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Abstract. We study the properties of topological spaces (X, τ), where X is a definable set
in an o-minimal structure and the topology τ on X has a basis that is (uniformly) definable.
Examples of such spaces include the canonical euclidean topology on definable sets, definable
order topologies, definable quotient spaces and definable metric spaces. We use o-minimality
to undertake their study in topological terms, focussing here in particular on spaces of
dimension one. We present several results, given in terms of piecewise decompositions and
existence of definable embeddings and homeomorphisms, for various classes of spaces that
are described in terms of classical separation axioms and definable analogues of properties
such as separability, compactness and metrizability. For example, we prove that all Hausdorff
one-dimensional definable topologies are piecewise the euclidean, discrete, or upper or lower
limit topology; we give a characterization of all one-dimensional, regular, Hausdorff definable
topologies in terms of spaces that have a lexicographic ordering or a topology generalizing
the Alexandrov double of the euclidean topology; and we show that, if the underlying
structure expands an ordered field, then any one-dimensional Hausdorff definable topology
that is piecewise euclidean is definably homeomorphic to a euclidean space. As applications
of these results, we prove definable versions of several open conjectures from set-theoretic
topology, due to Gruenhage and Fremlin, on the existence of a 3-element basis for regular,
Hausdorff topologies and on the nature of perfectly normal, compact, Hausdorff spaces;
we obtain universality results for some classes of Hausdorff and regular topologies; and we
characterize when certain metrizable definable topologies admit a definable metric.

1. Introduction

A topological space (X, τ) is definable in a first order structure R = (R, . . .) if X ⊆ Rn, for
some natural number n, and the topology τ has a basis that is (uniformly) definable in R. In
other words, the topology τ is explicitly definable in the sense of Flum and Ziegler [16]. This
definition generalizes the notion of first order topological structure in [31], which addresses
the case where X = R. A basic example of a topological space which is definable in any
structure is the discrete topology on a definable set. Other examples of definable topological
spaces arise from valued fields and the field of complex numbers with a predicate for the
reals [31].

In this paper, we begin a detailed study of the general theory of topological spaces that are
definable in o-minimal structures. A structure is o-minimal if it is an expansion of a linear
order (R,<) satisfying that every unary definable set is a finite union of points and intervals
with endpoints in R∪{−∞,+∞}. There is a canonical topology in this setting given by the
order topology on R and, for every n > 1, the induced product topology on Rn. In the present
paper we refer to these definable topologies collectively as the euclidean topology. Much of
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the research in o-minimality as a tame topological setting has centered on the analysis of the
euclidean topology, as this has long been recognized as a suitable setting for the “topologie
modérée” of Grothendieck (i.e. a setting that avoids the pathologies of general set-theoretic
topology) [19]. Nevertheless, some examples of other o-minimal definable topological spaces
have been explored in the literature, including definable manifold spaces [13, Chapter 10,
Section 1], which encompass definable groups [32]; definable metric spaces [41]; and definable
orders (which generate definable order topological spaces) [33]. We direct the reader to [13]
for the requisite background on the theory of o-minimal structures, which will be used
extensively throughout this paper.

Our perspective is to consider definable topological spaces (X, τ) in o-minimal structures
from a general standpoint. Here we focus predominantly on the case where dimX = 1
but, even in this setting, our perspective brings to the o-minimal setting topological spaces
that exhibit a wide variety of topological properties (see Appendix A for a catalogue of ex-
amples), including classical spaces such as the Sorgenfrey Line, the Split Interval and the
Alexandrov Double Circle (Examples A.3, A.4 and A.13 respectively). These are common
counterexamples in topology, displaying properties that the more “well-behaved” spaces lack.
Nevertheless, we argue through the present work that this setting retains some form of tame-
ness. Specifically, the axiom of o-minimality implies that the structure of one-dimensional
definable topological spaces is rather restrictive, in particular when compared to spaces of
higher dimensions.

