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Standard Gaussian random variable

Definition: Let
X be a real valued random variable.

X is called standard Gaussian if its probability law admits the density:

f (x) = 1√
2π

exp
(

−x2

2

)
, x ∈ R.

Notation: We denote by N1(0, 1) or N (0, 1) this law.
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Gaussian random variable and expectations

Reminder:
1 For all bounded measurable functions g , we have

E[g(X )] = 1√
2π

∫
R

g(x) exp
(

−x2

2

)
dx .

2 In particular, ∫
R

exp
(

−x2

2

)
dx =

√
2π.
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Gaussian moments

Let X ∼ N (0, 1). Then
1 For all z ∈ C, we have

E[exp(zX )] = exp(z2/2).

As a particular case, we get

E[exp(ıtX )] = e−t2/2, ∀t ∈ R.

2 For all n ∈ N, we have

E [X n] =


0 if n is odd,
(2m)!
m!2m , if n is even, n = 2m.

Proposition 1.
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Proof

(i) Definition of the transform:∫
R exp(zx − 1

2x2)dx absolutely convergent for all z ∈ C
↪→ the quantity φ(z) = E[ezX ] is well defined and,

φ(z) = 1√
2π

∫
R

exp
(

zx − 1
2x2

)
dx .

(ii) Real case: Let z ∈ R.
Decomposition zx − 1

2x2 = −1
2(x − z)2 + z2

2
and change of variable y = x − z ⇒ φ(z) = ez2/2
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Proof (2)

(iii) Complex case:
φ and z 7→ ez2/2 are two entire functions
Since those two functions coincide on R, they coincide on C.

(iv) Characteristic function:
In particular, if z = ıt with t ∈ R, we have

E[exp(ıtX )] = e−t2/2
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Proof (3)
(v) Moments: Let n ≥ 1.
Convergence of E[|X n|]: easy argument
In addition, we almost surely have

eıtX = lim
n→∞

Sn, with Sn =
n∑

k=0

(ıt)k

k! X k .

However, |Sn| ≤ Y with

Y =
∞∑

k=0

|t|k |X |k

k! = e|tX | ≤ etX + e−tX .

Since E[exp(aX )] < ∞, we obtain that Y is integrable
Applying dominated convergence, we end up with

E[exp(ıtX )] = E
∑

n≥0

(ıtX )n

n!

 =
∑
n≥0

ıntn

n! E[X n]. (1)

Identifying lhs and rhs, we get our formula for moments
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Gaussian random variable

Corollary: Owing to the previous proposition, if X ∼ N (0, 1)
↪→ E[X ] = 0 and Var(X ) = 1

Definition:
A random variable is said to be Gaussian if there exists X ∼ N (0, 1)
and two constants a and b such that Y = aX + b.

Parameter identification: we have

E[Y ] = b, and Var(Y ) = a2 Var(X ) = a2.

Notation: We denote by N (m, σ2) the law of a Gaussian random
variable with mean m and variance σ2.
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Properties of Gaussian random variables

Density: we have

1
σ

√
2π

exp
(

−(x − m)2

2σ2

)
is the density of N (m, σ2)

Characteristic function: let Y ∼ N (m, σ2). Then

E[exp(ıtY )] = exp
(
ıtm − t2

2 σ
2
)
, t ∈ R.

The formula above also characterizes N (m, σ2)
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Gaussian law: illustration
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Figure: Distributions N (0, 1), N (1, 1), N (0, 9), N (0, 1/4).
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Sum of independent Gaussian random variables

Let Y1 and Y2 be two independent Gaussian random variables
Assume Y1 ∼ N (m1, σ

2
1) and Y2 ∼ N1(m2, σ

2
2).

Then Y1 + Y2 ∼ N1(m1 + m2, σ
2
1 + σ2

2).

Proposition 2.

Proof:
Via characteristic functions

Remarks:
It is easy to identify the parameters of Y1 + Y2

Possible generalization to ∑n
j=1 Yj

Samy T. (Purdue University) Gaussian vectors & CLT Probability Theory 13 / 86



Outline

1 Real Gaussian random variables

2 Random vectors

3 Gaussian random vectors

4 Central limit theorem

5 Empirical mean and variance

Samy T. (Purdue University) Gaussian vectors & CLT Probability Theory 14 / 86



Matrix notation

Transpose:
If A is a matrix, A∗ designates the transpose of A.

