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Aim
Coefficients: We consider
e a€R"and b,ot,...,0%: R" = R".
e We denote: 0 = (o!,...,0%) : R" — R™4

e W, d-dimensional Brownian motion.

Equation: We wish to solve

d
dXs = b(Xs) ds + > _ o/ (Xs) dW..

Jj=1

Integral form: With It0's integral,

Xt—oz+/ ds+Z/ oI (Xs) AW/,

Probability Theory
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Infinitesimal drift and covariance

,—[Proposition 1.] \

Let b, o bounded, X solution of (1). Then:

atE [Xt| fs]‘t:s — b(Xs), atCOV (Xt‘ fs) — a()(s)7

le=s

with a =oco* : R" — R™",

Interpretation:
@ b(X;) = Infinitesimal drift.

@ a(X;) = Infinitesimal covariance.
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|to process

\.

—~ Definition 2. N

Let:
@ X :[0,7] — R" process in L2
@ « € R” initial condition.
@ b bounded and adapted process in R".
o {o%; k=1,...d} process of L%([0, 7];R").
We say that X is an Itd process if it admits a decomposition:

t d ¢
Xe=a+ [ bds+Y [ okawk.
Jo = Jo

Remark:

A solution of (1) is an It process
< With b, = b(X;) and 05 = o(X.).

Samy T. Sdes
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1t6's formula for a solution of (1)

,—[Proposition 3.}

Let:
@ X Itd process, defined by a, b, 0.
o f €C}.

Then f(X;) can be decomposed as:
n t .
fX) = fla)+3 / O, F(X,) bl dr
j=170

n d t )
£33 [ o FOX) ol aw
0

j=1 k=1

1 n d t i i
=PI /O B, F(X,) ol ok* dr.

J12=1 k=1

\. J
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Proof of Proposition 1

Simplification: This will be shown for s =0
— No conditional expectation to consider.

Drift term: Start from equation

Xt—oz+/ X)ds—i—Z/af ) dWi.

The terms [y 0/(X;) dW/ are centered. Therefore:

E[X]=a+ /Ot E [b(X.)] ds.
and

OE[X],_, = E[b(X))],_, = b(a).
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Proof of Proposition 1 (2)

Coordinate product: Let
e/ me{l,... n}
e f:R" — R defined by the product f(x) = x/x™.

@ a; = 050,.

According to Ito's formula we have:
t
XX = alam+ / (X!br + LX) dr 2)
0

d
+Z/ X' mk+Ulkxm de+Z/ /mdr
k=170
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Proof of Proposition 1 (3)

Expected value for the product:
Taking expectation in (2) we get:

OE [XIX[| = E [ X[bI + bIX["| + E[a]"].
Therefore:

oE [Xt’Xtm} =a'b™(a) + b'(a)a™ + a"™(a).

[t=0

Probabiity Theory 10 /63



Proof of Proposition 1 (4)

Product of expected values: We have

. , t .

E [x/] :o/+/o E [b]] ds.
Therefore
t t

E [X/] E[X7] = alam + / E[bl] E[X ds + / E[b7] E [X!] ds,

0 0
and differentiating:

O (E[X/|E[X), = a'b™(a) + b'(a)a™.

[t=0

Probabiity Theory 11/ 63



Proof of Proposition 1 (5)

Infinitesimal covariance: With two previous identities,

0Cov (X, X7) = 0 (E[XX] - E[X/|E[X)

[t=0 [t=0

— o0& [X!x7] o (E[X]EX)

= a"(a).

[t=0

Therefore:
9:Cov (Xy),,_, = a(a).
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Geometrical Brownian motion

,—[Proposition 4.]
Let:
@ W 1-dimensional Brownian motion .
epucRando >0
We set

Xe =aexp(pt+oW,).
Then X is solution of (1) with n =d =1 and:

b(x) = <u—i— 0;) x, and o(x)=ox.
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Geometrical Brownian motion (2)

Remarks:

e In order to show that X is solution of the equation
— Apply 1td’s formula.

e Exponential Brownian motion is very useful in finance (asset price):
Q X:>0.
@ Linear trend (infinitesimal drift): (u + %2) Xt

@ Fluctuations (infinitesimal standard deviation)
proportional to X;.

Summarized in Black and Scholes model.

