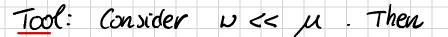


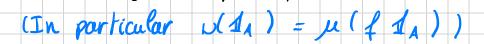
existence + uniqueness of E[XIF]? -> proved



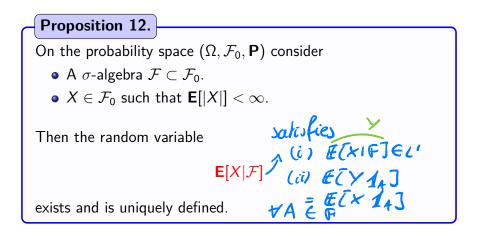
∃ f ≥O, measurable such

that for all $a \in B_b$

 $\nu(g) = \mu(fg)$



Conditional expectation: existence



55 / 91

(1) Refine a measure 1 on (S,F) by setting

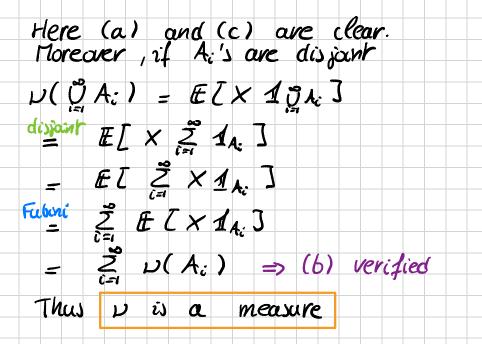
$\mathcal{V}(A) = \mathbb{E}[X \mathbf{1}_{A}], \forall A \in \mathcal{F}$

Claim: N is a measure, i.e

(a) $U(\phi) = 0$, disjoint union

(b) $\cup (\bigcup_{i=1}^{n} A_i^{-}) = \sum_{i=1}^{n} \cup (A_i^{-})$

(c) $U(A) \ge 0 + A \in F$

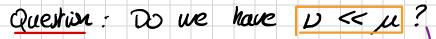


$\frac{\text{Recall}}{\text{Recall}} : \mathcal{N}(A) = E[X \ \mathbf{1}_{A}]$

Take $\mu = \mathbb{P} \cdot \mu$ is a probability

on (l, Fo), but also on (l, F)

We can write $\mu(A) = E \overline{L} 1_A \overline{J}$

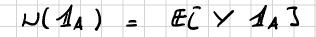


If $\mu(AI=0)$, then $I_A = 0$ a.s.

 \Rightarrow X $1_A = 0 a$. Yes!

 $\Rightarrow \mathcal{U}(A) = E[X 1_A] = 0$

Radon - Nykodym: Since U << U 3 YEF St. ¥ A E F



Thus YEF and for all AEF

$E[X 1_A] = E[Y 1_A]$

Conclusion: Y= E[×16]

Proof of existence

Hypothesis: We have

- A σ -algebra $\mathcal{F} \subset \mathcal{F}_0$.
- $X \in \mathcal{F}_0$ such that $\mathbf{E}[|X|] < \infty$.
- $X \ge 0$.

Defining two measures: we set

•
$$\mu = P$$
, measure on (Ω, \mathcal{F}) .

Then ν is a measure (owing to Beppo-Levi).

- (日)

э

Proof of existence (2)

Absolute continuity: we have

$$\mathbf{P}(A) = 0 \Rightarrow \mathbf{1}_A = 0 \quad P\text{-a.s.}$$
$$\Rightarrow X \mathbf{1}_A = 0 \quad P\text{-a.s.}$$
$$\Rightarrow \nu(A) = 0$$

Thus $\nu \ll P$

Conclusion: invoking Radon-Nykodym, there exists $f \in \mathcal{F}$ such that, for all $A \in \mathcal{F}$, we have $\nu(A) = \int_A f \, d\mathbf{P}$. \hookrightarrow We set $f = \mathbf{E}[X|\mathcal{F}]$.

- A TE N - A TE N

Outline

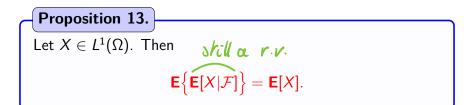
Definition

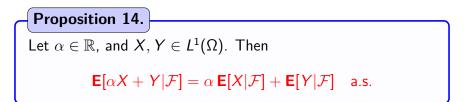
- Baby conditional distributions: discrete case
- Baby conditional distributions: continuous case
- Definition with measure theory

2 Examples

- 3 Existence and uniqueness
- 4 Conditional expectation: properties
- 5 Conditional expectation as a projection
- 6 Conditional regular laws

Linearity, expectation





< 日 > < 同 > < 三 > < 三 >

Proof of lineanty. Set

Z= XE[XIF]+ E[YIF]

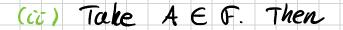
We want to prove (i) and (ii) for z

(c) ZEF, since

E(XIF)EF, E[XIF]EF

and z is a linear combination of the two.

Z= & E[XIF]+ E[YIF]



 $E[\neq 1_{A}] rv. rv.$ = $E\{(\alpha E[X|F], E[Y|F]) 1_{A}\}$

E linear & E { E [× 1 G] 1 A } + E { E [× 1 G] 1 A }

$\stackrel{(ii)}{=} \propto E[\times 1_A] + E[\times 1_A]$

linearity E ((x+ Y) IA]

=> (ii) verified

Proof that ELE[XIF] = E[X]

We have that 44 EF,

$E[Y 1_A] = E[X 1_A]$

In particular, REF. We get

ElY12] = ElX12]

$\Rightarrow E[Y] = E[X]$

Proof

Strategy: Check (i) and (ii) in the definition for the r.v

$$Z \equiv \alpha \, \mathbf{E}[X|\mathcal{F}] + \mathbf{E}[Y|\mathcal{F}].$$

Verification: we have

(i) Z is a linear combination of $\mathbf{E}[X|\mathcal{F}]$ and $\mathbf{E}[Y|\mathcal{F}]$ $\hookrightarrow Z \in \mathcal{F}$.