Particular case: Let x ∈ Rn. Then
x is a column vector in Rn,1

x∗ is a row matrix

Inner product:
If x and y are two vectors in Rn, their inner product is denoted by

⟨x , y⟩ = x∗y = y ∗x =
n∑

i=1
xiyi , if x∗ = (x1, ..., xn), y ∗ = (y1, ..., yn).
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Vector valued random variable

1 A random variable X with values in Rn is given by n real
valued random variables X1,X2, . . . ,Xn.

2 We denote by X the column matrix with coordinates
X1,X2, . . . ,Xn:

X ∗ = (X1,X2, . . . ,Xn).

Definition 3.
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Expected value and covariance
Expected value: Let X ∈ Rn. E[X ] is the vector defined by

E[X ]∗ = (E[X1],E[X2] . . . ,E[Xn]) .

Note: here we assume that all the expectations are well-defined.
Covariance: Let X ∈ Rn and Y ∈ Rm.
The covariance matrix KX ,Y ∈ Rn,m is defined by

KX ,Y = E [(X − E[X ]) (Y − E[Y ])∗]

Elements of the covariance matrix: for 1 ≤ i ≤ n and 1 ≤ j ≤ m

KX ,Y (i , j) = Cov(Xi ,Yj) = E [(Xi − E[Xi ]) (Yj − E[Yj ])]
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Simples properties

Linear transforms and Expectation-covariance:
Let X ∈ Rn, A ∈ Rm,n, u ∈ Rm. Then

E[u + AX ] = u + A E[X ], and Ku+AX = KAX = AKX A∗.

Another formula for the covariance:

KX ,Y = E [XY ∗] − E [X ] E [Y ]∗ .

As a particular case,

KX = E [XX ∗] − E [X ] E [X ]∗
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Definition

Definition: Let X ∈ Rn.
X is a Gaussian random vector iff for all λ ∈ Rn

⟨λ,X ⟩ = λ∗X =
n∑

i=1
λiXi is a real valued Gaussian r.v.

Remarks:
(1) X Gaussian vector
⇒ Each component Xi of X is a real Gaussian r.v
(2) Key example of Gaussian vector:
Independent Gaussian components X1, . . . ,Xn

(3) Easy construction of random vector X ∈ R2 such that
(i) X1,X2 real Gaussian (ii) X is not a Gaussian vector
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Characteristic function

Let X Gaussian vector with mean m and covariance K
Then, for all u ∈ Rn,

E [exp(ı⟨u, X ⟩)] = eı⟨u, m⟩− 1
2 u∗Ku,

where we use the matrix representation for the vector u

Proposition 4.
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Proof

Identification of ⟨u, X ⟩:
⟨u, X ⟩ Gaussian r.v by assumption, with parameters

µ := E[⟨u, X ⟩] = ⟨u, m⟩, and σ2 := Var(⟨u, X ⟩) = u∗Ku (2)

Characteristic function of 1-d Gaussian r.v:
Let Y ∼ N (µ, σ2). Then recall that

E[exp(ıtY )] = exp
(
ıtµ− t2

2 σ
2
)
, t ∈ R. (3)

Conclusion: Easily obtained by plugging (2) into (11)
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Remark and notation

Remark: According to Proposition 4
↪→ The law of a Gaussian vector X is characterized by its mean m
and its covariance matrix K
↪→ If X and Y are two Gaussian vectors with the same mean and
covariance matrix, their law is the same

Caution: This is only true for Gaussian vectors.
In general, two random variables sharing the same mean and variance
are not equal in law

Notation: If X Gaussian vector with mean m and covariance K
We write X ∼ N (m,K )
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Linear transformations

Let
X ∼ N (mX ,KX )
A ∈ Rp,n and z ∈ Rp

Set
Y = AX + z

Then

Y ∼ N (mY ,KY ), with mY = z + AmX , KY = AKX A∗

Proposition 5.
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Proof

Aim: Let u ∈ Rp.
We wish to prove that u∗Y is a Gaussian r.v.

