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Adaptation

Context: We are given
A probability space (Ω, F , P)
A filtration {Fn; n ≥ 0}
↪→ Sequence of σ-algebras such that Fn ⊂ Fn+1.

A sequence of random variables {Xn; n ≥ 0} is adapted if:

Xn ∈ Fn.

Definition 1.
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Martingales, Supermartingales, Submartingales

We consider a sequence of random variables X = {Xn; n ≥ 0}
such that

1 {Xn; n ≥ 0} is adapted.
2 Xn ∈ L1(Ω) for all n ≥ 0.

Then
X is a martingale if Xn = E[Xn+1| Fn].
X is a supermartingale if Xn ≥ E[Xn+1| Fn].
X is a submartingale if Xn ≤ E[Xn+1| Fn].

Definition 2.
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Interpretation

Adaptation: The data Xn only depends on information until instant n.

Martingale: n 7→ Xn constant plus fluctuations.

Submartingale: n 7→ Xn increasing plus fluctuations.

Supermartingale: n 7→ Xn decreasing plus fluctuations.
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Random walk

Definition: Let
{Zi ; i ≥ 1} independent Rademacher r.v
↪→ P(Zi = −1) = P(Zi = 1) = 1/2
We set X0 = 0, and for n ≥ 1,

Xn =
n∑

i=1
Zi .

X is called random walk in Z.

Property: X is a martingale.
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Conditional expectation in the past

Let X be a Fn-martingale and m ≥ 0.
For all n ≥ m we have

E [Xn| Fm] = Xm.

Proposition 3.

Proof: Recursive procedure.

Important corollary: Let X be a Fn-martingale and m ≥ 0.
For all n ≥ m we have

E [Xn] = E [Xm] = E [X0] . (1)
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Composition with a convex function

Let
X a Fn-martingale.
φ : R → R a convex function
↪→ such that φ(Xn) ∈ L1(Ω) for all n ≥ 0.
Yn = φ(Xn)

Then Y is a submartingale.

Proposition 4.

Proof: application of Jensen for conditional expectation.

Example: If Xn is a random walk, X 2
n is a submartingale

↪→ Fluctuations increase with time.
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Martingale transformation

Let (Fn)n≥0 be a filtration and X , H Fn-adapted-processes.
We say that H is predictable if Hn ∈ Fn−1.
The transform of X by H is

[H · X ]n =
n∑

j=1
Hj ∆Xj , where ∆Xj = Xj − Xj−1

Definition 5.

Interpretation:
1 H ≡ game strategy

↪→ Today’s decision depends on the information until yesterday
2 H · X ≡ value if strategy H is used
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D’Alembert

Some facts about d’Alembert:
Abandoned after birth
Mathematician
Contribution in fluid dynamics
Philosopher
Participation in 1st Encyclopedia
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D’Alembert’s Martingale

Example: Let Xn = ∑n
i=1 ξi be a random walk.

We interpret ξi as a gain ou a loss at ith iteration of the game.
The filtration is Fn = σ(ξ1, . . . , ξn)

Strategy: We define H in the following way:
H1 = 1, thus H1 ∈ F0.
Hn = 2 Hn−1 1(ξn−1=−1)

Let N = inf{j ≥ 1; ξj = 1}. Then

[H · X ]N =
N∑

j=1
Hj ∆Xj =

N∑
j=1

Hj ξj = −
N−1∑
j=1

2j−1 + 2N−1 = 1

We get an almost sure gain!
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Strategies and martingales

Let
X a martingale.
H a predictable process such that Hj ∆Xj ∈ L1 for all j .

Then H · X is a martingale.

Theorem 6.

Interpretation: One cannot win in a fair game context
↪→ Compare with d’Alembert’s martingale
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Proof

Main ingredients: We write

[H · X ]n+1 = [H · X ]n + Hn+1 (Xn+1 − Xn).

Then we use the fact that
1 H is predictable
2 X is a martingale
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Stopping time

Let
T : Ω → N̄ random time
Fn a filtration

We say that T is a stopping time for Fn if
For all n ∈ N, the set {ω; T (ω) = n} is Fn-measurable.

Definition 7.

Note: basic examples are hitting times.
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Stopped martingales

Let
X martingale
N stopping time

We set Yn = Xn∧N . Then Y is a martingale.

Theorem 8.
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Proof
Decomposition of Y : We have

Yj − Yj−1 = (Xj − Xj−1) 1(j−1<N).