Samy T. Sdes
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Geometrical Brownian motion: illustration
Equation: Take u =1, o = % Xo=1and

2
dX, — (u n 2) X, dt + o X, dW,

Simulation:

Geometrical Brownian motion

10 20 30 40 50 60 70
1

0
1

Time
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Ornstein-Uhlenbeck process

Situation:
Velocity of a Brownian particle with friction «.

Equation:
dX; = —aX; dt + dW,, Xo=a€elR

Explicit solution:
t
X, = ot (a vo [ e dWs)
0

Distribution: For t > 0 we have

J2(1 _ e—2at)

X~ N (ae‘o‘t, af) . with o2 = 5
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Ornstein-Uhlenbeck: illustration

Equation: Take a =1 and
dXt — _OéXt dt —+ th, XO — 1

Simulation:

OU process
0
1

T T T T T T
0 20 40 60 80 100

Time
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Galton-Watson process

Model: We start from na persons for generation m = 0, then
@ At each generation m, individuals have i.i.d offspring
@ Common law for offspring: random variable Q.

@ For n > 1, sequence of number of persons at generation m:

{Z,; m> 0}.

Assumptions on @: We suppose
Q E[Q] =1+ £ with 8 > 0.
@ Var(Q) = o2 with 6% > 0.
© For all § > 0, we have lim,_. E[Q%1(g=s,)] =0
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Feller diffusion

Expectation and variance computations: Thanks to offspring L, we
have

E[Z7| Z5 = na] = na (1 + g) . Var(Z| Z! = na) = nao?.

Scaling: We set X = 37/, Then:

E| f/n—ayxg:a}:aﬁ%, Var ( f/n\Xé’z&):aaz%.

Limiting equation: Computing limiting drift and variance, we get
dX; = BX: dt + o/ Xy dW, Xo = a.

One can show that lim,_,.o X" = X in law.
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Feller diffusion: illustration

Equation:
dX, = 02X, dt +2,/X, dW,

Simulation:

12

02 46 8
!
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Definition of solution

— Definition 5. \
We say that (X, W, (F¢)s>0) is solution of (1) if:

@ W is a F;-Brownian motion.
Q@ X satisfies X, = o + [g b(X;) ds + X0, f§ o/ (X,) dW
for t > 0.

\. J

— Definition 6. | \

We say that (1) admits a strong solution if:
< One can take F; = F}" in Definition 5.

\. J

Samy T. Sdes Probability Theory 22 /63



Pathwise uniqueness

— Definition 7. | \

Pathwise uniqueness: If X!, X? are two solutions of (1) with:

Q X;=X=a.
@ Same Brownian motion W.
Then:

P (X! =XZforallt>0)=1.

Remark: Absence of strong solution and non pathwise uniqueness
— For very irregular coefficients b, o.
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Existence and uniqueness

~ Theorem 8. N

We assume that b and o are Lipschitz fonctions:
There exist ¢,, ¢, > 0 such that for all x,y € R” we have

lo/(x) =/ (V)| < Golx —yl,  [b(x) = b(y)| < cslx — yl.

Then on every interval [0, 7], equation (1) admits:
@ A strong solution in L2(Q2; C([0, 7])).
@ Pathwise uniqueness in L?(2; C([0, 7])).

Path W
A Unique solution X
Equation (1)
b, o Lipschitz
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Proof: strategy

Key application: We define I : L2([0, 7]) — L3([0, 7]) as

ry)= ¥, Yt—onr/ ds+Z/JJ ) dWi,

Picard iterations: We set X% = o and X" = [(X").

Aim: Show that:
@ X" converges to X, where X is a strong solution.

@ Pathwise uniqueness.

Simplification in proofs:
We suppose n=d =1and b,o : R — R.
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Bounds on application I

~ Lemma 9.

Let:
e Y, Z e L%]0,7]).
o Y =T(Y), Z=T(2).
We assume that ¢,, ¢, < K. Then:
E [sup Y, — Z‘z

t<rt

with:

CK,rd = (27‘0’ + 8d2) K2.

< ckrdE U Ve — Z° dt} :
0

Samy T. Sdes
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Proof

Expression for the difference: We have

V-2, — /0 [b(Y.) — b(Z.)] ds + /0 (V) = o(Z)] dWs

= Jt,l + Jt,2-
Therefore y o
Ve = Z|" < 2(Jeaf + [eal)
and:
< > |2 2 2
sup|Y; — Zt’ <2 (sup |Je1|” + sup || ) )
t<t t<rt t<t
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Bounds for the Lebesgue integral

Application of Jensen: We have
= | [ 10— () 0]

t/ b(Y,) — b zs)|2 ds
0

< T/OT Ib(Y,) — b(Z,)? ds

IN

Lipschitz property for b: We get

sup | S < TK2/ Y, — Z,]2 ds
t<r 0

t<rt

E [sup|Jt71\2] < TK? /TE 1Y, — 2] ds
0

Probability Theory
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Doob’s maximal inequality

,—[Proposition 10.]