Expression for u∗Y : We have

u∗Y = u∗z + u∗AX = u∗z + v ∗X ,

where we have set v = A∗u. This is a Gaussian r.v

Conclusion: Y is a Gaussian vector. In addition,

mY = E[Y ] = z + AE[X ] = z + AmX , and KY = AKX A∗.
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Positivity of the correlation matrix

Let X be a random vector with covariance matrix K .
Then K is a symmetric positive matrix.

Proposition 6.

Proof:
Symmetry: K (i , j) = Cov(Xi ,Xj) = Cov(Xj ,Xi) = K (j , i)
Positivity: Let u ∈ Rn and Y = u∗X . Then

Var(Y ) = u∗Ku ≥ 0
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Linear algebra lemma

Let
Γ ∈ Rn,n, symmetric and positive.

Then there exists a matrix A ∈ Rn,n such that

Γ = AA∗

Lemma 7.
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Proof
Diagonal form of Γ:
• Γ symmetric ⇒ there exists an orthogonal matrix U and
D1 = Diag(λ1, . . . , λn) such that D1 = U∗ΓU
• Γ positive ⇒ λi ≥ 0 for all i ∈ {1, 2, . . . , n}.

Definition of the square root:
• Let D = Diag(λ1/2

1 , . . . , λ1/2
n ).

• We set A = UD.

Conclusion:
• Recall that U−1 = U∗, therefore Γ = UD1U∗.
• Now D1 = D2 = DD∗, and thus

Γ = UDD∗U∗ = UD(UD)∗ = AA∗.
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Construction of a Gaussian vector

Let
m ∈ Rn

Γ ∈ Rn,n symmetric and positive
Then

There exists a Gaussian vector X ∼ N (m, Γ)

Theorem 8.
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Proof

Standard Gaussian vector in Rn:
Let Y1,Y2, . . . ,Yn, i.i.d with common law N1(0, 1). We set

Y ∗ = (Y1, . . . ,Yn), and therefore Y ∼ N (0, Idn).

Definition of X : Let A ∈ Rn,n such that AA∗ = Γ.
We define X as:

X = m + AY .

Conclusion:
According to Proposition 5 we have X ∼ N (m,KX ), with

KX = A KY A∗ = A Id A∗ = AA∗ = Γ.

Samy T. (Purdue University) Gaussian vectors & CLT Probability Theory 30 / 86



Decorrelation and independence

Let X be Gaussian vector, with X ∗ = (X1, . . . ,Xn).
Then

The random variables X1, . . . ,Xn are independent
⇐⇒

The covariance matrix KX is diagonal.

Theorem 9.
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Proof of ⇒

Decorrelation of coordinates:
If X1, . . . ,Xn are independent, then

K (i , j) = Cov(Xi ,Xj) = 0, whenever i ̸= j .

Therefore KX is diagonal.
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Proof of ⇐ (1)
Characteristic function of X : Set K = KX . We have shown that

E[exp(ı⟨u,X ⟩)) = eı⟨u,E[X ]⟩− 1
2 u∗Ku, u ∈ Rn. (4)

Since K is diagonal, we have :

u∗Ku =
n∑

l=1
u2

l K (l , l)=
n∑

l=1
u2

l Var(Xl). (5)

Characteristic function of each coordinate:
Let ϕXl be the characteristic function of Xl
We have ϕXl (s) = E[eısXl ], for all s ∈ R.
Taking u such that ui = 0, for all i ̸= l in (4) and (5) we get

ϕXl (ul) = E [exp(ıulXl)] = eıul E[Xl ]− 1
2 u2

l Var(Xl ).
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Proof of ⇐ (2)

Conclusion:
We can recast (4) as follows: for all u = (u1, u2, ..., un),

n∏
j=1

ϕXj (uj) = E
[
exp

(
ı

n∑
l=1

ulXl

)]
= E[exp(ı⟨u,X ⟩)],

This means that
the random variables X1, . . . ,Xn are independent.
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Lemma about absolutely continuous r.v

Let
ξ ∈ Rn a random variable admitting a density.
H a subspace of Rn, such that dim(H) < n.

Then
P(ξ ∈ H) = 0.

