineer, Physicist and Mathematician
@ Breakthroughs in electromagnetism

@ Contributions in partial diff. eq
celestial mechanics, Fourier series

@ Marginal contributions in probability

POISSON. 4{2‘(//,/&
g ot

A quote by Poisson:
Life is good for only two things: doing mathematics and teaching it!!
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Sum of 2 Poisson random variables (1)

Question: Consider
o X ~ P(N), thus fx(i) = e
o Y ~ P(u), thus fy(i) = e "L
e X 1Y

What is the distribution of Z = X + Y7
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Sum of 2 Poisson random variables (2)

Pmf for Z: We know that

fZ:fx*fy

Generating function for Z: We get

sz(s) = Gfx(s) ny(S)
= exp((A+p)(s—1))

Conclusion:
Z ~PA+p)
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Probability generating functions

~ Definition 4. .

Let
@ X random variable with values in Z
o fx pmf of X
We set
Gx(s) = E[s¥] = Gy (s)
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Properties of the generating function (1)

Some properties:
© Convergence: There exists R > 0 such that Gx(s)

» Converges absolutely if [s| < R
» Diverges if |s| > R
» The sum is uniformly convergent on {s; |s| < R’} if R' < R

@ Differentiation: One can differentiate term by term at s
— such that |s| < R
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Properties of the generating function (2)

Some more properties:
© Uniqueness: Assume
» Gy(s) = Gp(s) for |s| < R" <R
Then 1
(3n)nz0 = (bi)ozo, and 2, = —-GI(0)

@ Abel theorem: Assume

» 23>0
» Gi(s) < oo for |s| <1
Then
o
lim G,(s) = E aj
s/'1 -
i=0
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Bernoulli random variable (1)

Notation:
X ~ B(p) with p € (0,1)
State space:

{0,1}

Pmf:
P(X=0)=1-p, PX=1)=p

Expected value, variance, generating function:

E[X]=p, Var(X)=p(l—p), Gx(s)=(1—p)+ps
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Bernoulli random variable (2)

Use 1, success in a binary game:

@ Example 1: coin tossing
» X=1ifH X=0if T
» We get X ~ B(1/2)

@ Example 2: dice rolling

» X =1 if outcome = 3, X = 0 otherwise
» We get X ~ B(1/6)

Use 2, answer yes/no in a poll
e X =1 if a person feels optimistic about the future
e X = 0 otherwise

o We get X ~ B(p), with unknown p
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Jacob Bernoulli

Some facts about Bernoulli:

@ Lifespan: 1654-1705, in Switzerland
@ Discovers constant e

Establishes divergence of Z%
Contributions in diff. eq

First law of large numbers

Bernoulli:
family of 8 prominent mathematicians

@ Fierce math fights between brothers
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Geometric random variable

Notation:
X ~G(p), forpe(0,1)

State space:
E=N={1,2,3,...}

Pmf:
PX=Kk=p(1l-p)" k=1

Expected value, variance and generating function:

1 1—-p ps
E[X]= -, Var(X)= . Gx(s)=-—P°

p p? 1—-s(1-p)
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Geometric random variable (2)
Use:

@ Independent trials, with P(success) = p

@ X = # trials until first success

Example: dice rolling
@ Set X = 1st roll for which outcome = 6
e We have X ~ G(1/6)

Computing some probabilities for the example:

4
1
P(X=5) — (g) £~ 008

PX>7) — (2)6 ~ 033
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Geometric random variable (3)
Computation of E[X]: Set ¢ =1 — p. Then
EX] = > ig'p
i=1

_ Z(i_ 1)qi—1p+zqi—1p

i=1 i=1

= gE[X]+1

Conclusion: ]
E[X] ==~
[X] ;
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Generating function and moments

~ Theorem 5. \

Let X be a random variable with generating function Gx. Then
Q E[X]=G'(1)
@ EX(X—1)---(X—k+1)]=6¥(1)

Remark: If the radius of convergence for Gx is 1, then

Gx(1) = lim G(s)
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Computing moments with generating functions

Situation: Consider p € (0,1) and

X ~G(p)
Derivatives of Gx: We find
: p
) = T pep
" 2P(1 B P)
R R (D)

Moments: We get

E[X] = %, Var(X) =
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Generating function for a sum

~ Theorem 6. N

Let
@ X, Y random variables
e X 1Y
Then
\ Gx+v(s) = Gx(s)Gy(s) )
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Binomial random variable (1)
Notation:

X ~ Bin(n, p), forn>1, p€(0,1)

State space:

P(X =k) = (Z)pk(l—p)"‘k7 0<k<n

Expected value, variance and generating function:

E[X]=np,  Var(X)=np(l-p),  Gx(s)=[(1-p)+ps]
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Binomial random variable (2)

Use 1, Number of successes in a Bernoulli trial:
@ Example: Roll a dice 9 times.
e X = # of 3 obtained
o We get X ~ Bin(9,1/6)
e P(X=2)=0.28

Use 2: Counting a feature in a repeated trial:
@ Example: stock of 1000 pants with 10% defects
@ Draw 15 times a pant at random
@ X = # of pants with a defect
e We get X ~ Bin(15,1/10)
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Binomial random variable (3)
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Figure: Pmf for Bin(6;0.5). x-axis: k. y-axis: P(X = k)
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Binomial random variable (4)
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Figure: Pmf for Bin(30;0.5). x-axis: k. y-axis: P(X = k)
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Computation for Gx

Generating function for Bernoulli: If Y ~ B(p) then
Gy(s) = (1—p) + ps

Decomposition of Binomial: If X ~ Bin(n, p) one can write
X=)"V, with Yiiid, Y;~ B(p)
i=1

Computing Gx: We get

n

Gx(s) = ][ 6vi(s) = (1 = p) + ps]”

i=1
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Joint generating functions

~ Definition 7. .

Let
@ X1, X5 random variables
@ Xi, X, take values in Z
Then the pgf for (X1, X2) is

Gx, %, (51, %) = E [57"55°]
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Characterization of independence

—~ Theorem 8. \

Let

@ X1, X5 random variables

e Gx, x, the corresponding pgf
Then we have

X1 1L Xo <= Gx,.x(51,5) = Gx,(51)Gx,(s2) for all s, 5,

\ J
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Definition of random walk

\.

~ Definition 9.

Let

@ Xi,...,X, Bernoulli random variables with values +1,
P(X,:1):p, P(X,:—l):1—p
@ The X;'s are independent

We set Sg = 0 and
Sn — Z Xi
i=1

Then S is called simple random walk
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Symmetric random walk

~ Definition 10. |

Let
e Xi,...,X, Bernoulli random variables with values +1,
1 1
P(X;=1)= -, P(Xi=-1)=
(=1)=5 PO=-1)=

@ The X;'s are independent

We set 5o = 0 and
Sn=>Y_X
i=1

Then S is called symmetric random walk

\
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lllustration: chaotic path (Brownian motion)
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lllustration: random path (Brownian motion)
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Questions about random walks

Main questions
@ Does the walk S, go to co when n — o0?
© Does it return to 0 after n =07
© How often does it return to 07
@ What is the range of S,(w)?

Methodologies to answer those questions
@ Elementary methods based on generating functions
@ Later: Markov chain methods

© Also useful: martingale methods
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Notation (1)
Return time to 0: We set Tg = oo if there is no return to 0, and
To=inf{n>0; S, =0}
Probability to be at origin after n steps: We set
po(n) = P(S, =0)
Probability that 1st return occurs after n steps: Define

fo(n) = P(To = n) = P(S1 £0,..., 5,1 #0,5, = 0)
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Notation (2)

Generating functions: We set

Po(s)=> po(n)s”,  Fo(s)=>_ fo(n)s"

Probabilistic interpretation: We have
Fo(s) = E[s™]

Warning: Ty is a defective random variable. Thus we have
e s =0if lh=ccif s€[0,1)
@ This is also valid ass /1  (hence "1 = 0" here)
@ Thus Fo(1) = P(Tp < o0)
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Computing Py and Fy

r—[Theorem 11.]

Let S, be the random walk with parameters p and g =1 — p.
Then

Q@ Py and Fy satisfy
Po(S) =1 + Po(S)Fo(S)

Q P, verifies
1

Po(s) = —=5
o) (1— 4pgs)"?

