Probability preliminaries

Samy Tindel

Purdue University

Stochastic calculus - MA598

э

< 47 ▶

Outline

- Products of probability spaces
- 3 Gaussian random vectors
- 4 Conditional expectation

Outline

- 2 Products of probability spaces
- 3 Gaussian random vectors
- 4 Conditional expectation

< 1 k

First definitions

Probability space: $(\Omega, \mathcal{F}, \mathbf{P})$ with

- Ω set
- \mathcal{F} generic σ -algebra
- P probability measure

Hypothesis: We assume that **P** is complete, i.e

$$A\in \mathcal{F}$$
 such that $\mathbf{P}(A)=0,\,\, ext{and}\,\,B\subset A\quad\Longrightarrow\quad B\in \mathcal{F}\,\, ext{and}\,\,\mathbf{P}(B)=0$

Remark: One can always complete a probability space

Simple examples Rolling 2 dice:

> • $\Omega = \{1, 2, 3, 4, 5, 6\}^2$ • $\mathcal{F} = \mathcal{P}(\Omega)$ • $\mathbf{P}(A) = \frac{|A|}{36}$

Uniform law on [0, 1]:

- $\Omega = [0, 1]$
- $\mathcal{F} = \mathcal{B}([0,1])$
- $\mathbf{P} = \lambda$, Lebesgue measure

Gaussian law on \mathbb{R} :

• $\Omega = \mathbb{R}$

1

•
$$\mathcal{F} = \mathcal{B}(\mathbb{R})$$

•
$$\mathbf{P}(A)=rac{1}{(2\pi)^{1/2}}\int_A e^{-rac{(x-\mu)^2}{2\sigma^2}}\,dx$$
, for $A\in\mathcal{F}$

3

< □ > < □ > < □ > < □ > < □ > < □ >

Important example for stochastic processes

Proposition 1. Let $\Omega = C([0,\infty); \mathbb{R}^m)$. We set: $d(f,g) = \sum_{n>1} \frac{\|f-g\|_{\infty,n}}{2^n (1+\|f-g\|_{\infty,n})},$ where $\|f-g\|_{\infty,n} = \sup\left\{|f_t-g_t|; \ t\in [0,n]\right\}.$ Then Ω is a complete separable metric space.

Following chapter: We construct the Wiener measure on Ω

Samy T.

Independence

Independence of r.v: Let $(X_j)_{j \in J}$ r.v, with values in \mathbb{R}^n . We say that these r.v are independent if for all $m \geq 2$:

- For all $j_1,\ldots,j_m\in J$, the r.v (X_{j_1},\ldots,X_{j_m}) are $\perp\!\!\!\perp$
- Otherwise stated: for all $A_1, \ldots, A_m \in \mathcal{B}(\mathbb{R}^n)$ we have

$$\mathbf{P}\left(X_{j_1} \in A_1, \ldots, X_{j_m} \in A_m\right) = \prod_{k=1}^m \mathbf{P}\left(X_{j_k} \in A_k\right)$$

Independence of σ -algebras: Let $(\mathcal{F}_j)_{j \in J} \sigma$ -algebras, $\mathcal{F}_j \subset \mathcal{F}$. We say that those σ -algebras are independent if for all $m \geq 2$:

- For all $j_1, \ldots, j_m \in J$, the σ -algebras $(\mathcal{F}_{j_1}, \ldots, \mathcal{F}_{j_m})$ are $\perp\!\!\!\perp$
- Otherwise stated: for all $B_1 \in \mathcal{F}_{j_1}, \ldots, B_m \in \mathcal{F}_{j_m}$ we have

$$\mathbf{P}\left(\bigcap_{k=1}^{m}B_{k}\right)=\prod_{k=1}^{m}\mathbf{P}\left(B_{k}\right)$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 π -systems and λ -systems

 π -system: Let \mathcal{P} family of sets in Ω . \mathcal{P} is a π -system if:

$$A, B \in \mathcal{P} \implies A \cap B \in \mathcal{P}$$

 λ -system: Let \mathcal{L} family of sets in Ω . \mathcal{L} is a λ -system if:

- $\ \, \Omega \in \mathcal{L}$
- **2** If $A \in \mathcal{L}$, then $A^c \in \mathcal{L}$
- 3 If for $j \ge 1$ we have:

• $A_j \in \mathcal{L}$ • $A_j \cap A_i = \emptyset$ if $j \neq i$

Then $\cup_{j\geq 1}A_j \in \mathcal{L}$

Dynkin's π - λ lemma

Lemma 2.