Lemma 10.
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Proof

Change of variables:
We can assume H ⊂ H ′ with

H ′ = {(x1, x2, ..., xn); xn = 0}

Conclusion:
Denote by φ the density of ξ. We have:

P(ξ ∈ H) ≤ P(ξ ∈ H ′)

=
∫
Rn
φ(x1, x2, ..., xn)1{xn=0}dx1 dx2 ... dxn

= 0.
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Gaussian density

Let X ∼ N (m,K ). Then
1 X admits a density iff K is invertible.
2 If K is invertible, the density of X is given by

f (x) = 1
(2π)n/2(det(K ))1/2 exp

(
−1

2(x − m)∗K −1(x − m)
)

Theorem 11.
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Proof
(1) Density and inversion of K : We have seen

X (d)= m + AY , where AA∗ = K , Y ∼ N (0, Idn)

(i) Assume A non invertible.
A non invertible ⇒ Im(A) = H , with dim(H) < n
↪→ P(AY ∈ H) = 1
Contradiction:
X admits a density ⇒ X − m admits a density
⇒ P(X − m ∈ H) = 0
However, we have seen that P(X − m ∈ H) = P(AY ∈ H)= 1.
Hence X doesn’t admit a density.
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Proof (2)
(ii) Assume A invertible.
A invertible
⇒ application y → m + Ay is a C1 bijection
⇒ the random variable m + AY admits a density.

(iii) Conclusion.
Since AA∗ = K , we have

det(A) det(A∗) = (det(A))2 = det(K )

and we get the equivalence:

A invertible ⇐⇒ K is invertible.
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Proof (3)

(2) Expression of the density: Let Y ∼ N (0, Idn). Density of Y :

g(y) = 1
(2π)n/2 exp

(
−1

2⟨y , y⟩
)
.

Change of variable: Set

X ′ = AY + m that is Y = A−1(X ′ − m)
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Proof (4)
Jacobian of the transformation: for x 7→ A−1(x − m) we have

Jacobian = A−1

Determinant of the Jacobian:

det(A−1) = [det(A)]−1 = [det(K )]−1/2

Expression for the inner product:
We have K −1 = (AA∗)−1 = (A∗)−1A−1, and

⟨y , y⟩ = ⟨A−1(x − m),A−1(x − m)⟩
= (x − m)∗(A−1)∗A−1(x − m) = (x − m)∗K −1(x − m).

Thus X ′ admits the density f .
Since X and X ′ share the same law, X admits the density f .
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Law of large numbers

We consider the following situation:
(Xn; n ≥ 1) sequence of i.i.d Rk-valued r.v
Hypothesis: E[|X1|] < ∞, and we set E[X1] = m ∈ Rk

We define
X̄n = 1

n

n∑
j=1

Xj .

Then
lim

n→∞
X̄n = m, almost surely

Theorem 12.
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Central limit theorem

We consider the following situation:
{Xn; n ≥ 1} sequence of i.i.d Rk-valued r.v
Hypothesis: E[|X1|2] < ∞
We set E[X1] = m ∈ Rk and Cov(X1) = Γ ∈ Rk,k

Then

√
n
(
X̄n − m

) (d)−→ Nk(0, Γ), with X̄n = 1
n

n∑
j=1

Xj .

Theorem 13.

Interpretation: X̄n converges to m with rate n−1/2
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Convergence in law, first definition
Remark: For notational sake
↪→ the remainder of the section will focus on R-valued r.v

Let
{Xn; n ≥ 1} sequence of r.v, X0 another r.v
Fn distribution function of Xn

F0 distribution function of X0

We set C(F ) ≡ {x ∈ R; F continuous at point x}

Definition 1: We have

limn→∞ Xn
(d)= X0 if limn→∞ Fn(x) = F0(x) for all x ∈ C(F ).

Definition 14.
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Convergence in law, equivalent definition

Let
{Xn; n ≥ 1} sequence of r.v, X0 another r.v
We set
Cb(R) ≡ {φ : R → R; φ continuous and bounded}

Definition 2: We have

limn→∞ Xn
(d)= X0

iff
limn→∞ E[φ(Xn)] = E[φ(X0)] for all φ ∈ Cb(R).

Proposition 15.