Expression as transformed martingale: Set Hj = 1(j−1<N). Then

Yn = Y0 +
n∑

j=1
(Yj − Yj−1)

= Y0 +
n∑

j=1
(Xj − Xj−1) 1(j−1<N)

= Y0 +
n∑

j=1
Hj ∆Xj

In addition H is predictable. Thus Y is a martingale.
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Convergence in L2

Let X such that
{Xn; n ≥ 1} is a martingale.
For all n we have Xn ∈ L2(Ω) and

sup
{
E[X 2

n ]; n ≥ 0
}

≡ M < ∞. (2)

Then
1 L2 − limn→∞ Xn = X∞.
2 For all n ≥ 0, we have Xn = E[X∞| Fn].

Theorem 9.
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Proof

Step 1: We set an = E[X 2
n ]. We will show that if n ≥ m, then

E
[
(Xn − Xm)2

]
= an − am.

Indeed,
E[XmXn] = E {Xm E[Xn| Fm]} = E

[
X 2

m

]
.

Therefore

E
[
(Xn − Xm)2

]
= E

[
X 2

n

]
+ E

[
X 2

m

]
− 2 E[XmXn]

= E
[
X 2

n

]
− E

[
X 2

m

]
= an − am.
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Proof (2)

Step 2: Convergence in L2.

• an+1 − an = E[(Xn+1 − Xn)2] =⇒ n 7→ an increasing.

• Inequality (2) =⇒ (an)n≥0 bounded =⇒ (an)n≥0 convergent.

• E [(Xn − Xm)2] = an − am =⇒ (Xn)n≥0 Cauchy in L2(Ω)

Conclusion: (Xn)n≥0 converges in L2(Ω) towards X∞.
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Proof (3)
Step 3: We have Xn = E[X∞| Fn].

Set
V = |E[X∞| Fn] − Xn| .

We are reduced to show that E[V ] = 0.

Computation: For n, k ≥ 0,

V = |E[X∞| Fn] − E[Xn+k | Fn]|
= |E[X∞ − Xn+k | Fn]| ≤ E [|X∞ − Xn+k | | Fn]

Hence

E[V ] ≤ E [|X∞ − Xn+k |] ≤ E1/2
[
(X∞ − Xn+k)2

]
We get E[V ] = 0 whenever k → ∞ above.
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Almost sure convergence

Let X satisfying
{Xn; n ≥ 0} is a martingale or a submartingale.
We have

sup
{
E[X +

n ]; n ≥ 0
}

≡ M < ∞. (3)

Then
1 a.s − limn→∞ Xn = X∞.
2 We have E[|X∞|] < ∞.

Theorem 10.
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Particular cases

Particular case 1:
(Xn)n≥0 positive martingale =⇒ a.s − limn→∞ Xn = X∞.

Particular case 2:
sup{E[X 2

n ]; n ≥ 0} ≡ M < ∞ =⇒ a.s − limn→∞ Xn = X∞.
↪→ We have both a.s and L2 convergence.
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Convergence counterexample

Let
{ξn; n ≥ 1} i.i.d Rademacher sequence
{Sn; n ≥ 0} defined by

▶ S0 = 1
▶ Sn = Sn−1 + ξn for n ≥ 1

N = inf{n ≥ 1; Sn = 0}
Xn = Sn∧N

Then the following holds true:
1 Xn converges almost surely to 0
2 Xn does not converge in L1(Ω)

Example 11.
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Proof
Almost sure convergence: We have

Theorem 8 =⇒ X is a martingale
Xn ≥ 0

Thus Xn converges almost surely to X∞ ≥ 0

Identification of the limit: Assume P(Ωk) > 0 with k > 0 and

Ωk =
{

ω; lim
n→∞

Xn(ω) = k
}

.

For ω ∈ Ωk , we have the following:
Set n0(ω) = inf{n ≥ 0; Xm(ω) = k for m ≥ n}.
For m ≥ n0 we have Xm+1 = Xm ± 1

This yields a contradiction. Hence P(Ωk) = 0 and X∞ = 0 a.s
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Proof (2)

Convergence in L1(Ω): According to (1) we have

E[Xn] = E[X0] = 1

Thus we cannot have L1(Ω) − limn→∞ Xn = 0
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Doob’s decomposition

Let
X submartingale

Then X can be decomposed uniquely as:

Xn = Mn + An,

where
M is a martingale
A is a predictable increasing process such that A0 = 0

Theorem 12.
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Proof
Expression for M and A: We wish