Let $\mathcal P$ and $\mathcal L$ such that:

- ${\mathcal P}$ is a $\pi\text{-system}$
- ${\mathcal L}$ is a $\lambda\text{-system}$
- $\mathcal{P} \subset \mathcal{L}$

Then $\sigma(\mathcal{P}) \subset \mathcal{L}$

э

イロト イヨト イヨト

Application of Dynkin's lemma

Proposition 3. Let: • X_1, \ldots, X_n r.v, with values in \mathbb{R}^m . • $X \equiv (X_1, \ldots, X_n) \in \mathbb{R}^{m \times n}$. • $\mu_{X_i} = \mathcal{L}(X_j)$ and $\mu_X = \mathcal{L}(X)$. Then the following two statements are equivalent: • X_1, \ldots, X_n are independent • $\mu_X = \mu_{X_1} \otimes \cdots \otimes \mu_{X_n}$ on $\mathcal{B}(\mathbb{R}^{m \times n})$

Proof

Definition of two systems: We set

$$\mu_1 = \mu_X$$
, and $\mu_2 = \mu_{X_1} \otimes \cdots \otimes \mu_{X_n}$,

and

$$\mathcal{P} \equiv \left\{ A \in \mathcal{B}(\mathbb{R}^{m \times n}); \ A = A_1 \times \cdots \times A_n, \text{ where } A_j \in \mathcal{B}(\mathbb{R}^m) \right\}$$
$$\mathcal{L} \equiv \left\{ B \in \mathcal{B}(\mathbb{R}^{m \times n}); \ \mu_1(B) = \mu_2(B) \right\}.$$

Application of Dynkin's lemma: We have

- \mathcal{P} is a π -system
- \mathcal{L} is a λ -system

•
$$\mu_1(\mathcal{C}) = \mu_2(\mathcal{C})$$
 for all $\mathcal{C} \in \mathcal{P}$

Thus $\sigma(\mathcal{P}) \subset \mathcal{L}$, and $\sigma(\mathcal{P}) = \mathcal{B}(\mathbb{R}^{m \times n})$

Outline

- 3 Gaussian random vectors
- 4 Conditional expectation

Aim

Situation: We consider

• $\{\mu_k; k \ge 1\}$ sequence of probability measures on $\mathbb R$

We try to define:

$$\mu = \bigotimes_{k=1}^{\infty} \mu_k,$$

on a probability space

$$\Omega \equiv \prod_{k=1}^{\infty} \Omega_k.$$

э

Cylinder sets

Recall: We consider

- $(\Omega_k, \mathcal{F}_k, \mathbf{P}_k)$ family of probability spaces
- $\Omega \equiv \prod_{k=1}^{\infty} \Omega_k$

Definition 4.

Let $A \subset \Omega$. We say that A is cylindrical if there exists $k \ge 0$ and $0 \le n_1 < \cdots < n_k$ such that $A = \{\omega \in \Omega; \ \omega_{n_1} \in A_1, \ldots, \omega_{n_k} \in A_k\}, \text{ where } A_j \in \mathcal{F}_{n_j}\}$

Interpretation:

A cylindrical set only involves a finite number of coordinates

product σ -algebra on Ω : $\mathcal{F} \equiv \sigma(\mathcal{C})$, with $\mathcal{C} \equiv$ cylindrical sets.

Product measure

Theorem 5.

Let:

- $(\Omega_k, \mathcal{F}_k, \mathbf{P}_k)$ family of probability spaces
- (Ω, \mathcal{F}) product space

Then there exists a unique probability **P** on (Ω, \mathcal{F}) such that:

$$\mathbf{P}(A) = \prod_{j=1}^{k} \mathbf{P}_{n_j}(A_j), \quad ext{for all} \quad A \in \mathcal{C}$$

Sequence of independent random variables

Theorem 6.

Let:

• { μ_k ; $k \ge 1$ } family of probability laws on ($\mathbb{R}, \mathcal{B}(\mathbb{R})$). Then there exists:

- Probability space $(\Omega, \mathcal{F}, \mathbf{P})$
- $\{X_k; k \ge 1\}$ family of independent r.v defined on Ω

Such that $\mathcal{L}(X_k) = \mu_k$.

Proof

Product space: We consider

Independence: For all $k_1 < \ldots < k_n$ the r.v X_{k_j} are $\bot\!\!\!\bot$. Indeed,

$$\mathbf{P}\left(\bigcap_{j=1}^{n}(X_{k_{j}}\in A_{j})\right)=\prod_{j=1}^{n}\mu_{k_{j}}(A_{j})=\prod_{j=1}^{n}\mathbf{P}(X_{k_{j}}\in A_{j}),$$

This corresponds to the definition of independence.

