Stochastic differential equations

Samy Tindel

Purdue University

Probability Theory 2 - MA 539

Samy T. Sdes Probability Theory 1 / 63

Outline

- Introduction and examples
- Existence and uniqueness
- Fractional Brownian motion
- 4 Young integration
- 5 Young differential equations

Samy T. Sdes Probability Theory 2 / 63

Outline

- Introduction and examples
- Existence and uniqueness
- Fractional Brownian motion
- 4 Young integration
- 5 Young differential equations

Samy T. Sdes Probability Theory 3 / 63

Aim

Coefficients: We consider

- $\alpha \in \mathbb{R}^n$ and $b, \sigma^1, \dots, \sigma^d : \mathbb{R}^n \to \mathbb{R}^n$.
- We denote: $\sigma = (\sigma^1, \dots, \sigma^d) : \mathbb{R}^n \to \mathbb{R}^{n \times d}$
- W, d-dimensional Brownian motion.

Equation: We wish to solve

$$dX_s = b(X_s) ds + \sum_{j=1}^d \sigma^j(X_s) dW_s^j.$$

Integral form: With Itô's integral,

$$X_{t} = \alpha + \int_{0}^{t} b(X_{s}) ds + \sum_{j=1}^{d} \int_{0}^{t} \sigma^{j}(X_{s}) dW_{s}^{j}.$$
 (1)

Samy T. Sdes Probability Theory 4 / 63

Infinitesimal drift and covariance

Proposition 1.

Let b, σ bounded, X solution of (1). Then:

$$\partial_t \mathbf{E} \left[X_t | \mathcal{F}_s \right]_{|_{t=s}} = b(X_s), \quad \partial_t \mathbf{Cov} \left(X_t | \mathcal{F}_s \right)_{|_{t=s}} = a(X_s),$$
 with $a = \sigma \, \sigma^* : \mathbb{R}^n \to \mathbb{R}^{n \times n}$.

Interpretation:

- $b(X_s) \equiv \text{Infinitesimal drift}$.
- $a(X_s) \equiv \text{Infinitesimal covariance}$.

Samy T. Probability Theory 5 / 63

Itô process

Definition 2.

Let:

- $X: [0, \tau] \to \mathbb{R}^n$ process in L^2_a
- $\alpha \in \mathbb{R}^n$ initial condition.
- b bounded and adapted process in \mathbb{R}^n .
- $\{\sigma^k; k=1,\ldots d\}$ process of $L^2_a([0,\tau];\mathbb{R}^n)$.

We say that X is an Itô process if it admits a decomposition:

$$X_t = \alpha + \int_0^t b_s \, ds + \sum_{k=1}^d \int_0^t \sigma_s^k \, dW_s^k.$$

Remark:

A solution of (1) is an Itô process

$$\hookrightarrow$$
 With $b_s = b(X_s)$ and $\sigma_s = \sigma(X_s)$.

Itô's formula for a solution of (1)

Proposition 3.

Let:

- X Itô process, defined by α, b, σ .
- $f \in \mathcal{C}_b^2$.

Then $f(X_t)$ can be decomposed as:

$$f(X_{t}) = f(\alpha) + \sum_{j=1}^{n} \int_{0}^{t} \partial_{x_{j}} f(X_{r}) b_{r}^{j} dr$$

$$+ \sum_{j=1}^{n} \sum_{k=1}^{d} \int_{0}^{t} \partial_{x_{j}} f(X_{r}) \sigma_{r}^{jk} dW_{r}^{k}$$

$$+ \frac{1}{2} \sum_{k=1}^{n} \sum_{k=1}^{d} \int_{0}^{t} \partial_{x_{j_{1}} x_{j_{2}}}^{2} f(X_{r}) \sigma_{r}^{j_{1}k} \sigma_{r}^{j_{2}k} dr.$$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 へ ○

Samy T. Sdes Probability Theory 7 / 63

Proof of Proposition 1

Simplification: This will be shown for s = 0 \hookrightarrow No conditional expectation to consider.

Drift term: Start from equation

$$X_t = \alpha + \int_0^t b(X_s) ds + \sum_{j=1}^d \int_0^t \sigma^j(X_s) dW_s^j.$$

The terms $\int_0^t \sigma^j(X_s) dW_s^j$ are centered. Therefore:

$$\mathbf{E}\left[X_{t}\right] = \alpha + \int_{0}^{t} \mathbf{E}\left[b(X_{s})\right] ds.$$

and

$$\partial_t \mathbf{E} \left[X_t \right]_{|_{t=0}} = \mathbf{E} \left[b(X_t) \right]_{|_{t=0}} = b(\alpha).$$

4□▶ 4□▶ 4 □ ▶ 4 □ ▶ 9 Q @

Samy T. Sdes Probability Theory 8 / 63

Proof of Proposition 1 (2)

Coordinate product: Let

- $l, m \in \{1, \ldots, n\}$.
- $f: \mathbb{R}^n \to \mathbb{R}$ defined by the product $f(x) = x^l x^m$.
- $a_s = \sigma_s \sigma_s^*$.