Samy T. (Purdue University) Gaussian vectors & CLT Probability Theory 46 / 86



Central limit theorem in R

We consider the following situation:
{Xn; n ≥ 1} sequence of i.i.d R-valued r.v
Hypothesis: E[|X1|2] < ∞
We set E[X1] = µ and Var(X1) = σ2

Then

√
n
(
X̄n − µ

) (d)−→ N (0, σ2), with X̄n = 1
n

n∑
j=1

Xj .

Otherwise stated we have∑n
i=1 Xi − nµ
σn1/2

(d)−→ N (0, 1)

Theorem 16.
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Application: Bernoulli distribution

Let (Xn; n ≥ 1) sequence of i.i.d B(p) r.v
Then

√
n
(

X̄n − p
[p(1 − p)]1/2

)
(d)−→ N1(0, 1).

Proposition 17.

Remark:
For practical purposes as soon as np > 15, the law of

X1 + · · · + Xn − np√
np(1 − p)

is approached by N1(0, 1). Notice that X1 + · · · + Xn ∼ Bin(n, p).
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Binomial distribution: plot (1)
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Figure: Distribution Bin(6; 0.5). x-axis: k, y-axis: P(X = k)
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Binomial distribution: plot (2)
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Figure: Distribution Bin(30; 0.5). x-axis: k, y-axis: P(X = k)
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Relation between pdf and chf

Let
F be a distribution function on R
ϕ the characteristic function of F

Then F is uniquely determined by ϕ

Theorem 18.
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Proof (1)

Setting: We consider
A r.v X with distribution F and chf ϕ
A r.v Z with distribution G and chf γ

Relation between chf: We have∫
R

e−ıθzϕ(z) G(dz) =
∫
R

F (dx) γ(x − θ) (6)
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Proof (2)

Proof of (6): Invoking Fubini, we get

E
[
e−ıθZϕ(Z )

]
=

∫
R

e−ıθzϕ(z) G(dz)

=
∫
R

G(dz) e−ıθz
[∫

R
eızx F (dx)

]
=

∫
R

F (dx)
[∫

R
eız(x−θ) G(dz)

]
= E [γ(X − θ)]
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Proof (3)

Particularizing to a Gaussian case: We now consider
Z ∼ σN with N ∼ N (0, 1)
In this case, if n ≡ density of N (0, 1), we have

G(dz) = σ−1 n(σ−1z) dz

With this setting, relation (6) becomes∫
R

e−ıθσzϕ(σz)n(z) dz =
∫
R

e− 1
2 σ2(z−θ)2 F (dz) (7)
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Proof (4)

Integration with respect to θ: Integrating (7) wrt θ we get∫ x

−∞
dθ
∫
R

e−ıθσzϕ(σz) n(z) dz = Aσ,θ(x), (8)

where
Aσ,θ(x) =

∫ x

−∞
dθ
∫
R

e− 1
2 σ2(z−θ)2 F (dz)
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Proof (5)

Expression for Aσ,θ: We have

Aσ,θ(x) Fubini=
∫
R

F (dz)
∫ x

−∞
e− 1

2 σ2(z−θ)2 dθ

c.v: s=θ−z=
(
2πσ−2

)1/2 ∫
R

F (dz)
∫ x−z

−∞
n0,σ−2(s) ds

Therefore, considering N ⊥⊥ X with N ∼ N (0, 1) we get

Aσ,θ(x) =
(
2πσ−2

)1/2
P
(
σ−1N + X ≤ x

)
(9)
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Proof (6)

Summary: Putting together (8) and (9) we get∫ x

−∞
dθ
∫
R

e−ıθσzϕ(σz) n(z) dz =
(
2πσ−2

)1/2
P
(
σ−1N + X ≤ x

)
Divide the above relation by (2πσ−2)1/2. We obtain

σ

(2π)1/2

∫ x

−∞
dθ
∫
R

e−ıθσzϕ(σz) n(z) dz = P
(
σ−1N + X ≤ x

)
(10)
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Proof (7)

Convergence result: Recall that

X1,n
(d)−→ X1 and X2,n

(P)−→ X2 =⇒ X1,n + X2,n
(d)−→ X1 (11)

Notation: We set

C(F ) ≡ {x ∈ R; F continuous at point x}
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Proof (8)

