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Formal definition

— Definition 1. | \
We are given a probability space (2, Fo, P) and

e A o-algebra F C Fy.

e X € Fy such that E[|X]] < oc.
Conditional expectation of X given F:

@ Denoted by E[X|F]

o Defined by: E[X|F] is the L}(Q2) r.v Y such that

(i) Y eF.
(ii) For all A€ F, we have

E[X14] = E[Y1,],

or otherwise stated [, X dP = [, Y dP.

\.
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Remarks

Notation: We use the notation Y € F to say that a random variable
Y is F-measurable.

Interpretation: More intuitively
@ F represents a given information
@ Y is the best prediction of X given the information in F.

Existence and uniqueness:
To be seen after the examples.
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Easy examples

Example 1: If X € F, then E[X|F] = X.

Definition: We say that X 1L F if
— for all A€ F and B € B(R), we have

P((X € B)nA) =P(X € B)P(A),
or otherwise stated: X 1L 14.

Example 2: If X 1L F, then E[X|F]| = E[X].
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Proof: example 2

We have
(i) E[X] € F since E[X] is a constant.
(i) IfAe F,

E[X 1] = E[X] E[14] = E[E[X] 14.
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Discrete conditional expectation

Example 3: We consider
° {Qj;j > 1} partition of Q such that P(€;) > 0 for all j > 1.
o F=0(Qj>1).

Then Eix 1
ElXIA] = 3 g

Jj=1

1QJ' =Y. (1)
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Proof: example 3

Strategy: Verify (i) and (ii) for the random variable Y.

(i) Forall j > 1, we have 1o, € F. Thus, for any sequence (a;);>1,

Zaile e F.

j>1
(i) It is enough to verify (1) for A = Q, and n > 1 fixed. However,

Xtal, | _ EXIn)

P(Qn) = 7E[19n] = E[X ]-Qn]‘
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Undergrad conditional probability

Definition: For a generic measurable set A € F, we set
P(A|F) = E[14]F]

Discrete example setting:
Let B, B¢ be a partition of €2, and A € Fy. Then

@ F=0(B)={Q0,B B}

@ We have
P(A|F) =P(AB)1g + P(A|B) 1.
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Dice throwing

Example: We consider
o Q= {1,2,3,4,5,6}, A= {4}, B ="even number".
Then 1
P(AIF) = ; 1a.
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Conditioning a r.v by another r.v

Definition: Let X and Y be two random variables such that
X € L}(Q). We set

E[X|Y] = E[X|o(Y)].
Criterion to determine if A € o(Y):
We have A € o(Y) iff
A= {w; Y(w) € B}, or 1,=15(Y)
Criterion to determine if Z € o(Y):
Let Z and Y be two random variables. Then
Zeco(Y) iffwecanwrite Z=U(Y), with U e B(R).
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Conditioning a r.v by a discrete r.v

Example 4: Whenever X and Y are discrete random variables
— Computation of E[X|Y] can be handled as in example 3.

More specifically:
@ Assume Y € E with E ={y;; i > 1}
@ Hypothesis: P(Y =y;) > 0 for all i > 1.

Then E[X|Y] = h(Y) with h: E — R defined by:

h(y) = EP[);YI (_Yyy))].
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Conditioning a r.v by a continuous r.v

Example 5: Let (X, Y) couple of real random variables with
measurable density f : R2—R,. We assume that

/ f(x,y)dx >0, forallycRR.
R

Let g : R — R a measurable function such that g(X) € L}(Q2). Then
E[g(X)|Y] = h(Y), with h: R — R defined by:

e g()F(x. y)dx
)= ey )
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Heuristic proof

Formally one can use a conditional density:

v ZPX=xY=y)  f(xy)
PX=xY =)= P(Y=y)  [f(x,y)dx’

Integrating against this density we get:

Elg(X)|Y =y = [g()P(X =x|Y =) dx
J &(x)f(x,y)dx

Jf(x,y)dx
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Rigorous proof
Strategy: Check (i) and (ii) in the definition for the r.v h(Y).