According to Itô's formula we have:

$$X_{t}^{I}X_{t}^{m} = \alpha^{I}\alpha^{m} + \int_{0}^{t} \left(X_{r}^{I}b_{r}^{m} + b_{r}^{I}X_{r}^{m}\right) dr$$

$$+ \sum_{k=1}^{d} \int_{0}^{t} \left(X_{r}^{I}\sigma_{r}^{mk} + \sigma_{r}^{Ik}X_{r}^{m}\right) dW_{r}^{k} + \sum_{k=1}^{d} \int_{0}^{t} a_{r}^{lm} dr.$$
(2)

Samy T. Sdes Probability Theory 9 / 63

Proof of Proposition 1 (3)

Expected value for the product:

Taking expectation in (2) we get:

$$\partial_t \mathbf{E} \left[X_t^I X_t^m \right] = \mathbf{E} \left[X_t^I b_t^m + b_t^I X_t^m \right] + \mathbf{E} \left[a_t^{Im} \right].$$

Therefore:

$$\partial_t \mathbf{E} \left[X_t^I X_t^m \right]_{t=0} = \alpha^I b^m(\alpha) + b^I(\alpha) \alpha^m + a^{Im}(\alpha).$$

Samy T. Sdes Probability Theory 10 / 63

Proof of Proposition 1 (4)

Product of expected values: We have

$$\mathbf{E}\left[X_t^j\right] = \alpha^j + \int_0^t \mathbf{E}\left[b_s^j\right] ds.$$

Therefore

$$\mathbf{E}\left[X_t^I\right]\mathbf{E}\left[X_t^m\right] = \alpha^I\alpha^m + \int_0^t \mathbf{E}\left[b_s^I\right]\mathbf{E}\left[X_s^m\right] \,ds + \int_0^t \mathbf{E}\left[b_s^m\right]\mathbf{E}\left[X_s^I\right] \,ds,$$

and differentiating:

$$\partial_t \left(\mathbf{E} \left[X_t^l \right] \mathbf{E} \left[X_t^m \right] \right)_{|_{t=0}} = \alpha^l b^m(\alpha) + b^l(\alpha) \alpha^m.$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Samy T. Sdes Probability Theory 11 / 63

Proof of Proposition 1 (5)

Infinitesimal covariance: With two previous identities,

$$\begin{array}{lll} \partial_t \mathsf{Cov} \left(X_t^I, X_t^m \right)_{|_{t=0}} &=& \partial_t \left(\mathsf{E} \left[X_t^I X_t^m \right] - \mathsf{E} \left[X_t^I \right] \mathsf{E} \left[X_t^m \right] \right)_{|_{t=0}} \\ &=& \partial_t \mathsf{E} \left[X_t^I X_t^m \right]_{|_{t=0}} - \partial_t \left(\mathsf{E} \left[X_t^I \right] \mathsf{E} \left[X_t^m \right] \right)_{|_{t=0}} \\ &=& a^{lm} (\alpha). \end{array}$$

Therefore:

$$\partial_t \mathbf{Cov}(X_t)_{|_{t=0}} = a(\alpha).$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

12 / 63

Geometrical Brownian motion

Proposition 4.

Let

- ullet W 1-dimensional Brownian motion .
- $\mu \in \mathbb{R}$ and $\sigma > 0$

We set

$$X_t = \alpha \exp\left(\mu t + \sigma W_t\right).$$

Then X is solution of (1) with n = d = 1 and:

$$b(x) = \left(\mu + \frac{\sigma^2}{2}\right) x$$
, and $\sigma(x) = \sigma x$.

13 / 63

Geometrical Brownian motion (2)

Remarks:

- In order to show that X is solution of the equation

 → Apply Itô's formula.
- Exponential Brownian motion is very useful in finance (asset price):
 - **1** $X_t \geq 0$.
 - ② Linear trend (infinitesimal drift): $\left(\mu + \frac{\sigma^2}{2}\right) X_t$.
 - § Fluctuations (infinitesimal standard deviation) proportional to X_t .

Summarized in Black and Scholes model.

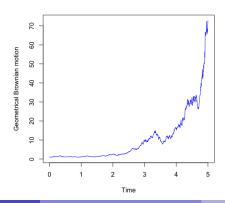
Samy T. Sdes Probability Theory 14 / 63

Geometrical Brownian motion: illustration

Equation: Take $\mu=1$, $\sigma=\frac{1}{2}$, $X_0=1$ and

$$dX_t = \left(\mu + \frac{\sigma^2}{2}\right) X_t dt + \sigma X_t dW_t$$

Simulation:



Samy T.

Ornstein-Uhlenbeck process

Situation:

Velocity of a Brownian particle with friction α .

Equation:

$$dX_t = -\alpha X_t dt + dW_t, \qquad X_0 = a \in \mathbb{R}$$

Explicit solution:

$$X_t = e^{-\alpha t} \left(a + \sigma \int_0^t e^{\alpha s} dW_s \right)$$

Distribution: For t > 0 we have

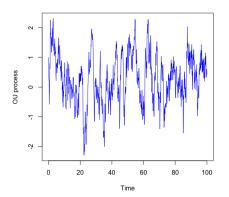
$$X_t \sim \mathcal{N}\left(ae^{-\alpha t}, \sigma_t^2\right), \quad \text{with} \quad \sigma_t^2 = \frac{\sigma^2(1 - e^{-2\alpha t})}{2\alpha}$$

Ornstein-Uhlenbeck: illustration

Equation: Take $\alpha = 1$ and

$$dX_t = -\alpha X_t dt + dW_t, \qquad X_0 = 1$$

Simulation:



17 / 63

Samy T. Sdes Probability Theory

Galton-Watson process

Model: We start from $n\alpha$ persons for generation m=0, then

- At each generation m, individuals have i.i.d offspring
- Common law for offspring: random variable Q.
- For $n \ge 1$, sequence of number of persons at generation m:

$$\{Z_m^n; m \geq 0\}.$$

Assumptions on *Q*: We suppose

- **2** Var(Q) = σ^2 with $\sigma^2 > 0$.
- **3** For all $\delta > 0$, we have $\lim_{n \to \infty} \mathbf{E}[Q^2 \mathbf{1}_{(Q > \delta n)}] = 0$

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

Feller diffusion

Samy T.