© Fyis given by

Fo(s) =1— (1 — 4pq52)l/2

Samy T. (Purdue) Generating functions Stochastic processes
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Proof of Theorem 11 (1)

Events: We set

Decomposition for A: We have

A=AN (OBk> :O(AmBk)

Decomposition for P(A): We get

n

P4 =3 P(ANB)=Y P(AB)P(B) ()

=1
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Proof of Theorem 11 (2)

Convolution relation: Equation (1) can be read as
po(n) = Zpo(n — k)fo(k), for n>1, and po(0)=1
k=1

Expression with generating functions: We get

Po(s) = 14 Po(s)Fo(s)
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Proof of Theorem 11 (3)

Computing po(n): We have
© For n odd,
po(n) =0
© For n even, one argue that
» (S, = 0) <= equal # steps up and steps down
» There is (n'/’2) ways to choose the up steps

> Probability of each sequence leading to 0: (p g)"/?

Thus for n even we have

Samy T. (Purdue) Generating functions Stochastic processes
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Proof of Theorem 11 (4)

First expression for Py: We have found

Pl =3 (7)o = Y- 2 (pa sty

A binomial series: We have

1 = (=1)m(2m)! = (2m)l /1 x\m
1 +x)172 2. iz < )3 (ml)2 (‘Z)
m=0 ) m=0 ’
Second expression for Py: We get
1

Po(s) = ——=7

(1—4pgs?)"?
Samy T. (Purdue) Generating functions Stochastic processes
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Proof of Theorem 11 (5)

Summary: We have obtained

Po(s) = 1+P0(15)F0(s)

Conclusion: We easily get

Fo(s)=1— (1 — 4pq52)1/2

Samy T. (Purdue) Generating functions
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Information on T

,—[Proposition 12.]

Recall that
To=inf{n>0; S, =0}
Then
Q@ We have
P(To <o0)=1-|p—4
@ In particular Ty < oo almost surely iff p = g =

QIfp= % then
E[T()] = 0

1

2
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Proof of Proposition 12 (1)

Expression for Fy: We have seen

Fo(s) =1— (1 — 4pq52)1/2

Expression for P( Ty < 00): We have also seen that
Hence

P(TO < OO) = Fo(].)
1— (1 - 4pg)*?
= 1-|2p—1]
= 1—-[p—d
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Proof of Proposition 12 (2)
Fo for p=1/2: When p = g = % we have

Fo(s)=1—(1-— 52)1/2

Expression for E[To]: We have seen that
E[To] = Fo(1)

Computation of Fj: We get

S

F(;(s) = (1— 52)1/2

Conclusion: We have
E[To] = Fy(1) = o0

Samy T. (Purdue) Generating functions Stochastic processes
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Vocabulary

Persistent or recurrent: the random walk is said to be recurrent
— iff P(Tp < o0) =1

Transient: the random walk is said to be transient
— iff P(Tp < o0) < 1

Summarizing our result: We have seen that

Random walk is persistent <= p = %

Samy T. (Purdue) Generating functions Stochastic processes 53/90



Visits to point r

~ Definition 13.

The first time to visit r is defined by
T,=inf{n>0;S,=r}

Then we set

Fi(s) =) fi(n)s”

n=1

f(n) =P(T, =n) =P(Si#1,.... 501 # 1,50 =1)

Samy T. (Purdue) Generating functions
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Generating function for T,

r—[Theorem 14.}

For r > 1 we have

with
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Proof of Theorem 14 (1)

Events: We set, for r > 1,

A= (T, =n), By =(T,—.1=n—k)

Decomposition for A: We have

A=AN (UBk> :U(AmBk)

k=1

Decomposition for P(A): We get

PA) =Y P(ANB)=S PMABIPB) ()
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Proof of Theorem 14 (2)
Convolution relation: Equation (2) can be read as
n—1
f(n) =Y A(k)fii(n—k), for n>1, and £(0)=0
k=1

Expression with generating functions: We get
F.(s) = Fi(s)F—1(s)
Conclusion for F,: Iterating the above relation we get

Fi(s) = [A(s)]
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Proof of Theorem 14 (3)

Conditioning on X;: For n > 1 we have

P(Ti=n) = P(Ti=nXi=1)p+P(Ty=n|Xg=-1)q
0 + P (1st visit to 1 takes n — 1 steps| So = —1) q
= P(T2 =n-— 1)q

Relation on pmf's: We get, for n > 1
A(n) = afi(n — 1)

Relation on generating functions: Multiplying by s” we obtain

Fi(s) = ps+ sqFa(s)
= ps+sq (Fl(s))2
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Proof of Theorem 14 (4)

Recall: We have obtained

Fi(s) = ps + sq (Fi(s))

Expression for Fi:
Solving for Fi(s) in the quadratic equation we get

1— (1—4pgs?)'/?

