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Formal definition

We are given a probability space (Ω,F0,P) and
A σ-algebra F ⊂ F0.
X ∈ F0 such that E[|X |] <∞.

Conditional expectation of X given F :
Denoted by E[X |F ]
Defined by: E[X |F ] is the L1(Ω) r.v Y such that

(i) Y ∈ F .
(ii) For all A ∈ F , we have

E[X1A] = E[Y 1A],

or otherwise stated
∫

A X dP =
∫

A Y dP.

Definition 1.
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Remarks

Notation: We use the notation Y ∈ F to say that a random variable
Y is F -measurable.

Interpretation: More intuitively
F represents a given information
Y is the best prediction of X given the information in F .

Existence: to be seen after the examples.

Uniqueness: If it exists, the conditional expectation is unique.
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Proof of uniqueness

Aim: Let Y ,Y ′ satisfying (i) + (ii).
↪→ Let us show Y = Y ′ a.s

General property: For all A ∈ F , we have E[Y 1A] = E[Y ′ 1A].

Particular case: Let ε > 0, and set

Aε ≡ (Y − Y ′ > ε).

Then Aε ∈ F , and thus

0 = E[(Y − Y ′) 1Aε] ≥ εE[1Aε] = εP(Aε)

⇒ P(Aε) = 0.
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Proof of uniqueness (2)
Set A+: Let

A+ ≡ (Y − Y ′ > 0) =
⋃
n>1

A1/n.

We have n 7→ A1/n increasing, and thus

P(A+) = P
⋃

n>1
A1/n

 = lim
n→∞

P(A1/n) = 0.

Set A−: In the same way, if

A− = {Y − Y ′ < 0}

we have P(A−) = 0.
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Proof of uniqueness (3)

Conclusion: We obtain, setting

A6= ≡ {Y 6= Y ′} = A+ ∪ A−,

that P(A6=) = 0, and thus Y = Y ′ a.s.
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Absolute continuity

Let µ, ν two σ-finite measures on (Ω,F).
We say that ν � µ (µ is absolutely continuous w.r.t ν) if

µ(A) = 0 =⇒ ν(A) = 0 for all A ∈ F .

Definition 2.
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Radon-Nykodym theorem

Let
µ, ν σ -finite measures on (Ω,F), such that ν � µ.

Then there exists f ∈ F such that for all A ∈ F we have

ν(A) =
∫

A
f dµ.

The function f :
Is called Radon-Nykodym derivative of µ with respect to ν
Is denoted by f ≡ dν

dµ .
We have f ≥ 0 µ-almost everywhere
f ∈ L1(µ).

Theorem 3.
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Conditional expectation: existence

Hypothesis: We have
A σ-algebra F ⊂ F0.
X ∈ F0 such that E[|X |] <∞.
X > 0.

Defining two measures: we set
1 µ = P, measure on (Ω,F).
2 ν(A) ≡ E[X 1A] =

∫
A X dP.

Then ν is a measure (owing to Beppo-Levi).
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Conditional expectation: existence (2)

Absolute continuity: we have

P(A) = 0⇒ 1A = 0 P-a.s.
⇒ X 1A = 0 P-a.s.
⇒ ν(A) = 0

Thus ν � P

Conclusion: invoking Radon-Nykodym, there exists f ∈ F such that,
for all A ∈ F , we have ν(A) =

∫
A f dP.

↪→ We set f = E[X |F ].
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Easy examples

Example 1: If X ∈ F , then E[X |F ] = X .

Definition: We say that X ⊥⊥ F if
↪→ for all A ∈ F and B ∈ B(R), we have

P((X ∈ B) ∩ A) = P(X ∈ B)P(A),

or otherwise stated: X ⊥⊥ 1A.

Example 2: If X ⊥⊥ F , then E[X |F ] = E[X ].
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Proof: example 2

We have
(i) E[X ] ∈ F since E[X ] is a constant.
(ii) If A ∈ F ,

E[X 1A] = E[X ] E[1A] = E
[
E[X ] 1A

]
.
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Discrete conditional expectation

Example 3: We consider{
Ωj ; j > 1

}
partition of Ω such that P(Ωj) > 0 for all j > 1.

F = σ(Ωj ; j > 1).
Then

E[X |F ] =
∑
j>1

E[X 1Ωj ]
P(Ωj)

1Ωj ≡ Y . (1)
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Proof: example 3

Strategy: Verify (i) and (ii) for the random variable Y .