Expectation and variance computations: Thanks to offspring \perp , we have

$$\mathbf{E}\left[Z_1^n|Z_0^n=nlpha\right]=nlpha\left(1+rac{eta}{n}
ight),\quad \mathbf{Var}\left(Z_1^n|Z_0^n=nlpha
ight)=nlpha\sigma^2.$$

Scaling: We set $X_t^n = \frac{1}{n} Z_{[nt]}^n$. Then:

$$\mathbf{E}\left[X_{1/n}^{n} - \alpha | X_{0}^{n} = \alpha\right] = \alpha\beta \frac{1}{n}, \quad \mathbf{Var}\left(X_{1/n}^{n} | X_{0}^{n} = \alpha\right) = \alpha\sigma^{2} \frac{1}{n}.$$

Limiting equation: Computing limiting drift and variance, we get

$$dX_t = \beta X_t dt + \sigma \sqrt{X_t} dW_t, \qquad X_0 = \alpha.$$

One can show that $\lim_{n\to\infty} X^n = X$ in law.

(□ > (□) (Ē > (Ē > (Ē > (Ē)) Q(

Probability Theory

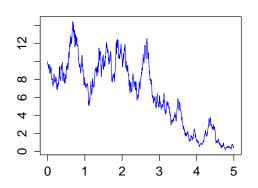
19 / 63

Feller diffusion: illustration

Equation:

$$dX_t = .02X_t dt + 2\sqrt{X_t} dW_t$$

Simulation:



Outline

- Introduction and examples
- Existence and uniqueness
- Fractional Brownian motion
- 4 Young integration
- Young differential equations

Samy T. Sdes Probability Theory 21 / 63

Definition of solution

Definition 5.

We say that $(X, W, (\mathcal{F}_t)_{t>0})$ is solution of (1) if:

- **1** W is a \mathcal{F}_t -Brownian motion.
- 2 X satisfies $X_t = \alpha + \int_0^t b(X_s) ds + \sum_{j=1}^d \int_0^t \sigma^j(X_s) dW_s^j$ for t > 0.

Definition 6.

We say that (1) admits a strong solution if:

 \hookrightarrow One can take $\mathcal{F}_t = \mathcal{F}_t^W$ in Definition 5.

Samy T. Sdes Probability Theory

Pathwise uniqueness

Definition 7.

Pathwise uniqueness: If X^1, X^2 are two solutions of (1) with:

$$X_0^1 = X_0^2 = \alpha.$$

Then:

$$\mathbf{P}\left(X_t^1=X_t^2 \text{ for all } t\geq 0\right)=1.$$

Remark: Absence of strong solution and non pathwise uniqueness \hookrightarrow For very irregular coefficients b, σ .

Samy T. Probability Theory

Existence and uniqueness

Theorem 8.

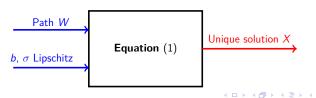
We assume that b and σ are Lipschitz fonctions:

There exist $c_{\sigma}, c_{b} > 0$ such that for all $x, y \in \mathbb{R}^{n}$ we have

$$|\sigma^j(x)-\sigma^j(y)|\leq c_{\sigma}|x-y|,\quad |b(x)-b(y)|\leq c_b|x-y|.$$

Then on every interval $[0, \tau]$, equation (1) admits:

- **1** A strong solution in $L^2(\Omega; \mathcal{C}([0, \tau]))$.
- ② Pathwise uniqueness in $L^2(\Omega; \mathcal{C}([0,\tau]))$.



Samy T. Sdes Probability Theory 24 / 63

Proof: strategy

Key application: We define $\Gamma: L^2_a([0,\tau]) \to L^2_a([0,\tau])$ as:

$$\Gamma(Y) \equiv \tilde{Y}, \quad \tilde{Y}_t = \alpha + \int_0^t b(Y_s) \, ds + \sum_{i=1}^d \int_0^t \sigma^j(Y_s) \, dW_s^j.$$

Picard iterations: We set $X^0 \equiv \alpha$ and $X^{n+1} = \Gamma(X^n)$.

Aim: Show that:

- $lacktriangledown X^n$ converges to X, where X is a strong solution.
- Pathwise uniqueness.

Simplification in proofs:

We suppose n = d = 1 and $b, \sigma : \mathbb{R} \to \mathbb{R}$.

4 D > 4 D > 4 E > 4 E > E 99 C

Bounds on application \(\Gamma \)

Lemma 9.