Outline

Basic structures

- Products of probability spaces
- 3 Gaussian random vectors
- 4 Conditional expectation

-

< 行

Definition

Definition: Let $X \in \mathbb{R}^n$. X is a Gaussian random vectors iff for all $\lambda \in \mathbb{R}^n$

$$\langle \lambda, X \rangle = \lambda^* X = \sum_{i=1}^n \lambda_i X_i$$
 is a real valued Gaussian r.v.

Remarks:

(1) X Gaussian vector

 \Rightarrow Each component X_i of X is Gaussian real r.v.

(2) Key example of Gaussian vector: Independent components X_1, \ldots, X_n

(3) One can easily construct an example of $X \in \mathbb{R}^2$ such that (i) X_1, X_2 real Gaussian (ii) X is not a Gaussian vector

Characteristic function

Proposition 7.

Let X Gaussian vector, with mean m and covariance KThen, for all $u \in \mathbb{R}^n$,

$$\mathbf{E}\left[\exp(\imath\langle u, X\rangle)\right] = e^{\imath\langle u, m\rangle - \frac{1}{2}u^* K u},$$

where u is understood as a matrix.

Proof

Random variable $\langle u, X \rangle$: $\langle u, X \rangle$ Gaussian r.v. by assumption, with

$$\mu := \mathsf{E}[\langle u, X \rangle] = \langle u, m \rangle, \text{ and } \sigma^2 := \mathsf{Var}(\langle u, X \rangle) = u^* \mathsf{K} u.$$

Recall: let $Y \sim \mathcal{N}(\mu, \sigma^2)$. Then

$$\mathbf{E}[\exp(\imath tY)] = \exp\left(\imath t\mu - rac{t^2}{2}\sigma^2
ight), \ \ t\in\mathbb{R}.$$

э

N 4 E N

Gaussian moments

Proposition 8.

Let $X \sim \mathcal{N}(0, 1)$. Then for all $n \in \mathbb{N}$, we have:

$$\mathbf{E}[X^n] = \begin{cases} 0 \text{ if } n \text{ odd,} \\ \frac{(2m)!}{m!2^m}, \text{ if } n \text{ even, } n = 2m. \end{cases}$$

< 47 ▶

э

Affine transformations

Notation: If X Gaussian vector with mean m and covariance K We write $X \sim \mathcal{N}(m, K)$

Proposition 9.Let
$$X \sim \mathcal{N}(m_X, K_X)$$
, $A \in \mathbb{R}^{p,n}$ and $z \in \mathbb{R}^p$.We set $Y = AX + z$. Then $Y \sim \mathcal{N}(m_Y, K_Y)$, with $m_Y = z + Am_X$, $K_Y = AK_X A^*$.

3

< □ > < 同 > < 回 > < 回 > < 回 >

Gaussian density

Theorem 10.

Let $X \sim \mathcal{N}(m, K)$. Then

- X admits a density iff K is invertible.
- **2** Si K is invertible, the density of X is given by:

$$f(x) = \frac{1}{(2\pi)^{n/2} (\det(K))^{1/2}} \exp\left(-\frac{1}{2}(x-m)^* K^{-1}(x-m)\right).$$

Outline

Basic structures

- Products of probability spaces
- 3 Gaussian random vectors
- 4 Conditional expectation

Formal definition

Definition 11.

A probability space $(\Omega, \mathcal{F}, \mathbf{P})$ is given and

- A σ -algebra $\mathcal{G} \subset \mathcal{F}$.
- $X \in \mathcal{F}$ such that $\mathbf{E}[|X|] < \infty$.

Conditional expectation of X given \mathcal{G} :

- Denoted by: $\mathbf{E}[X|\mathcal{G}]$
- Defined by: $\mathbf{E}[X|\mathcal{G}]$ is the r.v $Y \in L^1(\Omega)$ such that

(i)
$$Y \in \mathcal{G}$$
.
(ii) For all $A \in \mathcal{G}$, we have

$$\mathbf{E}[X \mathbf{1}_A] = \mathbf{E}[Y \mathbf{1}_A].$$

Easy examples

Example 1: If $X \in \mathcal{F}$, then $\mathbf{E}[X|\mathcal{F}] = X$.

Definition: We say that $X \perp \mathcal{F}$ si $\sigma(X) \perp \mathcal{F}$ \hookrightarrow for all $A \in \mathcal{F}$ and $B \in \mathcal{B}(\mathbb{R})$, we have

$$\mathbf{P}((X \in B) \cap A) = \mathbf{P}(X \in B) \, \mathbf{P}(A),$$

or otherwise stated $X \perp\!\!\perp \mathbf{1}_A$.

Example 2: If $X \perp \mathcal{F}$, then $\mathbf{E}[X|\mathcal{F}] = \mathbf{E}[X]$.