(i) For all j ≥ 1, we have 1Ωj ∈ F . Thus, for any sequence (αj)j≥1,∑
j≥1

αi1Ωj ∈ F .

(ii) It is enough to verify (1) for A = Ωn and n ≥ 1 fixed. However,

E[Y 1Ωn] = E
{
E[X1Ωn]
P(Ωn) 1Ωn

}
= E[X 1Ωn]

P(Ωn) E[1Ωn] = E[X 1Ωn].
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Undergrad conditional probability

Definition: For a generic measurable set A ∈ F0, we set

P(A|F) ≡ E[1A|F ]

Discrete example setting:
Let B,Bc be a partition of Ω, and A ∈ F0. Then

1 F = σ(B) =
{

Ω, ∅,B,Bc
}

2 We have
P(A|F) = P(A|B) 1B + P(A|Bc) 1Bc .
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Dice throwing

Example: We consider
Ω =

{
1, 2, 3, 4, 5, 6

}
, A = {4}, B = "even number".

Then
P(A|F) = 1

3 1B.
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Conditioning a r.v by another r.v
Definition: Let X and Y be two random variables such that
X ∈ L1(Ω). We set

E[X |Y ] = E[X |σ(Y )].

Criterion to determine if A ∈ σ(Y ):
We have A ∈ σ(Y ) iff

A =
{
ω; Y (ω) ∈ B

}
, or 1A = 1B(Y )

Criterion to determine if Z ∈ σ(Y ):
Let Z and Y be two random variables. Then

Z ∈ σ(Y ) iff we can write Z = U(Y ), with U ∈ B(R).
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Conditioning a r.v by a discrete r.v

Example 4: Whenever X and Y are discrete random variables
↪→ Computation of E[X |Y ] can be handled as in example 3.

More specifically:
Assume Y ∈ E with E = {yi ; i ≥ 1}
Hypothesis: P(Y = yi) > 0 for all i ≥ 1.

Then E[X |Y ] = h(Y ) with h : E → R defined by:

h(y) = E[X 1(Y =y)]
P(Y = y) .
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Conditioning a r.v by a continuous r.v

Example 5: Let (X ,Y ) couple of real random variables with
measurable density f : R2→R+. We assume that∫

R
f (x , y)dx > 0, for all y ∈ R.

Let g : R→ R a measurable function such that g(X ) ∈ L1(Ω). Then
E[g(X )|Y ] = h(Y ), with h : R→ R defined by:

h(y) =
∫
R g(x)f (x , y)dx∫

R f (x , y)dx .
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Heuristic proof

Formally one can write:

P(X = x |Y = y)” = ”P(X = x ,Y = y)
P(Y = y) = f (x , y)∫

f (x , y)dx ,

Integrating against this density we get:

E[g(X )|Y = y ] =
∫

g(x)P(X = x |Y = y) dx

=
∫

g(x)f (x , y)dx∫
f (x , y)dx .

Samy T. Conditional expectation Probability Theory 23 / 59



Rigorous proof
Strategy: Check (i) and (ii) in the definition for the r.v h(Y ).

(i) If h ∈ B(R), we have seen that h(Y ) ∈ σ(Y ).

(ii) Let A ∈ σ(Y ) Then

A =
{
ω; Y (ω) ∈ B

}
=⇒ 1A = 1B(Y )

Thus

E[h(Y )1A] = E[h(Y )1B(Y )]

=
∫

B

∫
R

h(y)f (x , y)dxdy

=
∫

B
dy
∫
R

{∫ g(z)f (z , y)dz∫
f (z , y)dz

}
f (x , y)dx

=
∫

B
dy
∫

g(z)f (z , y)dz= E[g(X )1B(Y )].
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Weird example

Example 6: We take
Ω = (0, 1), F0 = B((0, 1)) and P = λ.

We set X (ω) = cos(πω), and

F = {A ⊂ (0, 1); A or Accountable} .

Then E[X |F ] = 0.
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Proof

Strategy: Check (i) and (ii) in the definition for the r.v Y = 0.

(i) Obviously 0 ∈ F .

(ii) Let A ∈ F , such that A is countable. Then

E[X 1A] =
∫

A
cos(πx)dx = 0.