• $Y,Z\in L^2_a([0,\tau]).$ • $\tilde{Y}=\Gamma(Y),\ \tilde{Z}=\Gamma(Z).$ We assume that $c_\sigma,c_b\leq K.$ Then:

$$\mathbf{E}\left[\sup_{t\leq\tau}\left|\tilde{Y}_{t}-\tilde{Z}_{t}\right|^{2}\right]\leq c_{\mathcal{K},\tau,d}\,\mathbf{E}\left[\int_{0}^{\tau}\left|Y_{t}-Z_{t}\right|^{2}\,dt\right].$$

$$c_{K,\tau,d} = \left(2\tau d + 8d^2\right)K^2.$$

Samy T. Probability Theory

Proof

Expression for the difference: We have

$$\tilde{Y}_t - \tilde{Z}_t = \int_0^t [b(Y_s) - b(Z_s)] ds + \int_0^t [\sigma(Y_s) - \sigma(Z_s)] dW_s
\equiv J_{t,1} + J_{t,2}.$$

Therefore

$$\left|\tilde{Y}_{t}-\tilde{Z}_{t}\right|^{2}\leq 2(\left|J_{t,1}\right|^{2}+\left|J_{t,2}\right|^{2})$$

and:

$$\sup_{t \le \tau} \left| \tilde{Y}_t - \tilde{Z}_t \right|^2 \le 2 \left(\sup_{t \le \tau} \left| J_{t,1} \right|^2 + \sup_{t \le \tau} \left| J_{t,2} \right|^2 \right).$$

Samy T. Sdes Probability Theory 27 / 63

Bounds for the Lebesgue integral

Application of Jensen: We have

$$|J_{t,1}|^{2} = \left| \int_{0}^{t} \left[b(Y_{s}) - b(Z_{s}) \right] ds \right|^{2}$$

$$\leq t \int_{0}^{t} \left| b(Y_{s}) - b(Z_{s}) \right|^{2} ds$$

$$\leq \tau \int_{0}^{\tau} \left| b(Y_{s}) - b(Z_{s}) \right|^{2} ds.$$

Lipschitz property for b: We get

$$\begin{split} \sup_{t \leq \tau} \left| J_{t,1} \right|^2 & \leq & \tau \, K^2 \int_0^\tau \left| Y_s - Z_s \right|^2 \, ds \\ \mathbf{E} \left[\sup_{t \leq \tau} \left| J_{t,1} \right|^2 \right] & \leq & \tau \, K^2 \int_0^\tau \mathbf{E} \left[\left| Y_s - Z_s \right|^2 \right] \, ds \end{split}$$

Samy T. Sdes Probability Theory 28 / 63

Doob's maximal inequality

Proposition 10.

Let $\tau > 0$ and:

- W standard Brownian motion.
- $u \in L^2_a([0,\tau])$.
- $M_t \equiv \int_0^t u_r dW_r$.

Then we have:

$$\operatorname{\mathbf{E}}\left[\sup_{t\in[0, au]}|M_t|^2
ight] \leq 4\operatorname{\mathbf{E}}\left[|M_ au|^2
ight] = 4\operatorname{\mathbf{E}}\left[\int_0^ au u_r^2\,dr
ight].$$

Samy T. Sdes Probability Theory 29 /

Bounds for the stochastic integral

Recall:
$$J_{t,2} = \int_0^t \left[\sigma(Y_s) - \sigma(Z_s) \right] dW_s$$

Application of Proposition 10: We have

$$\mathbf{E} \left[\sup_{t \le \tau} |J_{t,2}|^2 \right] = \mathbf{E} \left[\sup_{t \le \tau} \left| \int_0^t \left[\sigma(Y_s) - \sigma(Z_s) \right] dW_s \right|^2 \right]$$

$$\leq 4 \mathbf{E} \left[\int_0^\tau |\sigma(Y_s) - \sigma(Z_s)|^2 dr \right]$$

Conclusion: Lemma 9 is shown

 \hookrightarrow Combining inequalities for $J_{t,1}$ and $J_{t,2}$.

◆ロト ◆個ト ◆差ト ◆差ト 差 めるぐ

Samy T. Sdes Probability Theory 30 / 63

Bound for iterations of Γ

Lemma 11.

Let X^n Picard iterations on $[0, \tau]$:

$$X^0 \equiv \alpha$$
 and $X^{n+1} = \Gamma(X^n)$.

We set:

$$\Delta_n(t) = \mathbf{E} \left[\sup_{s \le t} |X_s^n - X_s^{n-1}|^2
ight].$$

Then there exist two constants c_1 , c_2 such that:

$$\sup_{t\leq \tau}\Delta_n(t)\leq \frac{c_1\,c_2^n}{n!}.$$

Samy T. Sdes Probability Theory 31 / 63

Proof

Bound for Δ_1 : We have $X_s^1 - X_s^0 = b(\alpha)s + \sigma(\alpha)W_s$. Therefore:

$$\Delta_1(t) \leq c_1 t$$
.

Induction: We have

$$X^{n}-X^{n-1}=\Gamma\left(X^{n-1}\right)-\Gamma\left(X^{n-2}\right).$$

According to Lemma 9, we get:

$$\Delta_n(t) \leq c_2 \int_0^t \Delta_{n-1}(s) ds.$$

With value of $\Delta_1(t)$, we get the result.

→□▶→□▶→□▶→□▶ □ 900

Samy T. Sdes Probability Theory 32 / 63

Convergence of X^n

Lemma 12.

Let X^n Picard iterations on $[0, \tau]$.

Then a.s X^n converges to a process X in $\mathcal{C}([0,\tau])$.

Proof

Reduction to a series convergence: We have

$$X^n = X^0 + \sum_{j=1}^{n-1} (X^{j+1} - X^j).$$

Therefore $\lim_{n\to\infty}X^n$ exists as long as $\sum_j(X^{j+1}-X^j)$ is convergent.