Let 7 > 0 and:

@ W standard Brownian motion.
e ue L3([0,7]).
o M, = fot u, dW,.

Then we have:

te[0,7]

E [ S |I\/lt|2] < 4E[|M,[?] = 4E [/ 2 dr] .
0

Samy T. Sdes

Probability Theory

29 / 63



Bounds for the stochastic integral

Recall: Jip = Jg [0(Ys) — o(Zs)] dWs

Application of Proposition 10: We have

E [sup |Jt,2|2]
t<t

/]

E@/by%ﬂ>

< 4| ["o(¥) ~ o(2) o]

Conclusion: Lemma 9 is shown
— Combining inequalities for J;; and J; .
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Bound for iterations of [

~ Lemma 11.

Let X" Picard iterations on [0, 7]:
X=a and X" =T(X").

We set:
A1) = E [sup X0 x:-lﬂ |

s<t

Then there exist two constants ¢, ¢, such that:
¢y

sup A, (t) <
sup An(t) < =

Samy T. Sdes
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Proof

Bound for A;: We have X! — X2 = b(a)s + o(a)W,. Therefore:

Aq(t) <t

Induction: We have
X" = X"t =T (X)) =T (X"?).
According to Lemma 9, we get:
A <e | Ay 1(s) ds.

With value of Ay(t), we get the result.
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Convergence of X"

Lemma 12.

Let X" Picard iterations on [0, 7].
Then a.s X" converges to a process X in C([0, 7]).
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Proof

Reduction to a series convergence: We have
n—1 ) )
X" = X4y (X = X)),
j=1
Therefore lim,_,o X" exists as long as 3-;(X/*! — X/) is convergent.

Series convergence:
Let A, = (sup,<, | X! — X7 > 35). We will show:

P <|im sup An) = P (A, realized oo-tly often) = 0.
n—o00

This entails convergence of 3_;(X/™ — X/} in || - | .
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Proof (2)

Application of Borel-Cantelli: We have

P(A,) < 22"E[sup|xt"—x:‘1|2]
t<rt

= 4"A,(t)
4" ¢ ¢ _a c3

IN

n! n!

Therefore:

ZP(A”)<OO = P(IimsupA,,)zO.

n>1 n—o0

This finishes the proof of Lemma 12.
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Convergence of X" in [(Q)

~ Lemma 13. N

Let:
e X" Picard iterations on [0, 7].
@ X limit of X" obtained in Lemma 12.
o [IFllcor = supres il
Then:
L2(Q) — lim [|X" = X|eor =0,
n—00

and thus:
Li([O,T]) — nIL@OX" = X.
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Proof
Notation: We set || Z||, = EY/?[Z?] for a real-valued r.v Z.

Cauchy sequence: We will show that

lim |1 x" = Xx™| = 0.
o0, T 2

m,n—o00

However:

| 1x7 =X, .

n—1
< [ & pen -0
2 00,T
k=m

S e x|
—m ,T

2

IN

This proves (3) and Lemma 13.

Samy T. Sdes
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1/2
, <> Ak/ (7).
k=m
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Existence of a solution to (1)

~ Lemma 14. N

Let:

e X" Picard iterations on [0, 7].

e X limit of X" obtained by Lemma 12.
Then X is solution of equation (1).

\.
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Proof

Strategy: We set X = [(X). We will show that X = X.
Sufficient condition: We will see that:

lim E[||X - X2, ] = 0.

n— o0 ’
Verification: Recall that

o X1 =T(X").

@ Lemmas 9 and 13.

This yields:

E[IIX = X" 2 | = E[IIN(X) = T(XM)I,] < c X=X} — 0.
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Gronwall’'s lemma

~ Lemma 15. N

Let ¢ : Ry — R continuous. We assume:

t
v < c—l—d/ s ds,
0
with two constants ¢,d > 0. Then we have:

@r < cexp(dt).
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Proof

Majorizing function: For ¢ > 0, we set ¢y = (¢ + ¢) exp(dt).
Comparison between ¢ and ¢: We assume 7 < oo with:
T=inf{t >0; ¢r > U:}.
Then 7 > 0 and ¢, = 1, because ¢, 1) continuous.
Contradiction: We have
b, = c+5+d/07wsds> c+d/071/15ds
> c+d/07sosdsZsoT.