Similarly, if A ∈ F is such that Ac is countable, we have

E[X 1A] =
∫ 1

0
cos(πx)dx −

∫
Ac

cos(πx)dx = 0,

which ends the proof.

Samy T. Conditional expectation Probability Theory 26 / 59



Weird example: heuristics

Intuition: One could think that
1 We know that {x} occurred for all x ∈ [0, 1]
2 {x} ∈ F
3 Thus E[X |F ] = X .

Paradox: This is wrong because X /∈ F .

Correct intuition: If we know ω ∈ Ai for a finite number of Ai ∈ F
then nothing is known about X .
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Linearity, expectation

Let X ∈ L1(Ω). Then

E
{
E[X |F ]

}
= E[X ].

Proposition 4.

Let α ∈ R, and X ,Y ∈ L1(Ω). Then

E[αX + Y |F ] = αE[X |F ] + E[Y |F ] a.s.

Proposition 5.
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Proof
Strategy: Check (i) and (ii) in the definition for the r.v

Z ≡ αE[X |F ] + E[Y |F ].

Verification: we have
(i) Z is a linear combination of E[X |F ] and E[Y |F ]

↪→ Z ∈ F .
(ii) For all A ∈ F , we have

E[Z 1A] = E
{

(αE[X |F ] + E[Y |F ]) 1A
}

= αE
{
E[X |F ] 1A

}
+ E

{
E[Y |F ] 1A

}
= αE[X 1A] + E[Y 1A]
= E[(αX + Y ) 1A].
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Monotonicity

Let X ,Y ∈ L1(Ω) such that X 6 Y almost surely. We have

E[X |F ] 6 E[Y |F ],

almost surely.

Proposition 6.

Proof: Along the same lines as proof of uniqueness for the
conditional expectation.For instance if we set

Aε = {E[X |F ]− E[Y |F ] > ε > 0} ,

then it is readily checked that

P(Aε) = 0.
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Monotone convergence

Let {Xn; n ≥ 1} be a sequence of random variables such that
Xn > 0
Xn ↗ X almost surely
E[X ] <∞.

Then
E[Xn|F ]↗ E[X |F ].

Proposition 7.
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Proof

Strategy: Set Yn ≡ X − Xn. We are reduced to show
Zn ≡ E[Yn|F ]↘ 0.

Existence of a limit: n 7→ Yn is decreasing, and Yn > 0
↪→ Zn is decreasing and Zn > 0.
↪→ Zn admits a limit a.s, denoted by Z∞.

Aim: Show that Z∞ = 0.
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Proof (2)
Expectation of Z∞: we will show that E[Z∞] = 0. Indeed

Xn converges a.s. to X .
0 6 Xn 6 X ∈ L1(Ω).

Thus, by dominated convergence, E[Xn]→ E[X ].
We deduce:

E[Yn]→ 0
Since E[Yn] = E[Zn], we also have E[Zn]→ 0.
By monotone convergence, we have E[Zn]→ E[Z∞]

This yields E[Z∞] = 0.

Conclusion: Z∞ ≥ 0 and E[Z∞] = 0
↪→ Z∞ = 0 almost surely.
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Cauchy-Schwarz inequality

Let X ,Y ∈ L2(Ω). Then

E2[X Y |F ] 6 E[X 2|F ]E[Y 2|F ] a.s.

Proposition 8.

Proof:
For all θ ∈ R, we have

E[(X + θY )2|F ] > 0 a.s.

Thus almost surely we have: for all θ ∈ Q,

E[(X + θY )2|F ] > 0,

Samy T. Conditional expectation Probability Theory 35 / 59



Proof

Expansion: For all θ ∈ Q

E[Y 2|F ]θ2 + 2E[XY |F ]θ + E[X 2|F ] > 0.

Recall: If a polynomial satisfies aθ2 + bθ + c > 0 for all θ ∈ Q
↪→ then we have b2 − 4ac 6 0

Application: Almost surely, we have

E 2[XY |F ]− E[X 2|F ]E[Y 2|F ] 6 0.
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Jensen’s inequality

Let X ∈ L1(Ω), and ϕ : R → R such that ϕ(X ) ∈ L1(Ω) and
ϕ convex. Then

ϕ(E[X |F ]) 6 E[ϕ(X )|F ] a.s.

Proposition 9.

The conditional expectation is a contraction in Lp(Ω)
for all p > 1

Proposition 10.