Series convergence:

Let $A_n = (\sup_{t \le \tau} |X_t^n - X_t^{n-1}| \ge \frac{1}{2^n})$. We will show:

$$\mathbf{P}\left(\limsup_{n\to\infty}A_n\right)=\mathbf{P}\left(A_n \text{ realized }\infty\text{-tly often}\right)=0.$$

This entails convergence of $\sum_{i} (X^{j+1} - X^{j})$ in $\|\cdot\|_{\infty}$.

Proof (2)

Application of Borel-Cantelli: We have

$$\mathbf{P}(A_n) \leq 2^{2n} \mathbf{E} \left[\sup_{t \leq \tau} |X_t^n - X_t^{n-1}|^2 \right] \\
= 4^n \Delta_n(t) \\
\leq \frac{4^n c_1 c_2^n}{n!} = \frac{c_1 c_3^n}{n!}$$

Therefore:

$$\sum_{n\geq 1} \mathbf{P}(A_n) < \infty \quad \Longrightarrow \quad \mathbf{P}\left(\limsup_{n\to\infty} A_n\right) = 0.$$

This finishes the proof of Lemma 12.

→ロト→部ト→差ト→差 のQで

Samy T. Sdes Probability Theory 35 / 63

Convergence of X^n in $L^2(\Omega)$

Lemma 13.

Let:

- X^n Picard iterations on $[0, \tau]$.
- X limit of X^n obtained in Lemma 12.
- $\bullet \|f\|_{\infty,\tau} \equiv \sup_{t < \tau} |f_t|.$

Then:

$$L^{2}(\Omega) - \lim_{n \to \infty} \|X^{n} - X\|_{\infty, \tau} = 0,$$

and thus:

$$L_a^2([0,\tau]) - \lim_{n \to \infty} X^n = X.$$

Samy T. Sdes Probability Theory 36 / 63

Proof

Notation: We set $||Z||_2 = \mathbf{E}^{1/2}[Z^2]$ for a real-valued r.v Z.

Cauchy sequence: We will show that

$$\lim_{m,n\to\infty} \| \|X^n - X^m\|_{\infty,\tau} \|_2 = 0.$$
 (3)

However:

$$\left\| \|X^{n} - X^{m}\|_{\infty,\tau} \right\|_{2} \leq \left\| \sum_{k=m}^{n-1} \left\| X^{k+1} - X^{k} \right\|_{\infty,\tau} \right\|_{2}$$

$$\leq \sum_{k=m}^{n-1} \left\| \left\| X^{k+1} - X^{k} \right\|_{\infty,\tau} \right\|_{2} \leq \sum_{k=m}^{n-1} \Delta_{k}^{1/2}(\tau).$$

This proves (3) and Lemma 13.

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

Samy T. Sdes Probability Theory 37 / 63

Existence of a solution to (1)

Lemma 14.

Let:

- X^n Picard iterations on $[0, \tau]$.
- X limit of X^n obtained by Lemma 12.

Then X is solution of equation (1).

Proof

Strategy: We set $\tilde{X} \equiv \Gamma(X)$. We will show that $\tilde{X} = X$.

Sufficient condition: We will see that:

$$\lim_{n\to\infty} \mathbf{E}\left[\|\tilde{X}-X^{n+1}\|_{\infty,\tau}^2\right] = 0.$$

Verification: Recall that

- $X^{n+1} = \Gamma(X^n)$.
- Lemmas 9 and 13.

This yields:

$$\mathbf{E}\left[\|\tilde{X}-X^{n+1}\|_{\infty,\tau}^2\right] = \mathbf{E}\left[\|\Gamma(X)-\Gamma(X^n)\|_{\infty,\tau}^2\right] \leq c \|X^n-X\|_{L_a^2}^2 \longrightarrow 0.$$

Samy T. Probability Theory

39 / 63

Gronwall's lemma

Lemma 15.

Let $\varphi: \mathbb{R}_+ \to \mathbb{R}$ continuous. We assume:

$$\varphi_t \leq c + d \int_0^t \varphi_s \, ds,$$

with two constants c, d > 0. Then we have:

$$\varphi_t \leq c \exp(dt)$$
.

40 / 63

Proof

Majorizing function: For $\varepsilon > 0$, we set $\psi_t = (c + \varepsilon) \exp(dt)$.

Comparison between φ and ψ : We assume $\tau < \infty$ with:

$$\tau = \inf \left\{ t \ge 0; \ \varphi_t \ge \psi_t \right\}.$$

Then $\tau > 0$ and $\varphi_{\tau} = \psi_{\tau}$ because φ, ψ continuous.

Contradiction: We have

$$\psi_{ au} = c + \varepsilon + d \int_{0}^{ au} \psi_{s} \, ds > c + d \int_{0}^{ au} \psi_{s} \, ds$$

$$\geq c + d \int_{0}^{ au} \varphi_{s} \, ds \geq \varphi_{ au}.$$

Therefore $\psi_{\tau} > \varphi_{\tau}$, contradiction with $\varphi_{\tau} = \psi_{\tau}$.

- イロトイ団トイミトイミト ミーぞくぐ

Samy T. Sdes Probability Theory 41 / 63

Pathwise uniqueness

Lemma 16.

We consider:

- Lipschitz coefficients b, σ .
- Space of processes $L^2(\Omega; \mathcal{C}([0,\tau]))$, characterized by:

$$||Z||_{L^2(\Omega;\mathcal{C}([0, au]))}^2 = \mathbf{E}\left[\sup_{t\leq au}|Z_t|^2\right].$$

Then we have pathwise uniqueness for equation (1) \hookrightarrow In $L^2(\Omega; \mathcal{C}([0,\tau]))$.