Limit as σ → ∞:
Thanks to our convergence result, one can take limits in (10)

lim
σ→∞

σ

(2π)1/2

∫ x

−∞
dθ
∫
R

e−ıθσzϕ(σz) n(z) dz

= lim
σ→∞

P
(
σ−1N + X ≤ x

)
= P (X ≤ x)
= F (x), (12)

for all x ∈ C(F )

Conclusion:
F is determined by ϕ.
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Fourier inversion

Let
F be a distribution function on R, and X ∼ F
ϕ the characteristic function of F

Hypothesis:
ϕ ∈ L1(R)

Conclusion:
F admits a bounded continuous density f , given by

f (x) = 1
2π

∫
R

e−ıyxϕ(y) dy

Proposition 19.
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Proof (1)

Density of σ−1N + X : We set

Fσ(x) = P
(
σ−1N + X ≤ x

)
Since both N and X admit a density, Fσ admits a density fσ

Expression for Fσ: Recall relation (10)

σ

(2π)1/2

∫ x

−∞
dθ
∫
R

e−ıθσzϕ(σz) n(z) dz = Fσ(x) (13)

Samy T. (Purdue University) Gaussian vectors & CLT Probability Theory 61 / 86



Proof (2)
Expression for fσ: Differentiating the lhs of (13) we get

fσ(θ) = σ

(2π)1/2

∫
R

e−ıθσzϕ(σz) n(z) dz

(c.v: σz = y) = σ

(2π)1/2

∫
R

e−ıθyϕ(y) n(σ−1y) dy

(n is Gaussian) = 1
(2π)1/2

∫
R

e−ıθyϕ(y) e− σ−2y2
2 dy

Relation (10) on a finite interval: Let I = [a, b]. Using fθ we have

P
(
σ−1N + X ∈ [a, b]

)
= Fσ(b) − Fσ(a) =

∫ b

a
fσ(θ) dθ (14)

Samy T. (Purdue University) Gaussian vectors & CLT Probability Theory 62 / 86



Proof (3)
Limit of fσ: By dominated convergence,

lim
σ→∞

fσ(θ) = 1
(2π)1/2

∫
R

e−ıθyϕ(y) dy ≡ f (θ)

Domination of fσ: We have

fσ(θ) = 1
(2π)1/2

∫
R

e−ıθyϕ(y) e− σ−2y2
2 dy

≤ 1
(2π)1/2

∫
R

|ϕ(y)| dy

= 1
(2π)1/2 ∥ϕ∥L1(R)
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Proof (4)

Limits in (14): We use
On lhs of (14): Convergence result (11)
On rhs of (14): Dominated convergence (on finite interval I)

We get
P (X ∈ [a, b]) = F (b) − F (a) =

∫ b

a
f (θ) dθ

Conclusion:

X admits f (obtained by Fourier inversion) as a density
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Convergence in law and chf

Let
{Xn; n ≥ 1} sequence of r.v, X0 another r.v
ϕn chf of Xn, ϕ0 chf of X0

Then
(i) We have

lim
n→∞

Xn
(d)= X0 =⇒ lim

n→∞
ϕn(t) = ϕ0(t) for all t ∈ R

(ii) Assume that
ϕ0(0) = 1 and ϕ0 continuous at point 0

Then we have
lim

n→∞
ϕn(t) = ϕ0(t) for all t ∈ R =⇒ lim

n→∞
Xn

(d)= X0

Theorem 20.
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Central limit theorem in R (repeated)

We consider the following situation:
{Xn; n ≥ 1} sequence of i.i.d R-valued r.v
Hypothesis: E[|X1|2] < ∞
We set E[X1] = µ and Var(X1) = σ2

Then
√

n
(
X̄n − µ

) (d)−→ N (0, σ2), with X̄n = 1
n

n∑
j=1

Xj .

Otherwise stated we have

Sn − nµ
σn1/2

(d)−→ N (0, 1), with Sn =
n∑

i=1
Xi (15)

Theorem 21.
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Proof of CLT (1)

Reduction to µ = 0, σ = 1: Set

X̂i = Xi − µ

σ
, and Ŝn =

n∑
i=1

X̂i

Then
Ŝn = Sn − nµ

σ
, X̂i ∼ N (0, 1)

and
Sn − nµ
σn1/2 = Ŝn

n1/2

Thus it is enough to prove (15) when µ = 0 and σ = 1
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Proof of CLT (2)

Aim: For Xi such that E[Xi ] = 0 and Var(Xi) = 1, set

ϕn(t) = E
[
eıt Sn

n1/2

]

We wish to prove that

lim
n→∞

ϕn(t) = e− 1
2 t2

According to Theorem 20 -(ii), this yields the desired result
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Taylor expansion of the chf

Let
Y be a r.v.
ψ chf of Y

Hypothesis: for ℓ ≥ 1,

E
[
|Y |ℓ

]
< ∞.