The main contributions of this paper are a series of decomposition and embedding theo-
rems for one-dimensional o-minimal definable topological spaces satisfying certain classical
separation axioms. These results can be understood as classifying such spaces, in the sense
that they can be described in terms of a few classical examples. Much of our approach is
motivated by partition problems in set-theoretic topology, which seek to understand topo-
logical spaces in similar terms under various axioms of set theory (see for example [39]). In
order to prove our results and build an extensive theory of o-minimal definable topology, we
also introduce to our setting suitable definable analogues of classical topological properties,
including separability, metrizability and compactness, and investigate them in depth.

We now describe the main results of this paper. We begin with the following decomposition
results for T1 and Hausdorff spaces. Note that, in the following statement, the right half-
open interval topology (also known as the lower limit topology) is the definable analogue of
the topology of the classical Sorgenfrey Line.

Theorem A (Corollary 5.2, Corollary 5.10). Let R be an o-minimal structure and let (X, τ)
be a definable topological space in R.

I. If (X, τ) is infinite and T1, then it has a subspace that is definably homeomorphic to
an interval with either the euclidean, right half-open interval, left half-open interval, or
discrete topology.

II. If (X, τ) is Hausdorff and dim(X) ≤ 1, then there exists a finite definable partition
X of X such that, for every Y ∈ X , (Y, τ) is definably homeomorphic to a point or
an interval with either the euclidean, discrete, right half-open interval or left half-open
interval topology.

Theorem A.I can be seen as an o-minimal version of an open conjecture of set-theoretic
topology, due to Gruenhage, known as the 3-element basis conjecture (see [22], [23]). This
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conjecture states that it is consistent with ZFC that every uncountable, first-countable, reg-
ular, Hausdorff topological space contains a subspace homeomorphic to either a fixed subset
of the reals with the euclidean topology, or a fixed subset of the reals with the Sorgenfrey
topology, or contains an uncountable discrete subspace. Some cases of this conjecture are
known that are conditional upon various axioms of set theory (see Subsection 5.1 for further
discussion). From Theorem A.I we derive that the conclusion of the conjecture holds uncon-
ditionally for all infinite T1 topological spaces definable in any o-minimal expansion of (R, <),
and that a definable generalization holds in any o-minimal structure (see Subsection 5.1).

We also use Theorem A.I to show that no space homeomorphic to the Cantor space 2ω is
definable in any o-minimal structure (Corollary 5.8), supporting the thesis that o-minimality
provides a tame topological setting in the general definable topological context.

Further to the above, we also investigate o-minimal one-dimensional definable topological
spaces that are regular as well as Hausdorff, improving the conclusion of Theorem A.II
for these spaces by showing that they can be definably decomposed in terms of suitable
generalizations of the Split Interval and the Alexandrov Double Circle, the latter with a
topology which we call the ‘Alexandrov topology’ (see Examples A.5 and A.6). The precise
statement in the case of spaces (X, τ), with X a unary definable set, is as follows.

Theorem B (Theorem 6.3). Let R be an o-minimal structure and let (X, τ), X ⊆ R, be
a regular and Hausdorff definable topological space in R. Then there exist disjoint definable
open sets Y, Z ⊆ X with X \ (Y ∪ Z) finite, and nY , nZ > 0, such that (Y, τ) embeds defin-
ably into R × {0, . . . , nY } endowed with the lexicographic order topology, and (Z, τ) embeds
definably into R× {0, . . . , nZ} endowed with the Alexandrov topology.