Samy T. Sdes Probability Theory 42 / 63

Proof

Aim: Let $(X^1, W, \mathcal{F}_t^1)$, $(X^2, W, \mathcal{F}_t^2)$ two solutions

 \hookrightarrow We wish to show that $X^1 = X^2$.

Filtrations: Let $\mathcal{F}_t = \mathcal{F}_t^1 \vee \mathcal{F}_t^2$

 \hookrightarrow We have X^1, X^2 adapted for \mathcal{F}_t

 \hookrightarrow Estimates for stochastic integrals can be applied to $X^1 - X^2$.

Application of Lemma 9:

We set $\varphi_t = \|X^1 - X^2\|_{L^2(\Omega; \mathcal{C}([0,\tau]))}^2$. Then:

$$arphi_t = \| ilde{X}^1 - ilde{X}^2\|_{L^2(\Omega;\,\mathcal{C}([0,t]))}^2 \leq d\,\int_0^t arphi_s\,ds,$$

with $d = c_{K,\tau,d}$. Therefore $\varphi \equiv 0$ and $X^1 = X^2$.

Samy T. Sdes Probability Theory 43 / 63

More existence and uniqueness results

Extensions:

We have existence and uniqueness for (1) in following situations:

• Coefficients b(s,x) and $\sigma(s,x)$ with uniform Lipschitz conditions:

$$|b(s,x)-b(s,y)|+|\sigma(s,x)-\sigma(s,y)|\leq c|x-y|.$$

② Coefficients b, σ locally Lipschitz with linear growth:

$$|b(x) - b(y)| + |\sigma(x) - \sigma(y)| \le c_n |x - y|, \text{ for } |x|, |y| \le n.$$

 $|b(x)| + |\sigma(x)| \le c (1 + |x|).$

- - b Lipschitz.
 - σ Hölder-continuous Hölder exponent $\alpha \geq 1/2$.

10 × 40 × 40 × 40 × 40 ×

Outline

- Introduction and examples
- Existence and uniqueness
- Fractional Brownian motion
- 4 Young integration
- Young differential equations

Samy T. Sdes Probability Theory 45 / 63

Definition of fBm

Complete probability space: $(\Omega, \mathcal{F}, \mathbf{P})$

Definition 17.

A 1-d fBm is a continuous process $B=\{B_t;\ t\geq 0\}$ such that $B_0=0$ and for $H\in (0,1)$:

- ullet B is a centered Gaussian process
- $\mathbf{E}[B_tB_s] = \frac{1}{2}(|s|^{2H} + |t|^{2H} |t-s|^{2H})$

d-dimensional fBm: $B=(B^1,\ldots,B^d)$, with B^i independent 1-d fBm

Variance of the increments:

$$\mathbf{E}[|\delta B_{st}^{j}|^{2}] \equiv \mathbf{E}[|B_{t} - B_{s}|^{2}] = |t - s|^{2H}$$

Samy T. Sdes Probability Theory 46 / 63

Kolmogorov criterion

Notation: If $f:[0,\tau]\to\mathbb{R}^d$ is a function, we shall denote:

$$\delta f_{\mathsf{st}} = f_{\mathsf{t}} - f_{\mathsf{s}}, \quad \text{ and } \quad \|f\|_{\mu} = \sup_{s,t \in [0, au]} rac{|\delta f_{\mathsf{st}}|}{|t-s|^{\mu}}$$

Theorem 18.

Let $X=\{X_t;\,t\in[0,\tau]\}$ be a process defined on $(\Omega,\mathcal{F},\mathbf{P})$, such that

$$\mathbf{E}\left[\left|\delta X_{st}\right|^{\alpha}\right] \leq c|t-s|^{1+\beta}, \quad \text{ for } \quad s,t \in [0, au], \ c,\alpha,\beta > 0$$

Then there exists a modification \hat{X} of X such that almost surely $\hat{X} \in \mathcal{C}_1^{\gamma}$ for any $\gamma < \beta/\alpha$, i.e $\mathbf{P}(\omega; \|\hat{X}(\omega)\|_{\gamma} < \infty) = 1$.

4日ト 4個ト 4 差ト 4 差ト 差 めなべ

Samy T. Sdes Probability Theory 47 / 63

FBm regularity

Proposition 19. FBm $B \equiv B^H$ is γ -Hölder continuous for all $\gamma < H$, up to modification.

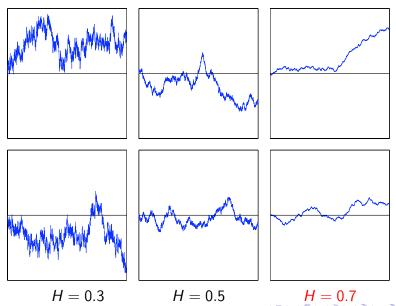
Proof: We have $\delta B_{st} \sim \mathcal{N}(0, |t-s|^{2H})$. Thus for $n \geq 1$,

$$\mathbf{E}\left[|\delta B_{st}|^{2n}
ight] = c_n|t-s|^{2Hn}$$
 i.e $\mathbf{E}\left[|\delta B_{st}|^{2n}
ight] = c_n|t-s|^{1+(2Hn-1)}$

Kolmogorov: B is γ -Hölder for $\gamma < (2Hn - 1)/2n = H - 1/(2n)$. Proof finished by letting $n \to \infty$.

