neview session - MA 538 - Midterm

Problem 6. Let $X = \{X_n; n \in \mathbb{N}\}$ be a stochastic process such that for $k \geq 2$ and $0 = n_0 < n_1 < \cdots < n_k$, the random variables $(\delta X_{n_j n_{j+1}})_{0 \leq j \leq n-1}$ are independent (here we have set $\delta X_{n_j n_{j+1}} = X_{n_{j+1}} - X_{n_j}$). We also assume that $X_0 = 0$. Show that for all $0 \leq m < n < \infty$, the random variable δX_{mn} is in fact independent of the whole σ -field $\mathcal{F}_m^X = \sigma(X_1, \ldots, X_m)$.

Known information $\mathbb{P}(\delta X_{oi} \in A_{i}, ..., \delta X_{m-i,m} \in A_{m}, \delta X_{mn} \in A_{n})$ $= \prod_{i=0}^{n} \mathbb{P}(\delta \times_{\hat{\delta}^{i}} \in A_{\hat{\delta}^{i}}) \times \mathbb{P}(\delta \times_{n} \in A_{n})$ Definition of a Tr-system we set $P = \langle B = (\delta X_{oi} \in A_{i}, ..., \delta X_{m-i,m} \in A_{m});$ $A_{1,...,A_{m}} \in \mathcal{B}(\mathbb{R})$ one can prove easily that 3,3 EP => B13 EP

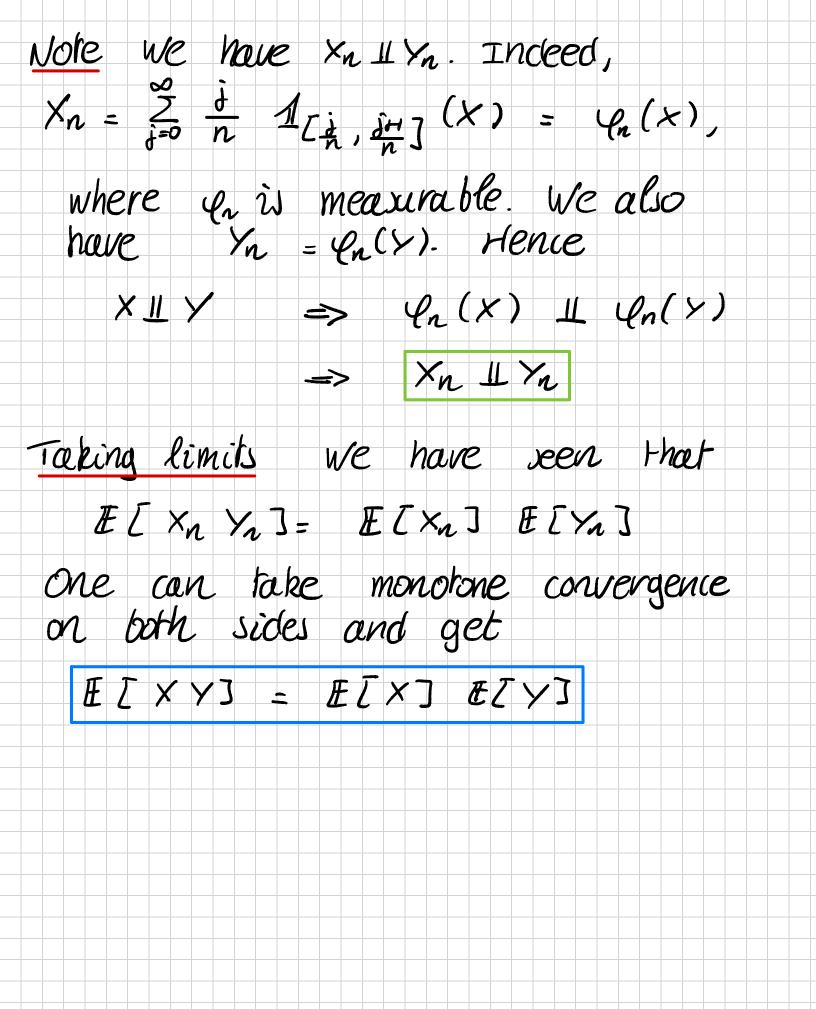
refinition of a b-system For CEBCIN, Set $L = \langle B; P(Bn(\delta \times mn \in C))$ = P(B) P(SXmn EC) 5 Then Bisa A-system Application of Dykin Since 2 P, we also have $\mathcal{L} \supset \sigma(\mathcal{P})$ $\Rightarrow \mathcal{L} \supset \mathcal{T}(\delta X_{21}, ..., \delta X_{m-1}, m)$ Thus $\delta \times mn \perp \sigma(\delta \times \sigma_1, ..., \delta \times m_{-1}, m)$ Statement with $\sigma(x_{i}, ..., x_{n})$ we still need to prove $\sigma(\delta X_{01,...}, \delta X_{m-1,m}) = \sigma(X_{1,...}, X_{m})$ In fact we will prove, for a r.v. Y $Y \in \sigma(\delta X_{01,...}, \delta X_{m-1,m}) \iff Y \in \sigma(X_{1,...}, X_{m})$

