Probability preliminaries

Samy Tindel

Purdue University

Stochastic calculus - MA598
Outline

1. Basic structures
2. Products of probability spaces
3. Gaussian random vectors
4. Conditional expectation
Outline

1. Basic structures

2. Products of probability spaces

3. Gaussian random vectors

4. Conditional expectation
First definitions

Probability space: \((\Omega, \mathcal{F}, P)\) with
- \(\Omega\) set
- \(\mathcal{F}\) generic \(\sigma\)-algebra
- \(P\) probability measure

Hypothesis: We assume that \(P\) is complete, i.e

\[A \in \mathcal{F} \text{ such that } P(A) = 0, \quad \text{and } B \subset A \implies B \in \mathcal{F} \text{ and } P(B) = 0 \]

Remark: One can always complete a probability space
Simple examples

Rolling 2 dice:
- $\Omega = \{1, 2, 3, 4, 5, 6\}^2$
- $\mathcal{F} = \mathcal{P}(\Omega)$
- $P(A) = \frac{|A|}{36}$

Uniform law on $[0, 1]$:
- $\Omega = [0, 1]$
- $\mathcal{F} = \mathcal{B}([0, 1])$
- $P = \lambda$, Lebesgue measure

Gaussian law on \mathbb{R}:
- $\Omega = \mathbb{R}$
- $\mathcal{F} = \mathcal{B}(\mathbb{R})$
- $P(A) = \frac{1}{(2\pi)^{1/2}} \int_A e^{-\frac{(x-\mu)^2}{2\sigma^2}} \, dx$, for $A \in \mathcal{F}$
Important example for stochastic processes

Proposition 1.

Let $\Omega = \mathcal{C}([0, \infty); \mathbb{R}^m)$. We set:

$$d(f, g) = \sum_{n \geq 1} \frac{\|f - g\|_{\infty,n}}{2^n (1 + \|f - g\|_{\infty,n})},$$

where

$$\|f - g\|_{\infty,n} = \sup \{ |f_t - g_t|; \ t \in [0, n] \}.$$

Then Ω is a complete separable metric space.

Following chapter: We construct the Wiener measure on Ω
Independence

Independence of r.v: Let $(X_j)_{j \in J}$ r.v, with values in \mathbb{R}^n. We say that these r.v are independent if for all $m \geq 2$:

- For all $j_1, \ldots, j_m \in J$, the r.v $(X_{j_1}, \ldots, X_{j_m})$ are $\perp \perp$
- Otherwise stated: for all $A_1, \ldots, A_m \in \mathcal{B}(\mathbb{R}^n)$ we have

$$
P \left(X_{j_1} \in A_1, \ldots, X_{j_m} \in A_m \right) = \prod_{k=1}^{m} P \left(X_{j_k} \in A_k \right)
$$

Independence of σ-algebras: Let $(\mathcal{F}_j)_{j \in J}$ σ-algebras, $\mathcal{F}_j \subset \mathcal{F}$. We say that those σ-algebras are independent if for all $m \geq 2$:

- For all $j_1, \ldots, j_m \in J$, the σ-algebras $(\mathcal{F}_{j_1}, \ldots, \mathcal{F}_{j_m})$ are $\perp \perp$
- Otherwise stated: for all $B_1 \in \mathcal{F}_{j_1}, \ldots, B_m \in \mathcal{F}_{j_m}$ we have

$$
P \left(\bigcap_{k=1}^{m} B_k \right) = \prod_{k=1}^{m} P \left(B_k \right)
$$
\section*{π-systems and λ-systems}

\textbf{π-system:} Let \mathcal{P} family of sets in Ω. \mathcal{P} is a π-system if:

\[A, B \in \mathcal{P} \implies A \cap B \in \mathcal{P} \]

\textbf{λ-system:} Let \mathcal{L} family of sets in Ω. \mathcal{L} is a λ-system if:

1. $\Omega \in \mathcal{L}$
2. If $A \in \mathcal{L}$, then $A^c \in \mathcal{L}$
3. If for $j \geq 1$ we have:
 - $A_j \in \mathcal{L}$
 - $A_j \cap A_i = \emptyset$ if $j \neq i$

Then $\bigcup_{j \geq 1} A_j \in \mathcal{L}$
Dynkin’s π-λ lemma

Lemma 2.

Let \mathcal{P} and \mathcal{L} such that:

- \mathcal{P} is a π-system
- \mathcal{L} is a λ-system
- $\mathcal{P} \subset \mathcal{L}$

Then $\sigma(\mathcal{P}) \subset \mathcal{L}$
Application of Dynkin’s lemma

Proposition 3.