(i) If h € B(R), we have seen that h(Y) € o(Y).
(i) Let A€ o(Y) Then

A={w Y(w)eB} = 14=15Y)
Thus

E[h(Y)1a] = E[h(Y)15(Y)]
= //h(y)fx y)dxdy

/ / {f gf fzf y )(;Zdz}f(x,y)dx
= [ & [ e(2)f(z.y)dz= Elg(X)1a(Y)].

Probability Theory 17 / 64



Weird example

Example 6: We take
e Q=(0,1), Fo = B((0,1)) and P = A.

We set X(w) = cos(mw), and
F ={AC(0,1); A or A°countable} .

Then E[X|F] = 0.
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Proof

Strategy: Check (i) and (ii) in the definition for the r.v Y = 0.

(i) Obviously 0 € F.
(i) Let A € F, such that A is countable. Then
E[X1,] = / cos(mx)dx = 0.
A

Similarly, if A € F is such that A¢ is countable, we have

E[X1,] = /01 cos(mx)dx — / cos(mx)dx =0,

C

which ends the proof.
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Weird example: heuristics

Intuition: One could think that
@ We know that {x} occurred for all x € [0, 1]
Q@ {x}eF
@ Thus E[X|F] = X.

Paradox: This is wrong because X ¢ F.

Correct intuition: If we know w € A; for a finite number of A; € F
then nothing is known about X.
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Conditional expectation: uniqueness

,—[Proposition 2.] \
On the probability space (€2, Fo, P) consider

o A o-algebra F C Fo.

@ X € Fy such that E[|X]] < oc.

Then if it exists, the random variable
E[X|F]

is uniquely defined.

\ J
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Proof of uniqueness

Aim: Let Y, Y satisfying (i) + (ii).
— Let us show Y =Y’ as

General property: For all A € F, we have E[Y 1] = E[Y'14].
Particular case: Let € > 0, and set

A=(Y-Y >0
Then A, € F, and thus

0= E[(Y — Y")14] > cE[Ls] = ¢ P(A)
= P(A) = 0.
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Proof of uniqueness (2)

Set A,: Let
Ar=(Y =Y >0) = Ayn

n>1

We have n > Ay, increasing, and thus

n>1

P(A,) = (U Al/,,) = lim P(Ay,) =0.

Set A_: In the same way, if

_={Yy-Y' <o}
we have P(A_) = 0.
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Proof of uniqueness (3)

Conclusion: We obtain, setting
A, ={Y#Y}=A,UA_,

that P(A.) =0, and thus Y = Y’ as.
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Absolute continuity

— Definition 3. \

Let i, v two o-finite measures on (S, F).
We say that v < p (u is absolutely continuous w.r.t v) if

u(A)=0 = v(A)=0forall Ac F.
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Radon-Nykodym theorem
— Theorem 4.

Let
@ u,v o -finite measures on (€2, F), such that v < p.
Then there exists f € F such that for all A € F we have

v(A) :/Afd,u.

The function f:
@ Is called Radon-Nykodym derivative of 1 with respect to v
@ Is denoted by f = Z—Z.
@ We have f > 0 p-almost everywhere
o fellu).

\ J
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Conditional expectation: existence

,—[Proposition 5.] \
On the probability space (€2, Fo, P) consider

o A o-algebra F C Fo.

@ X € Fy such that E[|X]] < oc.

Then the random variable
E[X|F]

exists and is uniquely defined.

\ J
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Proof of existence

Hypothesis: We have
o A o-algebra F C Fy.
e X € Fy such that E[|X]|] < oo.
e X >0.