Therefore v, > ., contradiction with ¢, = ;.
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Pathwise uniqueness

~ Lemma 16. N

We consider:
@ Lipschitz coefficients b, o.
@ Space of processes L?(Q2; C([0,7])), characterized by:

121720 ¢ o)) = E [sup |Z:f] .
t<r

Then we have pathwise uniqueness for equation (1)
— In L2(Q; C([0,7])).

\.
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Proof

Aim: Let (X1, W, F}), (X2, W, F?) two solutions
< We wish to show that X! = X2

Filtrations: Let F; = F} V F?
— We have X!, X? adapted for F,
— Estimates for stochastic integrals can be applied to X! — X2.

Application of Lemma 9:
We set pr = | X* — X?[112q.cq00)- Then:

~ ~ t
pr = |1 XT = X2 q,cq0.) < d /0 ps ds,

with d = ¢k 4. Therefore ¢ =0 and X! = X2
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More existence and uniqueness results

Extensions:
We have existence and uniqueness for (1) in following situations:

Q@ Coefficients b(s, x) and o(s, x) with uniform Lipschitz
conditions:

|b(s, x) = b(s,y)| + |o(s, x) —o(s,y)| < c|x —yl.
@ Coefficients b, o locally Lipschitz with linear growth:

|b(x) — b(y)| + [o(x) —o(y)| < cnlx—yl, for x| [y| <n.
|b(x)| + [o(x)] < c(1+|x]).

© Cased =1 and
» b Lipschitz.
» o Holder-continuous Holder exponent ov > 1/2.
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Definition of fBm
Complete probability space: (2, F,P)

r—[Definition 17.] \

A 1-d fBm is a continuous process B = {B;; t > 0} such that
By =0 and for H € (0, 1):

@ B is a centered Gaussian process
o E[B.B] = 5(|s]" + [t[*" — |t — s[")

d-dimensional fBm: B = (B!,..., B?), with B’ independent 1-d fBm

Variance of the increments:
E[|6B|°] = E[|B; — B[] = |t — s|*"
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Kolmogorov criterion

Notation: If £ :[0,7] — R is a function, we shall denote:

of;
0fy =f,—f, and ||f|l, = sup [0%se|

s,t€[0,7] |t - 5|H

r—[Theorem 18.] \

Let X = {X;; t € [0,7]} be a process defined on (Q,F,P),
such that

E[[0Xel] < clt — s, for s,te[0,7], c,a,8>0
Then there exists a modification X of X such that almost surely

X €] forany v < f/a, ie P(w; | X(w)||, < o0) = 1.

\. J
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FBm regularity

Proposition 19.]

FBm B = B" is y-Holder continuous for all v < H, up to
modification.

Proof: We have §Bs; ~ N(0, |t — s|[?). Thus for n > 1,
E [|5Bst|2n] — C,,|t _ S|2Hn ie E [|5Bst|2n] _ Cnlt _ S|1+(2Hn—1)

Kolmogorov: B is y-Hélder for v < (2Hn —1)/2n = H — 1/(2n).
Proof finished by letting n — oo.
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Examples of fBm paths

N

WM M P o S
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Some properties of fBm

,—[Proposition 20.]

Let B be a fBm with parameter H. Then:
Q@ {a "B, t >0} is a fBm (scaling)

@ B is not a semi-martingale unless H = 1/2
And B is nowhere differentiable a.s

\.

@ {B:iin — By t >0} is a fBm (stationarity of increments)

Proof of claim 3:
If B were a semi-martingale, we would get on [0, 1]:

n

P — Ilim Z(B;/n — B(i—l)/n)2 = <B>1>

n—o0 4
i=1

were (B) is the (non trivial) quadratic variation of B.
We will show that (B) is trivial (0 or co) whenever H #1/2.

Samy T. Sdes Probability Theory
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Proof of claim 3 (2)
Define
n2_Z|BI/n_ (i— 1/n|, and Yn2— 2H= 1V
By scaling properties, we have:
Yoo @ Voo with Vo= n 1S |Bi— Byl
i=1

The sequence {B; — B;j_1; i > 1} is stationary and mixing
= V,» converges P — a.s and in L' towards E[|B; — Bo|?]
= P — lim,_o Yn2 = E[|B1]?]