Proof: According to Jensen’s inequality,
X ∈ Lp(Ω)⇒ E[X |F ] ∈ Lp(Ω)

and
E {|E[X |F ]|p} 6 E[|X |p]
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Successive conditionings

Let
Two σ-algebras F1 ⊂ F2.
X ∈ L1(Ω).

Then

E {E[X |F1]|F2} = E[X |F1] (2)
E {E[X |F2]|F1} = E[X |F1]. (3)

Theorem 11.
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Proof

Proof of (2): We set Z ≡ E[X |F1]. Then

Z ∈ F1 ⊂ F2.

According to Example 1, we have E[Z |F2] = Z , i.e. (2).

Proof of (3): We set U = E[X |F2].
↪→ We will show that E[U |F1] = Z , via (i) and (ii) of Definition 1.
(i) Z ∈ F1.
(ii) If A ∈ F1, we have A ∈ F1 ⊂ F2, and thus

E[Z1A] = E[X1A] = E[U1A].
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Conditional expectation for products

Let X ,Y ∈ L2(Ω), such that X ∈ F . Then

E[X Y |F ] = X E[Y |F ].

Theorem 12.

Proof: We use a 4 steps methodology
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Proof

Step 1: Assume X = 1B, with B ∈ F
We check (i) and (ii) of Definition 1.
(i) We have 1BE[Y |F ] ∈ F .
(ii) For A ∈ F , we have

E {(1BE[Y |F ]) 1A} = E {E[Y |F ] 1A∩B}
= E[Y 1A∩B]
= E[(1BY ) 1A],

and thus
1B E[Y |F ] = E[1B Y |F ].
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Proof (2)
Step 2: If X is of the form

X =
∑
i6n

αi1Bi ,

with αi ∈ R and Bi ∈ F , then, by linearity we also get

E[XY |F ] = X E[Y |F ].

Step 3: If X ,Y > 0
↪→ There exists a sequence {Xn; n > 1} of simple random variables
such that

Xn ↗ X .
Then applying the monotone convergence we end up with:

E[XY |F ] = X E[Y |F ].
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Proof (3)

Step 4: General case X ∈ L2

↪→ Decompose X = X + − X− and Y = Y + − Y −, which gives

E[XY |F ] = XE[Y |F ]

by linearity.

Samy T. Conditional expectation Probability Theory 43 / 59



Conditional expectation and independence

Let
X ,Y two independent random variables
α : R2 → R such that α(X ,Y ) ∈ L1(Ω)

We set, for x ∈ R,

g(x) = E[α(x ,Y )].

Then
E[α(X ,Y )|X ] = g(X ).

Theorem 13.

Proof: with 4 steps method applied to α.
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Orthogonal projection

Definition: Let
H Hilbert space
↪→ complete vectorial space equipped with inner product.
F closed subspace of H .

Then, for all x ∈ H
There exists a unique y ∈ F , denoted by y = πF (x)

Satisfying one of the equivalent conditions (i) or (ii).
(i) For all z ∈ F , we have 〈x − y , z〉 = 0.
(ii) For all z ∈ F , we have ‖x − y‖H 6 ‖x − z‖H .
πF (x) is denoted orthogonal projection of x onto F .
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Conditional expectation and projection

Consider
The space L2(F0) ≡ {Y ∈ F0; E[Y 2] <∞}.
X ∈ L2(F0).
F ⊂ F0

Then
1 L2(F0) is a Hilbert space
↪→ Inner product 〈X ,Y 〉 = E[XY ].

2 L2(F) is a closed subspace of L2(F0).
3 πL2(F)(X ) = E[X |F ].

Theorem 14.
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Proof

Proof of 2:
If Xn → X in L2 ⇒ There exists a subsequence Xnk → X a.s.
Thus, if Xn ∈ F , we also have X ∈ F .

Proof of 3: Let us check (i) in our definition of projection
Let Z ∈ L2(F).
↪→ We have E[Z X |F ] = Z E[X |F ], and thus

E {Z E[X |F ]} = E {E[X Z |F ]} = E [X Z ] ,

which ensures (i) and E[X |F ] = πL2(F)(X ).
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Application to Gaussian vectors

Example: Let
(X ,Y ) centered Gaussian vector in R2

Hypothesis: V (Y ) > 0.
Then

E[X |Y ] = αY , with α = E[X Y ]
V (Y ) .
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Proof
Step 1: We look for α such that

Z = X − αY =⇒ Z ⊥⊥ Y .