Let:
- \(X_1, \ldots, X_n \) r.v, with values in \(\mathbb{R}^m \).
- \(X \equiv (X_1, \ldots, X_n) \in \mathbb{R}^{m \times n} \).
- \(\mu_{X_j} = \mathcal{L}(X_j) \) and \(\mu_X = \mathcal{L}(X) \).

Then the following two statements are equivalent:

1. \(X_1, \ldots, X_n \) are independent
2. \(\mu_X = \mu_{X_1} \otimes \cdots \otimes \mu_{X_n} \) on \(\mathcal{B}(\mathbb{R}^{m \times n}) \)
Definition of two systems: We set

\[\mu_1 = \mu_X, \quad \text{and} \quad \mu_2 = \mu_X \otimes \cdots \otimes \mu_X, \]

and

\[\mathcal{P} \equiv \left\{ A \in \mathcal{B}(\mathbb{R}^{m \times n}); A = A_1 \times \cdots \times A_n, \text{ where } A_j \in \mathcal{B}(\mathbb{R}^m) \right\} \]

\[\mathcal{L} \equiv \left\{ B \in \mathcal{B}(\mathbb{R}^{m \times n}); \mu_1(B) = \mu_2(B) \right\}. \]

Application of Dynkin’s lemma: We have

- \(\mathcal{P} \) is a \(\pi \)-system
- \(\mathcal{L} \) is a \(\lambda \)-system
- \(\mu_1(C) = \mu_2(C) \) for all \(C \in \mathcal{P} \)

Thus \(\sigma(\mathcal{P}) \subset \mathcal{L} \), and \(\sigma(\mathcal{P}) = \mathcal{B}(\mathbb{R}^{m \times n}) \)
Outline

1. Basic structures
2. Products of probability spaces
3. Gaussian random vectors
4. Conditional expectation
Situation: We consider \(\{ \mu_k; \ k \geq 1 \} \) sequence of probability measures on \(\mathbb{R} \).

We try to define:

\[
\mu = \bigotimes_{k=1}^{\infty} \mu_k,
\]

on a probability space

\[
\Omega \equiv \prod_{k=1}^{\infty} \Omega_k.
\]
Cylinder sets

Recall: We consider

- $(\Omega_k, \mathcal{F}_k, P_k)$ family of probability spaces
- $\Omega \equiv \prod_{k=1}^{\infty} \Omega_k$

Definition 4.

Let $A \subset \Omega$. We say that A is cylindrical if there exists $k \geq 0$ and $0 \leq n_1 < \cdots < n_k$ such that

$$A = \{ \omega \in \Omega; \; \omega_{n_1} \in A_1, \ldots, \omega_{n_k} \in A_k \}, \quad \text{where} \quad A_j \in \mathcal{F}_{n_j}$$

Interpretation:

A cylindrical set only involves a finite number of coordinates product σ-algebra on Ω: $\mathcal{F} \equiv \sigma(\mathcal{C})$, with $\mathcal{C} \equiv$ cylindrical sets.
Product measure

Theorem 5.

Let:
- \((\Omega_k, \mathcal{F}_k, P_k)\) family of probability spaces
- \((\Omega, \mathcal{F})\) product space

Then there exists a unique probability \(P\) on \((\Omega, \mathcal{F})\) such that:

\[
P(A) = \prod_{j=1}^{k} P_{n_j}(A_j), \quad \text{for all} \quad A \in \mathcal{C}
\]
Sequence of independent random variables

Theorem 6.

Let:

- \(\{\mu_k; k \geq 1\} \) family of probability laws on \((\mathbb{R}, \mathcal{B}(\mathbb{R}))\).

Then there exists:

- Probability space \((\Omega, \mathcal{F}, P)\)
- \(\{X_k; k \geq 1\} \) family of independent r.v defined on \(\Omega\)

Such that \(\mathcal{L}(X_k) = \mu_k\).
Proof

Product space: We consider

- \((\Omega_k, \mathcal{F}_k, P_k) = (\mathbb{R}, \mathcal{B}(\mathbb{R}), \mu_k)\)
- \((\Omega, \mathcal{F}, P) \equiv \text{product space}\)
- \(X_k(\omega) = \omega_k\) if \(\omega = (\omega_k)_{k \geq 1}\)

Independence: For all \(k_1 < \ldots < k_n\) the r.v \(X_{k_j}\) are \(\perp\perp\). Indeed,

\[
P\left(\bigcap_{j=1}^{n} (X_{k_j} \in A_j) \right) = \prod_{j=1}^{n} \mu_{k_j}(A_j) = \prod_{j=1}^{n} P(X_{k_j} \in A_j),
\]

This corresponds to the definition of independence.
Outline

1. Basic structures
2. Products of probability spaces
3. Gaussian random vectors
4. Conditional expectation
Definition

Definition: Let $X \in \mathbb{R}^n$.
X is a Gaussian random vector(s) if for all $\lambda \in \mathbb{R}^n$

$$\langle \lambda, X \rangle = \lambda^* X = \sum_{i=1}^{n} \lambda_i X_i$$
is a real valued Gaussian r.v.