=P —Ilim,oo Va2 =0if 2H > 1, 0o if 2H < 1
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Strategy for H > 1/2

@ Generally speaking, take advantage of two aspects of fBm:

» Gaussianity
» Regularity

For H > 1/2, regularity is almost sufficient
e Notation: C{ = C{(R) = ~-Hélder functions of 1 variable

o IfH>1/2, Be({ forany1/2 <~y < H as
@ We shall try to solve our equation in a pathwise manner
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Pathwise strategy

Aim: Let x be a function in C{ with v > 1/2. We wish to define and
solve an equation of the form:

ye=a+ [ o) *)

Steps:
@ Define an integral [ z; dx; for z € Cf, with K+ > 1
@ Solve (4) through fixed point argument in C§ with 1/2 < x <~

Remark: We treat a real case and b = 0 for notational sake.
— Extensions to dimension d by adding indices.
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Particular Riemann sums

Aim: Define fol zsdxs for z € Cf,x € Cf, with k + vy > 1
Dyadic partition: set t! = /2", forn>0,0 </ <?2"
Associated Riemann sum:

2n—1 2n—1

h=2_ zelxe, —xol = 3 zip Oxeper, -

i=0 i=0

Question: Can we define Jo1(z dx) = lim,_o 1,7

Possibility: Control |/,+1 — I,| and write (if the series is convergent):

Jo1(z dx) = Iy + Z(ln—l—l — 1)

n=0
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Control of /,,1 — I,

We have:
2"—1 2"—1
b= ; Zip O%Xepey,, = g Zges |Oxgragsy + Oxg g
2"n—1
he = 3 [z g + 2 g
Therefore:
2"—1
lher =l = | X Gz O g
7t
< E% Izl g7 — 71 x5 — el
P
1] [1x]l

2r+y9n(k+v-1)
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Definition of the integral

We have seen: fora=xk+~y—1>0and n> 0:

C

Series convergence:
Obviously, 352 5(l,+1 — In) is a convergent series
— yields definition of Jo1(z dx), and more generally: J:(z dx)

Remark:
One should consider more general partitions 7, with |7| — 0
— C.f Lejay (Séminaire 37)
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Young integral

,—[Proposition 21.]
Let

o z e cr([0,7]), x € c7([0, 7])
erk+y>1,and0<s<t<T

@ (m,)n>0 a sequence of partitions of [s, t] such that
lim,—00 |Tn| =0

@ |/, corresponding Riemann sums
Then:
© |/, converges to an element Jq(z dx)
@ The limit does not depend on the sequence (7"),>0

© Integral linear in z, and coincides with Riemann's integral

\.

for smooth z, x

Samy T. Sdes
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A bound for Young integrals

r—[Theorem 22.}

Let f € Cf, g € C{, with K+~ > 1. Then:

Q@ If0<s<u<t<T, wehave
Tst(z dx) = Tsu(z dx) + Tue(z dx)

@ Generalized integral J(f dg) satisfies:

| Tat(f dg)| < IIfllocllglly |t = s|" + el llllglly [ £ — s |
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Pathwise strategy (repeated)

Aim: Let x be a function in C{ with v > 1/2. We wish to define and
solve an equation of the form:

ye=a+ [ o) o )

Steps:
@ Define an integral [ z; dx; for z € Cf, with K+ > 1
@ Solve (5) through fixed point argument in Cf with 1/2 < k <~

Remark: We treat a real case and b = 0 for notational sake.
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Existence-uniqueness result

r—[Theorem 23.] \
Consider
e Noise: x € C{ = C{([0,7]), with v > 1/2
o Coefficient: 0 : R — R a C? function

e Equation: dy = J(o(y) dx), and yo = a.
Then:

@ Our equation admits a unique solution y in Cf
forany 1/2 < k < 7.

@ Application (a, x) — y is continuous from R x C{ to Cf.

Samy T. Sdes Probability Theory 62 / 63



Fixed point: strategy

A map on a small interval:
Consider an interval [0, 7], with 7 to be determined later

Consider k such that 1/2 <k <y <1

In this interval, consider I' : C([0, 7]) — C§([0, 7]) defined by:
[(z) = 2, with 2y = a, and for s, t € [0, 7]:

s = | Co(2)dx = Tue(o(2) d¥)

Aim: See that for a small enough 7, the map I is a contraction
< our equation admits a unique solution in C§([0, 7])

Samy T. Sdes
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