Recall: If (Z ,Y ) is a Gaussian vector
↪→ Z ⊥⊥ Y iff cov(Z ,Y ) = 0

Application: cov(Z ,Y ) = E[Z Y ]. Thus

cov(Z ,Y ) = E[(X − αY ) Y ] = E[X Y ]− αV (Y ),

et
cov(Z ,Y ) = 0 iff α = E[XY ]

V (Y ) .
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Proof (2)

Step 2: We invoke (i) in the definition of π.
↪→ Let V ∈ L2(σ(Y )). Then

Y ⊥⊥ (X − αY ) =⇒ V ⊥⊥ (X − αY )

and
E[(X − αY ) V ] = E[X − αY ]E[V ] = 0.

Thus
αY = πσ(Y )(X ) = E[X |Y ].
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CRL

Let
(Ω,F ,P) a probability space
(S,S) a measurable space
X : (Ω,F)→ (S,S) a random variable
G a σ-algebra such that G ⊂ F .

We say that µ : Ω× S → [0, 1] is a Conditional regular law of
X given G if
(i) For all A, the map ω → µ(ω,A) is a random variable,

equal to P(X ∈ A| G) a.s.
(ii) ω-a.s. A→ µ(ω,A) is a probability measure on (S,S).

Definition 15.

Remark:
We will always have (S,S) of the form (R,B(R)), (N,P(N), etc.
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Discrete example
Poisson law case: Let

X ∼ P(λ) and Y ∼ P(µ)
X ⊥⊥ Y

We set S = X + Y .
Then CRL of X given S is Bin(S, p), with p = λ

λ+µ

Proof: we have seen that for n 6 m

P(X = n|S = m) =
(

m
n

)
pn (1− p)m−n with p = λ

λ + µ
.

Then we consider
S = N, G = σ(S)

and we verify that these conditional probabilities define a CRL.
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Continuous example
Exponential law case: Let

X ∼ E(1) and Y ∼ E(1)
X ⊥⊥ Y

We set S = X + Y .
Then CRL of X given S is U([0, S]).

Proof: The joint density of (X , S) is given par

f (x , s) = e−s1{0≤x≤s}.

Let then ψ ∈ Bb(R+). Thanks to Example 5, we have

E[ψ(X )|S] = u(S),

with
u(s) =

∫
R2

+
ψ(x)f (x , s)dx∫
R2

+
f (x , s)dx = 1

s

∫ s

0
ψ(x)dx .
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Proof

In addition, S 6= 0 almost surely, and thus if A ∈ B(R) we have:

P (X ∈ A|S) = |A ∩ [0, S]|
S .

Considering the state space as = R+, S = B(R+) and setting

µ(ω,A) = |A ∩ [0, S(ω)]|
S(ω) ,

one can verify that we have defined a conditional regular law.
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Existence of the CRL

Let
X a random variable on (Ω,F0,P).
Taking values ina space of the form (Rn,B(Rn)).
G ⊂ F0 a σ-algebra.

Then the CRL of X given G exists.

Theorem 16.

Proof: nontrivial and omitted.
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Computation rules for CRL
(1) If G = σ(Y ), with Y random variable with values in Rm, we have

µ(ω,A) = µ(Y (ω),A),

and one can define a CRL of X given Y as a family
{µ(y , .); y ∈ Rm} of probabilities on Rn, such that for all
A ∈ B(Rn) the function

y 7→ µ(y ,A)

is measurable.
(2) If Y is a discrete r.v, this can be reduced to:

µ(y ,A) = P (X ∈ A|Y = y) = P (X ∈ A,Y = y)
P (Y = y) .
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Computation rules for CRL (2)

(3) When one knows the CRL, quantities like the following (for
φ ∈ B(Rn)) can be computed:

E [φ(X )|G] =
∫
Rn
φ(x)µ(ω, dx)

E [φ(X )|Y ] =
∫
Rn
φ(x)µ(Y , dx).

(4) The CRL is not unique.
However if N1,N2 are 2 CRL of X given G
↪→ we have ω-almost surely:

N1(ω,A) = N2(ω,A) for all A ∈ B(Rn).

Samy T. Conditional expectation Probability Theory 59 / 59


	Definition
	Examples
	Conditional expectation: properties
	Conditional expectation as a projection
	Conditional regular laws