48 / 63

Examples of fBm paths



Some properties of fBm

Proposition 20.

Let B be a fBm with parameter H. Then:

- $\{a^{-H}B_{at}; t \ge 0\}$ is a fBm (scaling)
- ② $\{B_{t+h} B_h; t \ge 0\}$ is a fBm (stationarity of increments)
- § B is not a semi-martingale unless H=1/2And B is nowhere differentiable a.s

Proof of claim 3:

If B were a semi-martingale, we would get on [0,1]:

$$\mathbf{P} - \lim_{n \to \infty} \sum_{i=1}^{n} (B_{i/n} - B_{(i-1)/n})^2 = \langle B \rangle_1,$$

were $\langle B \rangle$ is the (non trivial) quadratic variation of B.

We will show that $\langle B \rangle$ is trivial (0 or ∞) whenever $H \neq 1/2$.

Samy T. Sdes Probability Theory 50 / 63

Proof of claim 3 (2)

Define

$$V_{n,2} = \sum_{i=1}^{n} |B_{i/n} - B_{(i-1)/n}|^2$$
, and $Y_{n,2} = n^{2H-1}V_{n,2}$.

By scaling properties, we have:

$$Y_{n,2} \stackrel{(d)}{=} \hat{Y}_{n,2}$$
, with $\hat{Y}_{n,p} = n^{-1} \sum_{i=1}^{n} |B_i - B_{i-1}|^2$.

The sequence $\{B_i - B_{i-1}; i \ge 1\}$ is stationary and mixing $\Rightarrow \hat{Y}_{n,2}$ converges $\mathbf{P} - a.s$ and in L^1 towards $\mathbf{E}[|B_1 - B_0|^2]$ $\Rightarrow \mathbf{P} - \lim_{n \to \infty} Y_{n,2} = E[|B_1|^2]$ $\Rightarrow \mathbf{P} - \lim_{n \to \infty} V_{n,2} = 0$ if 2H > 1, ∞ if 2H < 1

←□▶ ←□▶ ←□▶ ←□▶ →□ ● ●○○○

Outline

- Introduction and examples
- Existence and uniqueness
- Fractional Brownian motion
- 4 Young integration
- 5 Young differential equations

Samy T. Sdes Probability Theory 52 / 63

Strategy for H > 1/2

- Generally speaking, take advantage of two aspects of fBm:
 - Gaussianity
 - Regularity

For H > 1/2, regularity is almost sufficient

- Notation: $\mathcal{C}_1^{\gamma}=\mathcal{C}_1^{\gamma}(\mathbb{R})\equiv \gamma$ -Hölder functions of 1 variable
- If H>1/2, $B\in \mathcal{C}_1^{\gamma}$ for any $1/2<\gamma< H$ a.s
- We shall try to solve our equation in a pathwise manner

Pathwise strategy

Aim: Let x be a function in C_1^{γ} with $\gamma > 1/2$. We wish to define and solve an equation of the form:

$$y_t = a + \int_0^t \sigma(y_s) \, dx_s \tag{4}$$

Steps:

- Define an integral $\int z_s dx_s$ for $z \in \mathcal{C}_1^{\kappa}$, with $\kappa + \gamma > 1$
- \bullet Solve (4) through fixed point argument in \mathcal{C}_1^{κ} with $1/2<\kappa<\gamma$

Remark: We treat a real case and $b \equiv 0$ for notational sake.

 \hookrightarrow Extensions to dimension d by adding indices.

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

Samy T. Sdes Probability Theory 54 / 63

Particular Riemann sums

Aim: Define $\int_0^1 z_s dx_s$ for $z \in \mathcal{C}_1^{\kappa}$, $x \in \mathcal{C}_1^{\gamma}$, with $\kappa + \gamma > 1$

Dyadic partition: set $t_i^n = i/2^n$, for $n \ge 0$, $0 \le i \le 2^n$

Associated Riemann sum:

$$I_n \equiv \sum_{i=0}^{2^n-1} z_{t_i^n} [x_{t_{i+1}^n} - x_{t_i^n}] = \sum_{i=0}^{2^n-1} z_{t_i^n} \, \delta x_{t_i^n t_{i+1}^n}.$$

Question: Can we define $\mathcal{J}_{01}(z dx) \equiv \lim_{n \to \infty} I_n$?

Possibility: Control $|I_{n+1} - I_n|$ and write (if the series is convergent):

$$\mathcal{J}_{01}(z\,dx) = I_0 + \sum_{n=0}^{\infty} (I_{n+1} - I_n).$$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ○

Samy T. Sdes Probability Theory 55 / 63

Control of $I_{n+1} - I_n$

We have:

$$I_{n} = \sum_{i=0}^{2^{n}-1} z_{t_{i}^{n}} \delta x_{t_{i}^{n} t_{i+1}^{n}} = \sum_{i=0}^{2^{n}-1} z_{t_{2i}^{n+1}} \left[\delta x_{t_{2i}^{n+1} t_{2i+1}^{n+1}} + \delta x_{t_{2i+1}^{n+1} t_{2i+2}^{n+1}} \right]$$

$$I_{n+1} = \sum_{i=0}^{2^{n}-1} \left[z_{t_{2i}^{n+1}} \delta x_{t_{2i}^{n+1} t_{2i+1}^{n+1}} + z_{t_{2i+1}^{n+1}} \delta x_{t_{2i+1}^{n+1} t_{2i+2}^{n+1}} \right]$$