These decomposition results, Theorems A and B, allow us to address universality questions
in our setting. Our motivation is classical universality literature in Banach space theory (e.g.
the Banach–Mazur theorem). We prove that a number of classes of spaces admit an ‘almost
definably universal’ space, in a sense that we make precise (Definition 7.1). Such classes
include the class of euclidean spaces of dimension at most n, the class of one-dimensional
regular Hausdorff definable topological spaces, and the class of Hausdorff definable topologi-
cal spaces (X, τ), withX a unary definable set, that satisfy the ‘frontier dimension inequality’
(Definition 4.23). We moreover prove some negative results about the existence of definably
universal spaces of certain kinds, in particular that there does not exist a one-dimensional, T1

definable topological space that is almost definably universal for the class of one-dimensional
regular Hausdorff definable topological spaces.

We also use Theorem B to study definable Hausdorff compactifications of o-minimal one-
dimensional definable topological spaces. Our main result in this respect (Theorem 8.6)
is that such a Hausdorff space (X, τ), with X a unary definable set, admits a definable
embedding into a one-dimensional Hausdorff definably compact space if and only if (X, τ) is
regular.

A main line of research concerning various classes of definable topological spaces has been
the study of affineness (the property of being definably homeomorphic to a space with the
euclidean topology). In the setting of o-minimal expansions of ordered fields, van den Dries
showed that any definable manifold space is affine if and only if it is regular [13], while
Walsberg showed that a definable metric space is affine if and only if it does not contain an
infinite definable discrete subspace. Using Theorem A.II, as well as our work on existence
of definable compactifications, we prove, in the same setting, the following characterization
of affineness for Hausdorff one-dimensional definable topological spaces.
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Theorem C (Theorem 9.1). Let R be an o-minimal expansion of an ordered field, and let
(X, τ) be a Hausdorff topological space definable in R with dim(X) ≤ 1. Then (X, τ) is affine
if and only if it does not contain a subspace that is definably homeomorphic to an interval
with either the discrete or the right half-open interval topology.

As an application of this theorem, in combination with Theorem B, we also address in our
setting a further set-theoretic question that is closely related to the aforementioned 3-element
basis conjecture, namely the possible nature of non-metrizable, perfectly normal, compact,
Hausdorff spaces in ZFC. Fremlin asked whether or not it is consistent with ZFC that every
perfectly normal, compact, Hausdorff space admits a continuous, at most 2-to-1 map onto
a metric space (see [23]), which in turn led Gruenhage to ask if every such space is either
metrizable or contains a copy of A×{0, 1} equipped with the lexicographic order topology, for
some uncountable A ⊆ [0, 1] (see [20]). It is indicated in [22] and [23] that positive answers
to these questions follow from the 3-element basis conjecture (see also Subsection 9.1). We
consider both of these questions in our setting and show in particular that positive answers
to both questions hold, in a definable sense, in any o-minimal expansion of (R,+, ·, <). More
specifically, we show that, in such a structure, Fremlin’s question has a positive answer for
any regular, Hausdorff one-dimensional definable topological space that is either perfectly
normal or separable (and, in particular, we do not require that such a space be compact)
(Corollary 9.8). We also show that Gruenhage’s question has a positive answer for any
one-dimensional, perfectly normal, compact, Hausdorff topological space definable in such a
structure, where we can strengthen the ‘metrizable’ conclusion to ‘being affine’, and in the
other case take A to be a subinterval of [0, 1] (Corollary 9.11).
We also use Theorem C, this time together with A.II, to investigate a notion of ‘definable

metrizability’ extracted from the work of Walsberg [41]. Our main result (Theorem 10.2)
is that definable metrizability is equivalent to metrizability for one-dimensional topologi-
cal spaces definable in certain o-minimal expansions of ordered fields (including o-minimal
expansions of the field of reals).

Unsurprisingly, studying o-minimal definable topological spaces of higher dimensions is a
lot less straightforward than studying those of dimension one. Key results that we present
here fail to generalize to higher dimensions. In particular, Theorem C does not, which we il-
lustrate by providing an example of a two-dimensional Hausdorff definable topological space
that is not affine, but which also does not contain a subspace that is definably homeomorphic
to an interval with either the discrete or the right half-open interval topology (Example A.11).
Moreover, we provide an example of a two-dimensional Hausdorff definable topological space
that fails to be affine, yet all of its one-dimensional subspaces are affine (Example A.14).
Moreover, for regular Hausdorff definable topological spaces, it also does not follow in gen-
eral that admitting a finite definable partition into euclidean subspaces implies being affine
(see Example A.16), although these properties are equivalent for one-dimensional Hausdorff
spaces.