Defining two measures: we set
Q 1 = P, measure on (Q,F).
Q@ v(A) =E[X1,4] = [, XdP.
Then v is a measure (owing to Beppo-Levi).
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Proof of existence (2)

Absolute continuity: we have

P(A)=0=1,=0 P-as.
= X1,=0 P-as.
=v(A)=0

Thus v < P
Conclusion: invoking Radon-Nykodym, there exists f € F such that,

for all A€ F, we have v(A) = [, f dP.
— We set f = E[X]|F].
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Linearity, expectation

,—{Proposition 6.}
Let X € L}(2). Then

E{E[X|7]} = E[X].

\.

,—[Proposition 7.]
Let « € R, and X, Y € L}(2). Then

E[aX + Y|F] = « E[X|F] + E[Y|F] as.
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Proof

Strategy: Check (i) and (ii) in the definition for the r.v
Z = o E[X|F] + E[Y|F].

Verification: we have
(i) Z is a linear combination of E[X|F] and E[Y|F]
—ZeF.
(i) For all A€ F, we have

E[Z1s] = E{(aE[X|F]+E[Y|F])1af
= aE{E[X|F]1a} + E{E[Y|F]1a}
= aE[X14] + E[Y 14]
E[(aX + Y)14].
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Monotonicity

\.

,—[Proposition 8.}

Let X, Y € L}(Q) such that X < Y almost surely. We have
E[X|F] < E[Y|F],

almost surely.

Proof: Along the same lines as proof of uniqueness for the
conditional expectation.For instance if we set

A. = {E[X|F] — E[Y|F] = ¢ > 0},

then it is readily checked that

P(A.) = 0.

SEIAN Conditional expectation Probability Theory
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Monotone convergence

,—[Proposition 9.] \
Let {X,; n > 1} be a sequence of random variables such that
e X, >0
e X, /X almost surely
o E[X] < 0.
Then
L E[X,|F]  E[X|7]. |
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Proof

Strategy: Set Y, = X — X,,. We are reduced to show
Z, = E[Y,|F] \( 0.

Existence of a limit: n— Y, is decreasing, and Y, > 0
— Z, is decreasing and Z, > 0.
— Z, admits a limit a.s, denoted by Z.

Aim: Show that Z,, = 0.
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Proof (2)

Expectation of Z..: we will show that E[Z.,] = 0. Indeed
@ X, converges a.s. to X.
0 0< X, < Xe Q).
Thus, by dominated convergence, E[X,] — E[X].
We deduce:
e E[Y,] =0
@ Since E[Y,] = E[Z,], we also have E[Z,] — 0.
@ By monotone convergence, we have E[Z,] — E[Z.]
This yields E[Z,] = 0.

Conclusion: Z,, > 0 and E[Z,] =0
— Z, = 0 almost surely.
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Cauchy-Schwarz inequality

Proposition 10.]
Let X, Y € L?(Q2). Then

E2[X Y|F] < E[X2|F]E[Y?|F] as.

Proof:
For all # € R, we have

E[(X+0Y)*|F] >0 as.
Thus almost surely we have: for all 6 € Q,

E[(X +0Y)?F] >0,
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Proof

Expansion: For all 6 € Q

E[Y?|F]0* + 2E[XY|F]0 + E[X?|F] > 0.
Recall: If a polynomial satisfies a#? 4+ b +c > 0 for all 6 € Q
< then we have b®> —4ac <0

Application: Almost surely, we have

E?[XY|F] — E[X? F]E[Y?F] <O.

SEIAN Conditional expectation Probability Theory 39 / 64



Jensen’s inequality

,—[Proposition 11.] \

Let X € L}(Q), and ¢ : R — R such that p(X) € L}(Q2) and
@ convex. Then

p(E[X|F]) < E[p(X)|F] ass.
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Contraction in LP(2)

Proposition 12.]

The conditional expectation is a contraction in LP()
forallp>1

Proof: According to Jensen's inequality,
X € LP(Q) = E[X|F] € LP(Q2)
and

[E[X|F]I” <E[X|PIF] — E{|E[X|F]]P} <E[X]]
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Successive conditionings

r—[Theorem 13.]