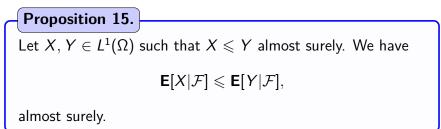
(ii) For all $A \in \mathcal{F}$, we have

$$\mathbf{E}[Z \mathbf{1}_{A}] = E\left\{ \left(\alpha \mathbf{E}[X|\mathcal{F}] + \mathbf{E}[Y|\mathcal{F}] \right) \mathbf{1}_{A} \right\} \\ = \alpha E\left\{ \mathbf{E}[X|\mathcal{F}] \mathbf{1}_{A} \right\} + E\left\{ \mathbf{E}[Y|\mathcal{F}] \mathbf{1}_{A} \right\} \\ = \alpha \mathbf{E}[X \mathbf{1}_{A}] + \mathbf{E}[Y \mathbf{1}_{A}] \\ = \mathbf{E}[(\alpha X + Y) \mathbf{1}_{A}].$$

< 日 > < 同 > < 三 > < 三 >

э

Monotonicity

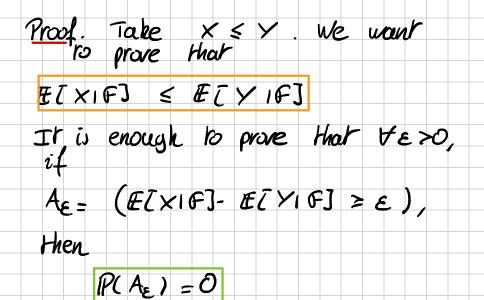


Proof: Along the same lines as proof of uniqueness for the conditional expectation. For instance if we set

$$A_{\varepsilon} = \{\mathbf{E}[X|\mathcal{F}] - \mathbf{E}[Y|\mathcal{F}] \ge \varepsilon > 0\},\$$

then it is readily checked that

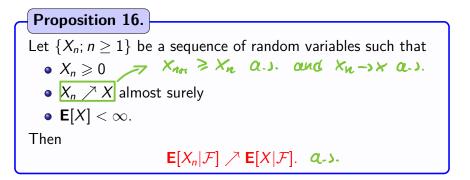
$$\mathbf{P}(A_{\varepsilon}) = 0.$$



$A_{\varepsilon} = (E[X|F] - E[Y|F] \ge \varepsilon) \in F$

≥E on he We have EP(AE) & E {(E[XIF] - E[YIF]) 1AE Linearity of E[.15] E{ E[(X-Y) IF] 1/E] (TEL (X-Y) 1AE] 5 O Thus E P(AE) *≦0* $\Rightarrow P(A_2) = 0$

Monotone convergence



• • = • • = •

< 円

Recall: Xn 7 Xa.s. We set

Yn= X-Xn. We have Yn 20 a.s.

Set Zn=E[YnIF]. We have

(i) Since E[. IF] is monstane and Yn >, we have

$Z_n \supseteq (Z_{n+1} \leq Z_n \quad a.s.)$

(ii) Yn 20 => E[Yn 16] 20

Thus JZo ZO J.r. Zn > Zo

 $Y_n \equiv X - X_n$ $Z_n \equiv E[Y_n (F]$ $Z_n \gg Z_\infty \quad a.s.$ $Z_\infty \ge 0 \quad a.s.$

we wish to prove : 20 = 0

Rmk: If Zo ≥0, in order to prove that Zo =0, it is enough to prove E[Zo]=0

However $E[z_n] = E\{E[X_n|G]\}$ = $E[Y_n]$

In addition, Ya > O => E[Ya] > O

We have obtained

EZZn] > O

In addition,

Thus

 $z_n \ge z_\infty \quad \alpha.$ Bego-Levi => E[Zn] >> E[Zo]

 $E[z_{\infty}] = 0 = 2 = 2 = 0 \alpha.$

=> Beppo-Levi for E[-15]

Proof

Strategy: Set $Y_n \equiv X - X_n$. We are reduced to show $Z_n \equiv \mathbf{E}[Y_n | \mathcal{F}] \searrow 0$.

Existence of a limit: $n \mapsto Y_n$ is decreasing, and $Y_n \ge 0$ $\hookrightarrow Z_n$ is decreasing and $Z_n \ge 0$. $\hookrightarrow Z_n$ admits a limit a.s, denoted by Z_{∞} .

Aim: Show that $Z_{\infty} = 0$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proof (2)

Expectation of Z_{∞} : we will show that $\mathbf{E}[Z_{\infty}] = 0$. Indeed

- X_n converges a.s. to X.
- $0 \leq X_n \leq X \in L^1(\Omega).$

Thus, by dominated convergence, $\mathbf{E}[X_n] \rightarrow \mathbf{E}[X]$.

We deduce:

- $\mathbf{E}[Y_n] \to 0$
- Since $\mathbf{E}[Y_n] = \mathbf{E}[Z_n]$, we also have $\mathbf{E}[Z_n] \to 0$.

• By monotone convergence, we have $\mathbf{E}[Z_n] \to \mathbf{E}[Z_\infty]$ This yields $\mathbf{E}[Z_\infty] = 0$.

Conclusion: $Z_{\infty} \ge 0$ and $\mathbf{E}[Z_{\infty}] = 0$ $\hookrightarrow Z_{\infty} = 0$ almost surely.