If YEJ(SXDI,.., SXMIIM) THERE exists a measurable y such that $Y = \Psi(\delta X_{01}, \dots, \delta X_{m-1,m})$ Thus $Y = \Psi(X_1, X_2 - X_1, ..., X_m - X_{m-1})$ This is of the form $Y = \mathcal{Q}(X_1, \dots, X_m) ,$ for a measurable f. Hence $Y \in \sigma(X_1, \ldots, X_m)$ If $Y \in \sigma(X_1, ..., X_m)$ In the same way, we have, for a measurable f, $Y = f(X_1, \dots, X_m)$ Then $Y = f(\partial X_{3i}, \partial X_{3i} + \partial X_{12}, \dots, \sum_{d=0}^{m-i} \partial X_{3i,\delta^{H}})$ = $g(\partial x_{3}, \dots, \partial x_{m-1}, \dots)$, with g measurable $\Rightarrow Y \in \sigma(J \times o_1, \dots, J \times m + m)$

Problem 14. Give a rigorous proof that $\mathbf{E}[XY] = \mathbf{E}[X]\mathbf{E}[Y]$ for any pair X, Y of independent non-negative random variables in $L^1(\Omega)$.

Hint: For $k \ge 0, n \ge 1$, define $X_n = k/n$ if $k/n \le X < (k+1)/n$, and similarly for Y_n . Show that X_n and Y_n are independent, and $X_n \le X$, and $Y_n \le Y$. Deduce that $\mathbf{E}[X_n] \to \mathbf{E}[X]$ and $\mathbf{E}[Y_n] \to \mathbf{E}[Y]$, and also $\mathbf{E}[X_nY_n] \to \mathbf{E}[XY]$.

Computation for Xn, Yn Xn, Yn are discrete r.v. Hence $\mathbb{E}[X_n Y_n] = \frac{\widetilde{J}}{\delta k} \frac{k}{n} \mathbb{P}(X \in \mathbb{I}_{\delta}^n, Y \in \mathbb{I}_{k}^n),$ where we have set $I_{j}^{n} = \frac{\partial}{n}, \frac{\partial H}{n}$ Furthermore P(XEIn, YEIn) $\stackrel{\times 1}{=} \mathbb{P}(\times \in \mathbb{I}_{s}^{n}) \mathbb{P}(\times \in \mathbb{I}_{k}^{n})$ Hence $E[X_nY_n] = \frac{2}{\delta_i k=0} \frac{1}{n} \frac{k}{n} P(X \in I_i^n) P(Y \in I_i^n)$ $= \underbrace{\tilde{z}}_{I=0}^{\infty} \frac{\tilde{J}}{n} R(X \in I_{i}^{n}) \times \underbrace{\tilde{z}}_{I=0}^{\infty} \frac{k}{n} R(Y \in I_{i}^{n})$ = E[Xn] E[Yn]



33.2. Let $\{X_n\}$ be a stationary Markov chain on the positive integers with transition probabilities

$$p_{jk} = \begin{cases} \frac{j}{j+2} & \text{if } k = j+1\\ \frac{2}{j+2} & \text{if } k = 1 \end{cases}$$

(1) Find the stationary distribution of the chain, and show that it has infinite mean.

(2) Show that $\limsup_{r\to\infty} X_r/r \leq 1$ almost surely.