Let
@ Two o-algebras F; C F>.
e X € L}Q).
Then
E{E[X|A]|F} = E[X|[A] (2)
E{E[X|F]lF1} = E[X|F] (3)
Probability Theory 42 / 64



Proof

Proof of (2): We set Z = E[X|F;]. Then
Z e FL CFo.
According to Example 1, we have E[Z|F,] = Z, i.e. (2).

Proof of (3): We set U = E[X|F,].
— We will show that E[U|F;] = Z, via (i) and (ii) of Definition 1.

(I) Z € Fi.
(i) If A€ Fi, we have A € F; C F,, and thus

E[Z14] = E[X1,] = E[UL,].
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Conditional expectation for products

Theorem 14.}

Let X, Y € L?(Q), such that X € F. Then

E[X Y|F] = X E[Y|F].

Proof: We use a 4 steps methodology
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Proof

Step 1: Assume X = 1, with B F
We check (i) and (ii) of Definition 1.

(i) We have 1gE[Y|F] € F.
(i) For A € F, we have

E{(1E[Y|F]) 1a} = E{E[Y[F]1lans}

= E[Y ]-AﬂB]
= E[(15Y)14],
and thus
15 E[Y|F] = E[1g Y|F].
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Proof (2)
Step 2: If X is of the form

X = Z(I,'IB,.,

i<n
with o; € R and B; € F, then, by linearity we also get

E[XY|F] = X E[Y|F].

Step3: If X, Y >0
< There exists a sequence {X,; n > 1} of simple random variables
such that

Xo X

Then applying the monotone convergence we end up with:
E[XY|F] = XE[Y|F].
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Proof (3)

Step 4: General case X € [?
— Decompose X = XT — X~ and Y = Y — Y, which gives

E[XY|F] = XE[Y|F]

by linearity.
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Conditional expectation and independence

r—[Theorem 15.]

Let

We set, for x € R,

Then

\

e X, Y two independent random variables
e a:R? — R such that a(X, Y) € LY(Q)

g(x) = E[a(x, Y.

E[a(X, Y)|X] = g(X).

Proof: with 4 steps method applied to a.

SEIAN Conditional expectation
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Generalization of the previous theorem

r—[Theorem 16.]

Let
o F C ./T"o

We set, for x € R,

Then

@ X e Fand Y 1L F two random variables
e a:R? — R such that a(X, Y) € L}(Q)

8(x) = Ela(x, Y)].

E[a(X, Y)|F] = g(X).

SEIAN Conditional expectation
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Orthogonal projection

Definition: Let

@ H Hilbert space
— complete vectorial space equipped with inner product.

@ F closed subspace of H.
Then, for all x €¢ H
@ There exists a unique y € F, denoted by y = m¢(x)
Satisfying one of the equivalent conditions (i) or (ii).
(i) For all z € F, we have (x — y,z) = 0.
(ii) For all z € F, we have ||x — y||y < ||x — z|| 4.
7e(x) is denoted orthogonal projection of x onto F.
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Conditional expectation and projection

r—[Theorem 17.]
Consider
e The space [2(Fy) = {Y € Fo; E[Y?] < o0}.
o X € L*(Fy).
o FCFy
Then
@ [*(Fo) is a Hilbert space
— Inner product (X, Y) = E[XY].
@ [?(F) is a closed subspace of L?(Fy).
© i (X) = EX|F]

SEIAN Conditional expectation Probability Theory
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Proof

Proof of 2:
If X, — X in L2 = There exists a subsequence X, — X a.s.
Thus, if X, € F, we also have X € F.

Proof of 3: Let us check (i) in our definition of projection

Let Z € [2(F).
— We have E[Z X|F] = Z E[X|F], and thus

E{ZE[X|F|} = E{E[XZ|F]} = E[X Z],

which ensures (i) and E[X|F] = 7m2(7)(X).
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Application to Gaussian vectors

Example: Let
e (X, Y) centered Gaussian vector in R?
@ Hypothesis: V(Y) > 0.

