· Prob space (S.F.P)

• Filtration (Gn; n≥0}, Gn C Far

• Take T: S2 → (0,1,..., y ∪ { ∞ y

· We say that T is a stopping time if

LT=ny ∈ Fn Hn≥O

• Equivalently (check), T stopping tome if { T≤n} € Fn ∀n

Example of stopping time

· (Xn)n>, adapted (Xn E Fn)

$T = inf \langle n \geq 1; X_n = 2 \rangle$

Second example Xn=0 and

$T_2 = inf \langle n \ge 1; \times_n \notin [-3, 4] \rangle$

Stopped martingales nAN = inf {n, Ny

<u>Recall</u>: If X is a markingale H is predictable Un C Fr-1

=> H·X is a martingale, where

 $[H \cdot X]_n = \sum_{k=1}^n H_k \Delta X_k + \alpha$

Here, if Yn= Xnn we have

 $\Delta Y_{k} \equiv Y_{k} - Y_{k} = \Delta X_{k} \quad \underline{1}(k - 1 < N)$

Summary Yn= Yot Z He Dxe with $H_k = 1(N > k-1) \in \mathcal{F}_{k-1}$? This is a mart. Wansform if He E Fr-1 C E ware Al E Fr. June N stopping time We have (N>k-1)= (N ≤ k-1)° => 1 (v>k-1) E Fr. Conclusion: Yn = XnAN is a markingale Stopping time: if (N < E) E Fr

Proof

Decomposition of Y: We have

$$Y_j - Y_{j-1} = (X_j - X_{j-1}) \mathbf{1}_{(j-1 < N)}.$$

Expression as transformed martingale: Set $H_j = \mathbf{1}_{(j-1 < N)}$. Then

$$Y_n = Y_0 + \sum_{j=1}^n (Y_j - Y_{j-1})$$

= $Y_0 + \sum_{j=1}^n (X_j - X_{j-1}) \mathbf{1}_{(j-1 < N)}$
= $Y_0 + \sum_{j=1}^n H_j \Delta X_j$

In addition H is predictable. Thus Y is a martingale.

Image: A match a ma

Outline

Definitions and first properties

2 Strategies and stopped martingales

3 Convergence

Convergence in L^p

5 Optional stopping theorems

~	_
5 a may /	
. Januv	

э

イロト イヨト イヨト イヨト

Convergence philosophy:

· Submartingales are a (on average)

. If we have a proper bound on the requence, we will get convergence

Convergence in L^2

Theorem 9.

Let X such that

•
$$\{X_n; n \ge 1\}$$
 is a martingale.

• For all *n* we have $X_n \in L^2(\Omega)$ and

$$\sup\left\{\mathsf{E}[X_n^2];\ n\geq 0
ight\}\equiv M<\infty.$$

Then

●
$$L^2 - \lim_{n \to \infty} X_n = X_\infty$$
.
● For all $n \ge 0$, we have $X_n = \mathbf{E}[X_\infty | \mathcal{F}_n]$.

- (日)

(2)

First aim Prove that (Sn/n2, is a Cauchy sequence in 2²(R). That is $\lim E \tilde{I} (X_n - X_m)^2 J = O$ m->00 $\begin{array}{c} n \ge m \\ = E \left\{ E \left\{ \times_n \times_m | F_m \right\} \right\} \\ = E \left\{ \times_m E I \times_n | F_m \right\} \\ We have = E \left\{ \times_m^2 \right\} \\ \end{array}$ nzm

 $\mathbb{E}\left[\left(X_{n}-X_{m}\right)^{2}\right] = \mathbb{E}\left[X_{n}^{2}\right] - 2\mathbb{E}\left[X_{n}X_{m}\right] + \mathbb{E}\left[X_{n}^{2}\right]$

 $= E \overline{L} \times_n^2 \overline{J} - E \overline{L} \times_n^2 \overline{J}$

Summary for $n \ge m$, $E[(X_n - X_n)^2] = E[X_n^2] - E[X_n^2]$ About sequence (an)n 2, . We have (i) an is \mathcal{P} , since $a_n - a_m = \mathbb{E}[$ square] (ii) an is bounded $Hgp: \mathbb{E}[X_n^2] \leq M < \infty$ => (an) is convergent, thus Cauchy $\frac{\text{Conclusion}}{L^2(\mathcal{R})}: (X_n) \text{ is (auchy in$ $L^2(\mathcal{R}))}$ and $X_n \longrightarrow X_{\infty}$ in $L^2(\mathcal{R})$

Second aim: prove Xn= E[XoolGn] For this, set V= [E[X=1Gn]-Xn] Since V>0, we have V=0 a-s. iff E[V]=0. Now ELVJ = E { | E [X = 0 | Fn] - Xn | } large = E { | E [X o | Gn] - E [Xn + [Gn]] } = E { | E [Xoo-Xnok | Gn] [] | · | conver Jensen Even ELIXoo-Xn+ELIFnJJ $= E[1 \times \infty - \times n+21] = E[2]$

Recall: Xn -> Xos in (2(2)

< Et [1X00-Xnop 12]

We get EZV]=0 =>V=0 a.s.