Conclusion:∣∣∣∣∣ψ(s) −
ℓ∑

k=0

(ıs)k

k! E[X k ]
∣∣∣∣∣ ≤ E

[
|s X |ℓ+1

(ℓ+ 1)! ∧ 2|sX |ℓ

ℓ!

]
.

Lemma 22.

Proof: Similar to (1).
Samy T. (Purdue University) Gaussian vectors & CLT Probability Theory 69 / 86



Proof of CLT (3)

Computation for ϕn: We have

ϕn(t) =
(

E
[
eı

tX1
n1/2

])n

=
[
ϕ
( t

n1/2

)]n
, (16)

where

ϕ ≡ characteristic function of X1
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Proof of CLT (4)
Expansion of ϕ: According to Lemma 22, we have

ϕ
( t

n1/2

)
= 1 + ıt E[X1]

n1/2 + ı2t2 E[X 2
1 ]

2n + Rn

= 1 − t2

2n + Rn, (17)

and Rn satisfies
|Rn| ≤ E

[
|t X1|3

6n3/2 ∧ |t X1|2

n

]

Behavior of Rn: By dominated convergence we have

lim
n→∞

n |Rn| = 0 (18)
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Products of complex numbers

Let
{ai ; 1 ≤ i ≤ n}, such that ai ∈ C and |ai | ≤ 1
{bi ; 1 ≤ i ≤ n}, such that bi ∈ C and |bi | ≤ 1

Then we have ∣∣∣∣∣
n∏

i=1
ai −

n∏
i=1

bi

∣∣∣∣∣ ≤
n∑

i=1
|ai − bi |

Lemma 23.
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Proof of Lemma 23

Case n = 2: Stems directly from the identity

a1a2 − b1b2 = a1 (a2 − b2) + (a1 − b1)b2

General case: By induction
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Proof of CLT (5)
Summary: Thanks to (16) and (17) we have

ϕn(t) =
[
ϕ
( t

n1/2

)]n
, and ϕ

( t
n1/2

)
= 1 − t2

2n + Rn

Application of Lemma 23: We get∣∣∣∣∣
[
ϕ
( t

n1/2

)]n
−
(

1 − t2

2n

)n∣∣∣∣∣ (19)

≤ n
∣∣∣∣∣ϕ
( t

n1/2

)
−
(

1 − t2

2n

)∣∣∣∣∣ (20)

= n |Rn| (21)
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Proof of CLT (6)
Limit for ϕn: Invoking (18) and (19) we get

lim
n→∞

∣∣∣∣∣ϕn(t) −
(

1 − t2

2n

)n∣∣∣∣∣ = 0

In addition
lim

n→∞

∣∣∣∣∣
(

1 − t2

2n

)n

− e− t2
2

∣∣∣∣∣ = 0

Therefore
lim

n→∞

∣∣∣∣ϕn(t) − e− t2
2

∣∣∣∣ = 0

Conclusion: CLT holds, since

lim
n→∞

ϕn(t) = e− 1
2 t2
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Gamma and chi-square laws

Definition 1:
For all λ > 0 and a > 0, we denote by γ(λ, a) the distribution on R
defined by the density

xλ−1

aλΓ(λ) exp
(

−x
a

)
1{x>0}, where Γ(λ) =

∫ ∞

0
xλ−1e−xdx

This distribution is called gamma law with parameters λ, a.
Definition 2:
Let X1, . . . ,Xn i.i.d N (0, 1). We set Z = ∑n

i=1 X 2
i .

The law of Z is called
chi-square distribution with n degrees of freedom.
We denote this distribution by χ2(n).
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Gamma and chi-square laws (2)

The distribution χ2(n) coincides with γ(n/2, 2).
As a particular case, if

X1, . . . ,Xn i.i.d N (0, 1)
We set Z = ∑n

i=1 X 2
i ,

then we have
Z ∼ γ(n/2, 2).