Fl(S) = 2q
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Visits to the upper half plane

,—[Proposition 15.] \

Let S, be the random walk
— with parameters p and g =1 — p.

Then

P(At least one visit to the upper half plane) = min (1, p)
q
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Proof of Proposition 16
Notation: Set

A = At least one visit to the upper half plane

Expression with generating function: We have

P(A) = P(T; <)
= A1)
1—|p—gq|
2q

Conclusion: Separating cases p > g and p < g we get

P(A) = min (1, Z)

Samy T. (Purdue Generating functions Stochastic processes 61 /90
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Hitting time theorem

r—[Theorem 16.]

Let

@ S, be the random walk with parameters pand g =1—p
@ebeZ*andn>1

e T,=inf{n>0; S,=b}
Then

P(Tb = n) = @P(Sb = n)

n
\.
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Model

Model for population evolution:

e /Z, = # individuals of n-th generation

@ At n-th generation: each member gives birth
— To a # individuals of (n + 1)-th generation

@ Family size: random variable

Samy T. (Purdue)
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Assumptions on the model

Main hypotheses:
© Family sizes form collection of 1l random variables

© Family sizes have same pmf f
— with generating function G

Q 4 =1

I 1 L S
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Generating functions for random sums

r—[Theorem 17.]

Let

Z= Zszl XJ
Then

Gz(s) = Gn(Gx(s))

{X;; j > 1} sequence of i.i.d random variables
Gx = common generating function
N random variable, with N 1L (X;);>1 and N € {0,1,...
Gy = generating function for N

Samy T. (Purdue)
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Proof of Theorem 17

Computation: We have
Gz(s) = E[s%]

= > E[s’|N=n]P(N=n)

_ iE [ %| N = n] PV = 1)

n

Il
o

[
WK

E [szlexj} P(N = n)

3
Il
o

[
g

(Gx(s))" fn(n)

= Gn(Gx(s))

I
o
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Generating function for the branching process

~ Theorem 18. ]

For the branching process, recall that
e Z, = # individuals of n-th generation
@ G = generating function for the offspring f

We set
G(s) = E [s™"]
Then
Grmin(S) = Gm(Gn(s)) = Gn(Gm(s))
Thus

Gn(s) = GO(”)(S)
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Proof of Theorem 18 (1)

Decomposition of Z,,.,,: Write

Zn—s—m - Y1+"'+YZ,,,
Zm

= 2%
j=1

where

Y; = # individuals in generation (n + m) which stem
from individual j in m-th generation

Samy T. (Purdue) Generating functions Stochastic processes
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Proof of Theorem 18 (2)

Recall:
Zm

Zn+m = Z Yj

J=1

Information on the random variables Y;:

@ Yj's are independent

@ Y's are independent of Z,

°oY; @ Z,
Application of Theorem 17:

Gmin(s) = Gm(Gvi(s)) = Gm(Gn(s))
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Moments of Z,

,—[Proposition 19.]

For the branching process with offspring Z; ~ f set

o= E[Z]_], 0'2 = Var(Zl)

Then
E[Zi] = 1"
and
2 .
no ifu=1
Var(Zo) =4 e 4
p—1 p
Samy T. (Purdue) Generating functions Stochastic processes
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Proof of Proposition 19 (1)

Method of computation: We use

E[Z.] = G,(1)

Recursive relation: Recall that

Gn(s) = G(Gna(s))

Samy T. (Purdue) Generating functions
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Proof of Proposition 19 (2)

Recall: We have
Gn(s) = G(Gn-1(s))

Differentiate: We have
Gy(s) = G'(Gn1(5)) G, (s)
Thus at s = 1 we get
E[Z,] = G'(1) E[Z,-1] = pE[Z,1]
Conclusion: Since E[Zy] = 1, we get

E[Z:] = "
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Proof of Proposition 19 (3)

Method for the variance: We use
E[Z.(Z, — 1)] = G,/(1)

or

Var(Z,) = G/(1) + G/(1) — (G/(l))z

Recursive relation: We differentiate twice the relation

Go(s) = G(Gn_1(5))

We get a linear recursion (to be solved)

G/(1) = G"(1)(G,1(1)* + G'(1)GL (1)
= (0®+p(p — 1)) 207D 4 pGl (1)

Samy T. (Purdue) Generating functions Stochastic processes
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Negative binomial random variable (1)

Notation:
X ~ Nbin(r, p), for r € N*, p € (0,1)
State space:

{0,1,2..}

k4+r—1
P(sz)=(+,: )pqu, k>0

Expected value, variance and pgf:
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Negative binomial random variable (2)

Use:
@ Independent trials, with P(success) = p

o X = # failures until r successes

Justification:

((r — 1) successes in (k + r — 1) 1st trials)

N ((k + r)-th trial is a success)

Thus P
PX=k=("_|pq
( ) (r B 1) P'q
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Negative binomial random variable (3)

Negative Binomial Distribution PDF
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Negative binomial random variable for r =1

Notation:
X ~ Nbin(1, p), for r € N*, p € (0,1)
State space:
{0,1,2...}

Pmf:
P(X=k)=pg", k>0

Expected value, variance and pgf:

E[X]:%, Var(X):%, Gx(s) =

p

1—(1-p)s
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Branching with negative binomial offspring

,—[Proposition 20.] \
For the branching process with Z; ~ Nbin(1, p) we have
© The generating function G, is given by
n—(n-1)s ifp=1
- P =
n+l—ns 2
Gn(s) = {q(p"q")pS(p"‘lq"‘l) i€ 1
P I gt _ps(p—q") T p 7é 2
© The probability of extinction is
1 ifp<i
P(Ultimate extinction) = ¢ nh= 2
b if p > >
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Proof of Proposition 20 (1)

Pgf for Z;: Since Z; ~ Nbin(1, p) we have

p

A (ErE

Expression for G,: One can check that

G (Gn(s)) = Gnia(s)
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Proof of Proposition 20 (2)

Ultimate extinction: We set
A = (Ultimate extinction occurs)
Then
A=|]JA, with A,=(Z,=0)

n>1

P(A) as a limit: We have

Ay C Anyi = P(A)= lim P(A,)

n—o00
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Proof of Proposition 20 (3)

Expression for P(A,): We have

P(A) = G,(0)= J 71, TP=3
)OO ey i
Expression for P(A): We obtain
1 ifp<t
P(A) = lim P(A,) =<, P =2
n—o00 ; |f P > 2
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Ultimate extinction in the general case

r—[Theorem 21.}

Consider a branching process with
@ 7y ~ f, f with pgf G
o u = E[Z] and 02 = Var(Z)
Let
@ 7) = smallest non-negative root of s = G(s)
Then
@ P(Ultimate extinction) = n
Q@n=1lifu<l
Q@n<lifu>1
Q@n=1lifp=1lando®>>0
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Galton-Watson process

Historical facts:
@ Francis Galton proposed Theorem 21 as a problem in 1869
@ Galton was interested in survival of family names
@ Problem solved by Watson in 1874
@ Watson's solution used a method still presented today

e {Z,; n> 0} is often referred to as Galton-Watson process
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Francis Galton: the bright side

Some facts about Galton:
o Lifespan: 1822-1911, in England
Polymath

First use of stats in surveys
Founded psychometry
Founded meteorology

Invented Galton whistle

Was Darwin's cousin
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Francis Galton: the dark side

Uneasy facts about Galton:

@ Founded eugenics
— Twist on Darwin's theory

@ Coined the term eugenics
@ "Nature vs nurture”
@ Very controversial views on race

@ UCL removed his name in 2020
— From a large lecture room
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Proof of Theorem 21 (1)

Ultimate extinction: Recall that we have set
A = (Ultimate extinction occurs)

Then
A=|JA, with A,=(Z,=0)

n>1

P(A) as a limit: We have A, C A,.1. Thus

n,=P(A,)is /, and P(A) =Ilim, 0 nn
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Samy T. (Purdue)

Claim when p > 1:

Proof of Theorem 21 (2)

G(0) €[0,1), G'(0) € [0,1), G'(1) > 1, G convex on [0, 1]

Generating functions



Proof of Theorem 21 (3)
Claim G(0) € [0,1): We have
G(0) =P(Z; =0) <1 (otherwise trivial extinction)
Claim G’(0) € [0,1): Write
G'(0)=P(Z =1) <1 (or trivial offspring = 1)
Claim G'(1) > 1: One argues
G'(l)=pn>1
Claim G convex on [0, 1]: We compute

G"(s)=E[Z(Z1—1)s77%] >0
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Samy T. (Purdue)

Proof of Theorem 21 (4)

Conclusion: Follows classical lines for sequences
Nnv1 = G(1n)

—

lim n, =7
n—o0
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