=> E[Xolfn] = Xn a.s.

Proof

Step 1: We set $a_n = \mathbf{E}[X_n^2]$. We will show that if $n \ge m$, then

$$\mathbf{E}\left[(X_n-X_m)^2\right]=a_n-a_m.$$

Indeed,

$$\mathbf{E}[X_m X_n] = \mathbf{E} \left\{ X_m \, \mathbf{E}[X_n | \, \mathcal{F}_m] \right\} = \mathbf{E} \left[X_m^2 \right].$$

Therefore

$$\mathbf{E} \begin{bmatrix} (X_n - X_m)^2 \end{bmatrix} = \mathbf{E} \begin{bmatrix} X_n^2 \end{bmatrix} + \mathbf{E} \begin{bmatrix} X_m^2 \end{bmatrix} - 2 \mathbf{E} [X_m X_n]$$

= $\mathbf{E} \begin{bmatrix} X_n^2 \end{bmatrix} - \mathbf{E} \begin{bmatrix} X_m^2 \end{bmatrix}$
= $a_n - a_m.$

3

イロト イヨト イヨト

Proof (2)

Step 2: Convergence in L^2 .

•
$$a_{n+1} - a_n = \mathbf{E}[(X_{n+1} - X_n)^2] \Longrightarrow n \mapsto a_n$$
 increasing.

- Inequality (2) \implies $(a_n)_{n\geq 0}$ bounded \implies $(a_n)_{n\geq 0}$ convergent.
- $\mathbf{E}[(X_n X_m)^2] = a_n a_m \Longrightarrow (X_n)_{n \ge 0}$ Cauchy in $L^2(\Omega)$

Conclusion: $(X_n)_{n\geq 0}$ converges in $L^2(\Omega)$ towards X_{∞} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Proof (3) Step 3: We have $X_n = \mathbf{E}[X_{\infty} | \mathcal{F}_n]$.

Set

$$V = |\mathbf{E}[X_{\infty}|\mathcal{F}_n] - X_n|.$$

We are reduced to show that E[V] = 0.

Computation: For $n, k \ge 0$,

$$V = |\mathbf{E}[X_{\infty}|\mathcal{F}_n] - \mathbf{E}[X_{n+k}|\mathcal{F}_n]|$$

= $|\mathbf{E}[X_{\infty} - X_{n+k}|\mathcal{F}_n]| \le \mathbf{E}[|X_{\infty} - X_{n+k}||\mathcal{F}_n]$

Hence

$$\mathsf{E}[V] \leq \mathsf{E}\left[|X_{\infty} - X_{n+k}|\right] \leq \mathsf{E}^{1/2}\left[\left(X_{\infty} - X_{n+k}
ight)^2
ight]$$

We get $\mathbf{E}[V] = 0$ whenever $k \to \infty$ above.

A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >

< □ > < □ > < □ > < □ > < □ > < □ >

Application 1. Take Xn martingale with Xn ≥0. Then

$(\tilde{u}) \quad X_n = 0 \implies X_n \leq M \quad a.s.$

Note Xo EL', but we don't

have necessarily Xn -> X.

Application 2 Take

(c) Xn martingale

$(\alpha)(E[(x_n)^{\nu}])^{\frac{1}{2}} \leq M < \infty$

Then

$\mathbb{E}[X_n^{\dagger}] \leq \mathbb{E}[|X_n|] \leq \mathbb{E}^{\frac{1}{2}}[X_n^{\dagger}] \leq M$

Particular cases

Particular case 1:

 $(X_n)_{n\geq 0}$ positive martingale $\implies a.s - \lim_{n\to\infty} X_n = X_{\infty}$.

Particular case 2: $\sup \{ \mathbf{E}[X_n^2]; n \ge 0 \} \equiv M < \infty \implies \text{a.s} - \lim_{n \to \infty} X_n = X_{\infty}.$ \hookrightarrow We have both a.s and L^2 convergence.

< □ > < 凸

Convergence counterexample