E[Mn|Fn−1] = Mn−1

An ∈ Fn−1

Therefore if Xn = Mn + An we have

E [Xn| Fn−1] = E [Mn| Fn−1] + E [An| Fn−1]
= Mn−1 + An

= Xn−1 + An − An−1

We thus take:

An − An−1 = E [Xn| Fn−1] − Xn−1, and Mn = Xn − An
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Proof (2)
Expression for A and M: recall that

An − An−1 = E [Xn| Fn−1] − Xn−1, and Mn = Xn − An

Proof of Doob’s properties: We have
1 An is increasing since E [Xn| Fn−1] ≥ Xn−1
2 An ∈ Fn−1 by induction
3 The martingale property for M is obtained as follows:

E [Mn| Fn−1] = E [Xn − An| Fn−1]
= E [Xn| Fn−1] − An

= An − An−1 + Xn − An

= Mn−1
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Doob’s inequality

We consider
A submartingale X
X̄n ≡ maxm≤n X +

m

A real number λ > 0
The set A = {X̄n ≥ λ}

Then we have

λ P(A) ≤ E [Xn 1A] ≤ E
[
X +

n

]
Otherwise stated:

P
(
X̄n ≥ λ

)
≤ E [X +

n ]
λ

Theorem 13.
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Lp maximum inequality

We consider
A submartingale X
X̄n ≡ maxm≤n X +

m

p ∈ (1, ∞)
Then we have

E
[
X̄ p

n

]
≤ cp E

[(
X +

n

)p]
, with cp =

(
p

p − 1

)p

Theorem 14.
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Lp bound for |Y |

We consider
A martingale Y
Y ∗

n ≡ maxm≤n |Ym|
p ∈ (1, ∞)

Then we have

E [|Y ∗
n |p] ≤ cp E [|Yn|p] , with cp =

(
p

p − 1

)p

Theorem 15.
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Counterexample in L1(Ω)

As in Example 11, set
{ξn; n ≥ 1} i.i.d Rademacher sequence
{Sn; n ≥ 0} defined by

▶ S0 = 1
▶ Sn = Sn−1 + ξn for n ≥ 1

N = inf{n ≥ 1; Sn = 0}
Xn = Sn∧N

Then Theorem 14 is not satisfied for p = 1 and X :
1 limn→∞ E[Xn] = 1
2 E[X̄∞] = ∞

Example 16.
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Proof

Item 1: We have already seen in Example 11 that

E[Xn] = 1, for all n ≥ 0.

Hence we trivially have

lim
n→∞

E[Xn] = 1.
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Proof (2)
Hitting times: For x ∈ Z set

Tx = inf{n ≥ 0; Sn = x}.

Then for a < 1 < b we have (see Section 5):

P (Tb < Ta) = 1 − a
b − a . (4)

Item 2: Thanks to (4) we have, for all M > 1

P
(
X̄∞ ≥ M

)
= P (TM < T0) = 1

M .

Therefore
E
[
X̄∞

]
=

∞∑
M=1

1
M = ∞.
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Convergence in Lp

Let X and p such that
{Xn; n ≥ 1} is a martingale.
p > 1.
For all n we have Xn ∈ Lp(Ω) and

sup {E[|Xn|p]; n ≥ 0} ≡ M < ∞.

Then
1 Lp − limn→∞ Xn = X∞.
2 a.s − limn→∞ Xn = X∞.
3 For all n ≥ 0, we have Xn = E[X∞| Fn].

Theorem 17.

Samy T. Martingales Probability Theory 39 / 52



Outline

1 Definitions and first properties

2 Strategies and stopped martingales

3 Convergence

4 Convergence in Lp

5 Optional stopping theorems

Samy T. Martingales Probability Theory 40 / 52



Simple optional stopping theorem

Let
{Xn; n ≥ 0} a martingale.
T stopping time.

We assume that ONE of those two assumptions is satisfied:
1 T is a.s bounded by a constant M1.
2 The sequence of random variables {Xn∧T ; n ≥ 0}

is a.s bounded by a constant M2.
Then

E[XT ] = E[X0].

Theorem 18.
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Proof
Under Hypothesis 1: Let κ ∈ N such that T ≤ κ a.s.

Computation: We use the fact that {Xn∧T ; n ≤ κ} is a martingale.