The outline of this paper is as follows. In Section 2, we include many of the necessary defi-
nitions. In Section 3, we introduce definable metric spaces, studied in [41], to our setting, and
discuss the properties of definable metrizability and definable separability in further detail.
Section 4 contains preliminary results, both for spaces of all dimensions and for spaces of
dimension one in particular. In Section 5, we focus on T1 and Hausdorff spaces, in particular
proving Theorem A and deducing, from Theorem A.I, both the Gruenhage 3-element basis
conjecture in our setting and the fact that the Cantor space is not definable. In Section 6, we
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consider regular Hausdorff spaces, and in particular prove Theorem B. In Section 7, we an-
swer various universality questions, some as applications of Theorems A and B. In Section 8,
we prove, as a consequence of Theorem B, that all regular Hausdorff definable topologies
in the line can be Hausdorff compactified in a definable sense. In Section 9, we work in an
o-minimal expansion of an ordered field, and, using results of previous sections, in particu-
lar Theorem A.II and results on definable compactification, we prove Theorem C. We also
then prove various statements that address Fremlin’s and Gruenhage’s questions on perfectly
normal, compact, Hausdorff spaces as applications of Theorems B and C. In Section 10 we
prove, as an application of Theorems A.II and C, a theorem implying that, in an o-minimal
expansion of the field of reals, any one-dimensional definable topology that is metrizable
(with respect to the structure) also admits a definable metric. Finally, Appendix A provides
a catalogue of relevant examples, both key examples considered throughout the paper, as
well as a number of further examples illustrating the necessity of the hypotheses of many of
the results presented here.

As we were completing this paper, we became aware that Peterzil and Rosel were working
independently on similar questions. Section 11 is a note addressing their paper [29], in which
we describe how their main result relates to some of ours, and answer some of their open
questions.
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2. Definitions

We begin by laying out a number of conventions that we will use throughout the paper.
Since our goal is to study various topological spaces and their properties from the perspec-
tive of definability in o-minimal structures, and we wish to avoid any ambiguity between
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conventional concepts and those which we will introduce here, we are careful to make our
terminology explicit, even in the case of certain notions that can often be taken as read.

Throughout this paper, R = (R,<, . . .) denotes an o-minimal expansion of a dense linear
order without endpoints, possibly with extra assumptions that we make explicit in context.
Unless stated otherwise, by “definable” we will mean “definable in R, possibly with param-
eters from R”. Throughout, n and m denote natural numbers. By the euclidean topology
on Rn, we refer to the canonical topology in an o-minimal structure, which is given by the
order topology when n = 1 and by its induced product topology when n > 1. We let
R±∞ = R ∪ {+∞,−∞}, and extend the euclidean topology to Rn

±∞ in the natural way.
Without reference to a particular topology, any topological notion is to be understood with
respect to the euclidean topology. Unless stated otherwise, by interval we mean an open
interval with endpoints in R±∞. We fix infinitely many parameters 0 < 1 < 2 < . . . in R
in such a way that it will be clear from context when these numerals denote elements of R
and when they are just natural numbers. At times, we assume that R expands an ordered
group (R, 0,+, <) or field (R, 0, 1,+, ·, <), in which case these parameters have their natural
interpretations. Throughout, let π : Rn → R denote the projection to the first coordinate.
We abuse terminology as follows: we say that a relation Φ(x, y) ⊆ Rn × Rm

±∞ is definable
if its restriction to Rn × Rm is definable and the family of fibers {x ∈ Rn : Φ(x, y)} for
y ∈ Rm

±∞ \Rm is definable. Note that in this sense any definable partial function R → R±∞
satisfies o-minimal monotonicity.