Remarks:

1. X Gaussian vector
 \Rightarrow Each component X_i of X is Gaussian real r.v.

2. Key example of Gaussian vector:
 Independent components X_1, \ldots, X_n

3. One can easily construct an example of $X \in \mathbb{R}^2$ such that
 (i) X_1, X_2 real Gaussian (ii) X is not a Gaussian vector
Characteristic function

Proposition 7.

Let X Gaussian vector, with mean m and covariance K. Then, for all $u \in \mathbb{R}^n$,

$$E[\exp(\imath\langle u, X \rangle)] = e^{\imath\langle u, m \rangle - \frac{1}{2} u^* Ku},$$

where u is understood as a matrix.
Proof

Random variable $\langle u, X \rangle$:
$\langle u, X \rangle$ Gaussian r.v. by assumption, with

\[
\mu := \mathbb{E}[\langle u, X \rangle] = \langle u, m \rangle, \quad \text{and} \quad \sigma^2 := \text{Var}(\langle u, X \rangle) = u^* Ku.
\]

Recall: let $Y \sim \mathcal{N}(\mu, \sigma^2)$. Then

\[
\mathbb{E}[\exp(\imath t Y)] = \exp \left(\imath t \mu - \frac{t^2}{2} \sigma^2 \right), \quad t \in \mathbb{R}.
\]
Gaussian moments

Proposition 8.

Let $X \sim \mathcal{N}(0, 1)$. Then for all $n \in \mathbb{N}$, we have:

$$E[X^n] = \begin{cases}
0 & \text{if } n \text{ odd,} \\
\frac{(2m)!}{m!2^m} & \text{if } n \text{ even, } n = 2m.
\end{cases}$$
Affine transformations

Notation: If X Gaussian vector with mean m and covariance K
We write $X \sim \mathcal{N}(m, K)$

Proposition 9.

Let $X \sim \mathcal{N}(m_X, K_X)$, $A \in \mathbb{R}^{p,n}$ and $z \in \mathbb{R}^p$.
We set $Y = AX + z$. Then

$$Y \sim \mathcal{N}(m_Y, K_Y), \quad \text{with} \quad m_Y = z + Am_X, \quad K_Y = AK_XA^*.$$
Gaussian density

Theorem 10.

Let \(X \sim \mathcal{N}(m, K) \). Then

1. \(X \) admits a density iff \(K \) is invertible.
2. If \(K \) is invertible, the density of \(X \) is given by:

\[
f(x) = \frac{1}{(2\pi)^{n/2}(\det(K))^{1/2}} \exp \left(-\frac{1}{2}(x - m)^* K^{-1} (x - m) \right).
\]
Outline

1. Basic structures
2. Products of probability spaces
3. Gaussian random vectors
4. Conditional expectation
Formal definition

Definition 11.

A probability space \((\Omega, \mathcal{F}, P)\) is given and
- A \(\sigma\)-algebra \(\mathcal{G} \subset \mathcal{F}\).
- \(X \in \mathcal{F}\) such that \(E[|X|] < \infty\).

Conditional expectation of \(X\) given \(\mathcal{G}\):
- Denoted by: \(E[X|\mathcal{G}]\)
- Defined by: \(E[X|\mathcal{G}]\) is the r.v \(Y \in L^1(\Omega)\) such that
 1. \(Y \in \mathcal{G}\).
 2. For all \(A \in \mathcal{G}\), we have
 \[E[X 1_A] = E[Y 1_A]. \]
Easy examples

Example 1: If $X \in \mathcal{F}$, then $\mathbf{E}[X|\mathcal{F}] = X$.

Definition: We say that $X \perp \mathcal{F}$ if $\sigma(X) \perp \mathcal{F}$

\iff for all $A \in \mathcal{F}$ and $B \in \mathcal{B}(\mathbb{R})$, we have

$$P((X \in B) \cap A) = P(X \in B)P(A),$$

or otherwise stated $X \perp 1_A$.

Example 2: If $X \perp \mathcal{F}$, then $\mathbf{E}[X|\mathcal{F}] = \mathbf{E}[X]$.