E[X0] = E[X0∧T ] = E[Xn∧T ] = E[Xκ∧T ] = E[XT ]

Under Hypothesis 2: We set Yn = Xn∧T . Then
• (Yn)n≥0 bounded martingale in L2

=⇒ Yn → Y∞ in L2 and a.s. Hence E[Y∞] = E[Y0].
• We have Y∞ = XT and Y0 = X0. Therefore

E[Y∞] = E[Y0] =⇒ E[XT ] = E[X0].
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Case of a submartingale

Let
{Xn; n ≥ 0} a submartingale.
T stopping time.

We assume that:
T is a.s bounded by a constant M.

Then
E[X0] ≤ E[XT ] ≤ E[XM ].

Proposition 19.
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Lp(Ω) bound for stopped martingales

Let X and p such that
{Xn; n ≥ 1} is a submartingale.
p > 1.
For all n we have Xn ∈ Lp(Ω) and

sup {E[|Xn|p]; n ≥ 0} ≡ M < ∞.

For a stopping time N we set

Yn = Xn∧N .

Then
sup {E[|Yn|p]; n ≥ 0} ≤ M.

Proposition 20.
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Proof

Definition of a submartingale: If Xn is a submartingale then

|Xn|p is a submartingale

Application of Proposition 19:
Since N ∧ n is a stopping time bounded by n, we have

E [|XN∧n|p] ≤ E [|Xn|p] ,

and hence
sup
n≥0

E [|XN∧n|p] ≤ sup
n≥0

E [|Xn|p] = M
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Optional stopping in Lp(Ω)

Let X and p > 1 such that
{Xn; n ≥ 1} is a submartingale.
For all n we have Xn ∈ Lp(Ω) and

sup {E[|Xn|p]; n ≥ 0} ≡ M < ∞.

X∞ ≡ a.s − limn→∞ Xn

Then for any stopping time N we have

E [X0] ≤ E [XN ] ≤ E [X∞]

Theorem 21.
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Proof

Application of Proposition 19: for n ≥ 1 we have

E [X0] ≤ E [XN∧n] ≤ E [Xn] (5)

Application of Proposition 20:
n 7→ XN∧n and n 7→ Xn are bounded submartingales in Lp(Ω).
Thus:

Xn∧N
a.s, Lp
−−−→ XN , and Xn

a.s, Lp
−−−→ X∞.

Therefore taking limits in (5) we get:

E [X0] ≤ E [XN ] ≤ E [X∞]
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Optional sampling: the general form

Let X , p > 1 and two stopping times M, N such that
{Xn; n ≥ 1} is a submartingale.
For all n we have Xn∧N ∈ Lp(Ω) and

sup {E[|Xn∧N |p]; n ≥ 0} ≡ A < ∞.

M ≤ N almost surely
Then we have

E [XM ] ≤ E [XN ] , and XM ≤ E [XN | FM ] .

Theorem 22.
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Proof

Proof of E [XM ] ≤ E [XN ]: Set Yn = Xn∧N . Then
Y is a submartingale satisfying the assumptions of Theorem 21
Y∞ = XN

Invoking Theorem 21 we thus get

E [YM ] ≤ E [Y∞] ⇐⇒ E [XM ] ≤ E [XN ] .
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Proof (2)

Definition of a stopping time: For A ∈ FM we set

T = M 1A + N 1Ac .

Then T is a stopping time. Indeed:

{T ≤ n} = ({M ≤ n} ∩ A)
⋃

({N ≤ n} ∩ Ac)
= ({M ≤ n} ∩ A)

⋃
({N ≤ n} ∩ {M ≤ n} ∩ Ac) ,

and hence:
{T ≤ n} ∈ Fn
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Proof (3)

Inequality involving A:
For A, T as before, applying E[XT ] ≤ E[XN ] we get

E [XT ] ≤ E [XN ]
⇐⇒ E [XM 1A] + E [XN 1Ac ] ≤ E [XN 1A] + E [XN 1Ac ]
⇐⇒ E [XM 1A] ≤ E [XN 1A]

Therefore, by definition of the conditional expectation we get:

E [XM 1A] ≤ E {E [XN | FM ] 1A} (6)
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Proof (4)

Conclusion: For k ≥ 1 we set

Ak =
{

XM − E [XN | FM ] ≥ 1
k

}
.

Then Ak ∈ FM and according to (6) we have

P(Ak) = 0.

Hence:
P (XM − E [XN | FM ] > 0) = P (∪k≥1Ak) = 0

and thus:
XM ≤ E [XN | FM ] , almost surely.
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