We now define the central object of study in this paper.

Definition 2.1. A definable topological space is a tuple (X, τ), where X ⊆ Rn is a definable
set and τ is a topology on X such that there exists a definable family of sets Bτ that is a
basis for τ . We call Bτ a definable basis for τ and say that the topology τ is definable.

Clearly there is some redundancy in this definition, as the definability of the basis Bτ

implies the definability of the set X.
The following are some basic facts about definable topological spaces which are true regard-

less of the axiom of o-minimality or even the fact that R expands a linear order. Familiarity
with them will be assumed throughout the paper.

Proposition 2.2. Let (X, τ) and (Y, µ) be definable topological spaces.

(a) If Bτ is a definable basis for τ , then the family Bτ (x) = {A ∈ Bτ : x ∈ A} is a basis of
open neighbourhoods of x that is definable uniformly on x ∈ X.

(b) Let Z ⊆ X be a definable set. The closure clτZ, interior intτZ and frontier ∂τZ (:=
clτZ \ Z) of Z in (X, τ) are also definable.

(c) Let f : (X, τ) → (Y, µ) be a definable function. The set of points where f is continuous
is definable.

(d) If Z ⊆ X is a definable set, then the subspace (Z, τ |Z) is a definable topological space.
(e) The product space (X × Y, τ × µ) is a definable topological space.

When (X, τ) is a definable topological space and Y ⊆ X, we abuse notation by writing
(Y, τ) to mean (Y, τ |Y ).

Given a definable set X, we denote the euclidean and discrete topologies on X by τe
and τs, respectively, in such a way that the notation remains unambiguous. We generally
write the letter e in place of τe when used as a prefix or subscript, for example as in cle
or e-neighbourhood, and adopt analogous conventions in writing the letter s in place of τs.
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Moreover, given a definable function f : X → Y , we say that f is e-continuous (respec-
tively, an e-homeomorphism) if, as a map (X, τe) → (Y, τe), f is continuous (respectively, a
homeomorphism).

Recall that a topological space X is T1 if every singleton is closed, T2 if it is Hausdorff
and T3 if it is Hausdorff and regular, where regular means that any point x ∈ X and closed
set C ⊆ X with C ̸∋ x are separated by neighbourhoods, i.e. there exist disjoint open sets
U, V ⊆ X with x ∈ U and C ⊆ V . We approach the study of definable topologies in terms
of these three separation axioms.

We now introduce two definable topologies that are highly relevant to this paper and
which are immediate generalizations of classical topologies definable in (R, <). Since there
will be no ambiguity, we use some standard terminology to refer to them as understood in
our setting.

The right half-open interval topology (Appendix A, Example A.3), also called the lower
limit topology, on R, denoted τr, is the topology with definable basis

[x, y) for x, y ∈ R, x < y.

We reserve the name “Sorgenfrey Line” to refer to the classical space with this topology,
namely (R, τr) when R expands (R, <). Similarly, the left half-open interval topology (or
upper limit topology) on R, denoted τl, is the topology with definable basis

(x, y] for x, y ∈ R, x < y.

These spaces are clearly T3. Much as in general topology, they work as counterexamples to a
number of otherwise plausible conjectures in our setting. We adopt all notational conventions
with respect to τr and τl that were previously set for τe and τs (i.e. we write r and l in place
of τr and τl, respectively, when used as subscripts or prefixes).

Definition 2.3. A definable topological space (X, τ) is definably connected if it is not the
union of two disjoint non-empty definable τ -open sets.

For a fixed definable topological space (X, τ), we say that a definable subset Y ⊆ X is
definably connected if (Y, τ) is. A definably connected component of (X, τ) is a maximal
definably connected definable subset of X.

