Continuous example

Exponential law case: Let

• $X \sim \mathcal{E}(1)$ and $Y \sim \mathcal{E}(1)$ • $X \perp Y$

We set S = X + Y.

Then

CRL of X given S is $\mathcal{U}([0, S])$.

< 47 ▶

э

Computing ELY(X) ISI Step): We will we a formula from our set of examples: if 1 is the joint density of (x, s), then $E \overline{U} \psi(x) | S = g(S)$ where $\int \psi(x) f(x,s) dx$ $q(\Delta) =$ $\int f(x,s) dx$

Step 0: Compute 1. Here

XNE(1), YNE(1), XIIY

In order to compute f, we evaluate E[h(x, s)] = E[h(x, x+y)]

$= \int_{\mathbb{R}^{2}} h(x, x+y) e^{-x} I_{\mathbb{R}_{+}}(x) e^{-y} I_{\mathbb{R}_{+}}(y) dx dy$

 $= \int_{0}^{\infty} \int_{0}^{\infty} h(z, z+y) e^{-k+y} dz dy$

1(x, s) = e - 1(0 = 2 = s =) For a rest function, Ely s]= g(s) with J ψ(x) f(x,s) dz g(s) f(x,s) dx JR 4(2) es loszes) dz e^{-3} 1 (0 $\leq z \leq 3$) dz1 y(z) de = (J& yurdz ۷

Conclusion: $E[\psi(x)]S] = \frac{1}{2} \int_{-\infty}^{\infty} \psi(x) dx$

Question: is this well defined? -> Yes, since

- $(i) \mathcal{R}(S=0) = \int Se^{-S} dS = 0 \, cdf of S$
- $(ii) P(S=\infty) = 1 \lim_{x \to \infty} F(x) = 0$
- Back to CRL
- (c) For fixed y, the quantity
 - $\omega \mapsto \frac{1}{S(\omega)} \int_{0}^{\infty} \psi(x) \mathbf{1}(x \leq s(\omega)) dx$
 - is measurable

(ci) If a fixed, the function $\psi \in G(\Omega) \longrightarrow \frac{1}{S(\omega)} \int_{S}^{S(\omega)} \psi(x) dx$ defines a distribution with density $f(x) = \frac{1}{S(\omega)} \quad 1_{[0, S(\omega)]}(x)$ We get a U(TO, Xw)]) distribution Thus U(IO, SJ) defines a CRL for L(XIS).

Continuous example

Proof: The joint density of (X, S) is given by

$$f(x,s)=e^{-s}\mathbf{1}_{\{0\leq x\leq s\}}.$$

Let then $\psi \in \mathcal{B}_b(\mathbb{R}_+)$. Thanks to Example 5, we have

 $\mathbf{E}[\psi(X)|S] = u(S),$

with

$$u(s) = \frac{\int_{\mathbb{R}_+} \psi(x) f(x,s) dx}{\int_{\mathbb{R}_+^2} f(x,s) dx} = \frac{1}{s} \int_0^s \psi(x) dx.$$

イロト 不得 トイヨト イヨト

3

Proof

In addition, $S \neq 0$ almost surely, and thus if $A \in \mathcal{B}(\mathbb{R})$ we have:

$$\mathsf{E}[\psi(X)|S] = \frac{\int_0^S \psi(x) dx}{S}$$

Considering the state space as $=\mathbb{R}_+$, $\mathcal{S}=\mathcal{B}(\mathbb{R}_+)$ and setting

$$\mu(\omega, f) = \frac{1}{S(\omega)} \int_0^{S(\omega)} \psi(x) dx,$$

one can verify that we have defined a conditional regular law.

(日)

3

Existence of the CRL

Theorem 29.

Let

- X a random variable on $(\Omega, \mathcal{F}_0, P)$.
- Taking values in a space of the form $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$.
- $\mathcal{G} \subset \mathcal{F}_0$ a σ -algebra.

Then the CRL of X given \mathcal{G} exists.

Proof: nontrivial and omitted.

Computation rules for CRL

(1) If $\mathcal{G} = \sigma(Y)$, with Y random variable with values in \mathbb{R}^m , we have

 $\mu(\omega, f) = \widetilde{\mu}(Y(\omega), f),$

and one can define a CRL of X given Y as a family $\{\widetilde{\mu}(y,.); y \in \mathbb{R}^m\}$ of probabilities on \mathbb{R}^n , such that for all $f \in C_b(\mathbb{R}^n)$ the function Fact: $\mu(y, \cdot) = \mathcal{L}(X | Y = y)$ $y \mapsto \mu(y, f)$

is measurable.

(2) If Y is a discrete r.v, this can be reduced to: $E[A_{A}(x) | y=y]$ $\mu(y, A) = \mathbf{P}(X \in A | Y = y) = \frac{\mathbf{P}(X \in A, Y = y)}{\mathbf{P}(Y = y)}.$

Computation rules for CRL (2)

(3) When one knows the CRL, quantities like the following (for $\phi \in \mathcal{B}(\mathbb{R}^n)$) can be computed:

$$\mathbf{E} \left[\phi(X) | \mathcal{G} \right] = \int_{\mathbb{R}^n} \phi(x) \, \mu(\omega, dx)$$

$$\mathbf{E} \left[\phi(X) | Y \right] = \int_{\mathbb{R}^n} \phi(x) \, \mu(Y, dx).$$

(4) The CRL is not unique: However if N_1, N_2 are 2 CRL of X given \mathcal{G} \hookrightarrow we have ω -almost surely:

$$N_1(\omega, f) = N_2(\omega, f)$$
 for all $f \in C_b(\mathbb{R}^n)$.