Therefore:

$$\begin{aligned} |I_{n+1} - I_n| &= \left| \sum_{i=0}^{2^n - 1} \delta z_{t_{2i}^{n+1} t_{2i+1}^{n+1}} \delta x_{t_{2i+1}^{n+1} t_{2i+2}^{n+1}} \right| \\ &\leq \sum_{i=0}^{2^n - 1} \|z\|_{\kappa} |t_{2i+1}^{n+1} - t_{2i}^{n+1}|^{\kappa} \|x\|_{\gamma} |t_{2i+2}^{n+1} - t_{2i+1}^{n+1}|^{\gamma} \\ &= \frac{\|z\|_{\kappa} \|x\|_{\gamma}}{2^{\kappa + \gamma} 2^{n(\kappa + \gamma - 1)}} \end{aligned}$$

Definition of the integral

We have seen: for $\alpha \equiv \kappa + \gamma - 1 > 0$ and $n \ge 0$:

$$|I_{n+1}-I_n|\leq \frac{c_{x,z}}{2^{\alpha n}}$$

Series convergence:

Obviously, $\sum_{n=0}^{\infty} (I_{n+1} - I_n)$ is a convergent series \hookrightarrow yields definition of $\mathcal{J}_{01}(z \, dx)$, and more generally: $\mathcal{J}_{st}(z \, dx)$

Remark:

One should consider more general partitions π , with $|\pi| \to 0$ \hookrightarrow C.f Lejay (Séminaire 37)

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

57 / 63

Young integral

Proposition 21.

Let

- ullet $z\in \mathcal{C}^\kappa_1([0, au])$, $x\in \mathcal{C}^\gamma_1([0, au])$
- $\kappa + \gamma > 1$, and $0 \le s < t \le T$
- $(\pi_n)_{n\geq 0}$ a sequence of partitions of [s,t] such that $\lim_{n\to\infty}|\pi_n|=0$
- I_n corresponding Riemann sums

Then:

- **1** I_n converges to an element $\mathcal{J}_{st}(z dx)$
- ② The limit does not depend on the sequence $(\pi^n)_{n\geq 0}$
- 3 Integral linear in z, and coincides with Riemann's integral for smooth z, x

A bound for Young integrals

Theorem 22.

Let $f \in \mathcal{C}_1^\kappa, g \in \mathcal{C}_1^\gamma$, with $\kappa + \gamma > 1$. Then: • If $0 \le s < u < t \le T$, we have

- **②** Generalized integral $\mathcal{J}(f dg)$ satisfies:

$$|\mathcal{J}_{\mathsf{st}}(f \ \mathsf{d}g)| \leq \|f\|_{\infty} \|g\|_{\gamma} |t-s|^{\gamma} + c_{\gamma,\kappa} \|f\|_{\kappa} \|g\|_{\gamma} |t-s|^{\gamma+\kappa}.$$

59 / 63

Outline

- Introduction and examples
- Existence and uniqueness
- Fractional Brownian motion
- 4 Young integration
- 5 Young differential equations

Samy T. Sdes Probability Theory 60 / 63

Pathwise strategy (repeated)

Aim: Let x be a function in C_1^{γ} with $\gamma > 1/2$. We wish to define and solve an equation of the form:

$$y_t = a + \int_0^t \sigma(y_s) \, dx_s \tag{5}$$

Steps:

- Define an integral $\int z_s dx_s$ for $z \in \mathcal{C}_1^{\kappa}$, with $\kappa + \gamma > 1$
- \bullet Solve (5) through fixed point argument in \mathcal{C}_1^{κ} with $1/2<\kappa<\gamma$

Remark: We treat a real case and $b \equiv 0$ for notational sake.

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - からぐ

Samy T. Sdes Probability Theory 61 / 63

Existence-uniqueness result

Theorem 23.

Consider

- Noise: $x \in \mathcal{C}_1^{\gamma} \equiv \mathcal{C}_1^{\gamma}([0,\tau])$, with $\gamma > 1/2$
- Coefficient: $\sigma: \mathbb{R} \to \mathbb{R}$ a C_b^2 function
- Equation: $\delta y = \mathcal{J}(\sigma(y) dx)$, and $y_0 = a$.

Then:

- Our equation admits a unique solution y in C_1^{κ} for any $1/2 < \kappa < \gamma$.
- **2** Application $(a, x) \mapsto y$ is continuous from $\mathbb{R} \times \mathcal{C}_1^{\gamma}$ to \mathcal{C}_1^{κ} .

Fixed point: strategy

A map on a small interval:

Consider an interval $[0, \tau]$, with τ to be determined later

Consider κ such that $1/2 < \kappa < \gamma < 1$

In this interval, consider $\Gamma: \mathcal{C}_1^{\kappa}([0,\tau]) \to \mathcal{C}_1^{\kappa}([0,\tau])$ defined by: $\Gamma(z) = \hat{z}$, with $\hat{z}_0 = a$, and for $s, t \in [0,\tau]$:

$$\delta \hat{z}_{st} = \int_{s}^{t} \sigma(z_r) dx_r = \mathcal{J}_{st}(\sigma(z) dx)$$

Aim: See that for a small enough τ , the map Γ is a contraction \hookrightarrow our equation admits a unique solution in $\mathcal{C}_1^{\kappa}([0,\tau])$

Samy T. Sdes Probability Theory 63 / 63