Then

B . _ E[XY]
E[X|]Y]=aY, with o= V(Y)
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Proof

Step 1: We look for « such that

Z=X—-aY — Z1Y.

Recall: If (Z,Y) is a Gaussian vector
— Z 1l Yiffcov(Z,Y)=0

Application: cov(Z,Y) =E[Z Y]. Thus
cov(Z,Y) = E[(X — aY) Y] = E[X Y] — aV(Y),
et

_E[XY]

cov(Z,Y)=0 iff VY)"
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Proof (2)

Step 2: We invoke (i) in the definition of .
< Let V € L?(o(Y)). Then

YL (X—-aY) = VI (X-aY)
and
E[(X —aY) V] =E[X —aY]E[V]=0.
Thus
aY = Wg(y)(X) = E[X‘ Y]
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CRL

~ Definition 18. ]
Let
e (Q, F, P) a probability space
@ (S,8) a measurable space of the form R4, Z¢
e X:(Q,F)— (S,8) arandom variable in L}(Q)
@ G a o-algebra such that G C F.
We say that 11 : Q x S — [0, 1] is a Conditional regular law of
X given G if
(i) For all f € Cp(S), the map w +— p(w, f) is a random
variable, equal to E[f(X)|J] a:s.
(il) w-a.s. f— p(w, f) is a probability measure on (S, S).
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Discrete example

Poisson law case: Let
e X ~P(\)and Y ~ P(u)
e X 1Y

Weset S=X+Y.
Then CRL of X given S is Bin(S, p), with p = >

Proof: we have seen that for n < m

P(X=nS=m)= (:) p"(1—p)™ " with p= ﬁ

Then we consider
e S=N,G=0(5)
and we verify that these conditional probabilities define a CRL.

SEIAN Conditional expectation Probability Theory 59 / 64



Continuous example
Exponential law case: Let
e X~&(1)and Y ~ &(1)
e X LY
Weset S=X+Y.
Then CRL of X given S is U([0, S]).

Proof: The joint density of (X, S) is given par
f(X, S) = e_sl{ogxgs}.
Let then ¢ € By(R). Thanks to Example 5, we have

E[¢(X)[S] = u($),

with
Jr, () (x, s)dx 1
u(s) = ez fono)de ;/0 P(x)dx.
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Proof

In addition, S # 0 almost surely, and thus if A € B(R) we have:

S
Ef)ls] = VI

Considering the state space as = R, S = B(R,) and setting

e f) = g [

one can verify that we have defined a conditional regular law.
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Existence of the CRL

r—[Theorem 19.] \

Let
e X a random variable on (9, %o, P).
e Taking values in a space of the form (R”, B(R")).
e G C Fy a o-algebra.

Then the CRL of X given G exists.

Proof: nontrivial and omitted.
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Computation rules for CRL

(1) If G = o(Y), with Y random variable with values in R™, we have

plw, f) = p(Y(w), ),

and one can define a CRL of X given Y as a family
{p(y,.);y € R™} of probabilities on R”, such that for all
f € Cp(R") the function

y = pu(y,f)

is measurable.
(2) If Y is a discrete r.v, this can be reduced to:

P(XEAY =y)

iy, A) =P (X €AY =y)= P(Y =)
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Computation rules for CRL (2)

(3) When one knows the CRL, quantities like the following (for
¢ € B(R")) can be computed:

E[0OOIG] = [ 60) u(w, o)
E[(X)|Y] = [ o(x)u(Y. )

(4) The CRL is not unique.
However if Ny, N, are 2 CRL of X given G
— we have w-almost surely:

Ny(w, ) = No(w, f) forall f e CG(R").

SEIAN Conditional expectation Probability Theory 64 / 64



	Definition
	Examples
	Existence and uniqueness
	Conditional expectation: properties
	Conditional expectation as a projection
	Conditional regular laws