Proposition 24.
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Empirical mean and variance
Let X1, . . . ,Xn n real r.v
Definition: we set

X̄n = 1
n

n∑
k=1

Xk , and S2
n = 1

n − 1

n∑
k=1

(Xk − X̄n)2.

X̄n is called empirical mean.
S2

n is called empirical variance.
Property:
Let X1, . . . ,Xn n i.i.d real r.v
Assume E[X1] = m and Var(X1) = σ2. Then

E
[
X̄n
]

= m, and E
[
S2

n

]
= σ2
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Law of (X̄n, S2
n) in a Gaussian situation

Let X1, X2,. . . ,Xn i.i.d with common law N1(m, σ2).
Then

1 X̄n and S2
n are independent.

2 X̄n ∼ N1(m, σ2

n ) and n−1
σ2 S2

n ∼ χ2(n − 1).

Theorem 25.
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Proof (1)

(1) Reduction to m = 0 and σ = 1: we set

X ′
i = Xi − m

σ
⇐⇒ Xi = σX ′

i + m 1 ≤ i ≤ n.

The r.v X ′
1, . . . ,X ′

n are i.i.d distributed as N1(0, 1)
↪→ empirical mean X̄ ′

n, empirical variance S ′2
n
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Proof (2)

(1) Reduction to m = 0 and σ = 1 (ctd):
It is easily seen (using Xi − X̄n = σ(X ′

i − X̄ ′
n)) that

X̄n = σX̄ ′
n + m, and S2

n = σ2S ′2
n .

Thus we are reduced to the case m = 0 and σ = 1
(2) Reduced case:
Consider X1, . . . ,Xn i.i.d N (0, 1)
Let u∗

1 = n−1/2(1, 1, . . . , 1)
We can construct u2, . . . , un such that (u1, . . . , un) onb of Rn

Let A ∈ Rn,n whose columns are u1, . . . , un

We set Y = A∗X
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Proof (3)
(i) Expression for the empirical mean:
A orthogonal matrix: AA∗ = A∗A = Id
↪→ Y ∼ N (0,KY ) with

KY = A∗KX (A∗)∗ = A∗ Id A = A∗A = Id,

because the covariance matrix KX of X is Id.
Due to the fact that the first row of A∗ is

u∗
1 =

(
1√
n ,

1√
n , , ...,

1√
n

)
,

we have:
Y1 = 1√

n (X1 + X2 + ...+ Xn)=
√

nX̄n,

or otherwise stated, X̄n = Y1√
n
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Proof (4)

(ii) Expression for the empirical variance:
Let us express S2

n in terms of Y :

(n − 1)S2
n =

n∑
k=1

(Xk − X̄n)2 =
n∑

k=1
(X 2

k − 2XkX̄n + X̄ 2
n )

=
( n∑

k=1
X 2

k

)
− 2X̄n

( n∑
k=1

Xk

)
+ nX̄ 2

n .

As a consequence,

(n − 1)S2
n =

( n∑
k=1

X 2
k

)
− 2X̄n(nX̄n) + nX̄ 2

n =
( n∑

k=1
X 2

k

)
− nX̄ 2

n .
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Proof (5)

(ii) Expression for the empirical variance (ctd): We have

Y = A∗X , A∗ orthogonal ⇒ ∑n
k=1 Y 2

k = ∑n
k=1 X 2

k

Hence

(n − 1)S2
n =

n∑
k=1

X 2
k − nX̄ 2

n =
n∑

k=1
Y 2

k − Y 2
1 =

n∑
k=2

Y 2
k .
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Proof (6)

Summary: We have seen that

X̄n = Y1√
n , and (n − 1)S2

n =
n∑

k=2
Y 2

k

Conclusion:
1 Y ∼ N (0, Idn) ⇒ Y1, . . . ,Yn i.i.d N (0, 1)
↪→ independence of X̄n and S2

n .

2 Furthermore, X̄n = Y1√
n ⇒ X̄n ∼ N1(0, 1/n)

3 We also have (n − 1)S2
n = ∑n

k=2 Y 2
k

⇒ the law of (n − 1)S2
n is χ2(n − 1).
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