Note that another way of stating that the structureR is o-minimal is by saying that (R, τe)
is definably connected (equivalently, R is definably complete) and every definable subset of
R can be partitioned into finitely many definably connected euclidean spaces.

Remark 2.4. Clearly any order reversing bijection R → R is a homeomorphism (R, τr) →
(R, τl). Let τ∗ denote either τr or τl. Then, for any distinct pair τ, µ ∈ {τe, τ∗, τs} and
intervals I, J ⊆ X, there is no definable homeomorphism (I, τ) → (J, µ). This is obvious if
one of the topologies is discrete. If {τ, µ} = {τe, τ∗}, then this follows from the fact that any
interval with the euclidean topology is definably connected, while any interval with either the
right or left half-open interval topology is totally definably disconnected (i.e. every definably
connected subspace is trivial).

We now introduce a notion of definable separability that generalizes the one given by
Walsberg for definable metric spaces in [41]. We provide further justification for our definition
and its relationship to that of [41] in Subsection 3.2.

Definition 2.5. We say that a definable topological space (X, τ) is definably separable if
there exists no infinite definable family of τ -open pairwise disjoint subsets of X.
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The reader will note the similarity between our definition of definable separability and the
countable chain condition (ccc, or Suslin’s condition) for topological spaces: a topological
space has the ccc if it does not contain an uncountable family of pairwise disjoint open sets.
In general, every separable topological spaces has the ccc, but the converse is not true.

The main justification for our terminology (we discuss further justifications in Subsec-
tion 3.2) is that, in o-minimal expansions of (R, <), separability, definable separability, and
having the ccc are equivalent notions. To make the present paper self-contained we give a
proof of this equivalence for one-dimensional spaces. (The proof in the general case is given
in forthcoming work by the first author [2].)

Proposition 2.6. Suppose that R expands (R, <). Let (X, τ) be a definable topological space
with dimX ≤ 1. The following are equivalent.

(1) (X, τ) is definably separable.
(2) (X, τ) is separable.
(3) (X, τ) has the ccc.

Proof. Since dimX ≤ 1, applying o-minimal cell decomposition we fix throughout a finite
family of triples {(Ii, Ci, fi) : 1 ≤ i ≤ m} where, for each 1 ≤ i ≤ m, Ii ⊆ R is a singleton or
an interval, Ci is a definable subset of X, fi : Ii → Ci is a definable bijection, and moreover
the family {Ci : 1 ≤ i ≤ m} is a partition of X.

Implication (2) ⇒ (3) is a routine exercise. We prove (1) ⇒ (2) and (3) ⇒ (1).
Proof of (1) ⇒ (2).
Suppose that (X, τ) is definably separable. Let B be a definable basis for τ . Observe

that any given x ∈ X has a finite τ -neighbourhood if and only if there exists a finite set
A ∈ B with x ∈ A. By o-minimality (uniform finiteness), there exists some k < ω such that
said neighbourhood A is always of size at most k. It follows that the set X0 of all x ∈ X
with a finite τ -neighbourhood is definable. Furthermore, observe that, for every x ∈ X0,
there exists a (necessarily unique) τ -neighbourhood of x in B of minimum size among all
τ -neighbourhoods of x. We denote this τ -neighbourhood by A(x). Observe that the family
{A(x) : x ∈ X0} is definable.
Let ≼τ denote the classical specialization preorder (reflexive transitive relation) on X,

which is given by x ≼τ y whenever x ∈ clτ{y}. Let ∼0
τ be the equivalence relation on X

where x ∼0
τ y whenever x and y are topologically indistinguishable, i.e. they have the same

τ -neighbourhoods. Clearly ∼0
τ and ≼τ are both definable. Observe that x ∼0

τ y holds exactly
when x ≼τ y and y ≼τ x both do. Let us use the notation [·]0τ to denote the equivalence
classes by the relation ∼0

τ .
Let Xmax ⊆ X0 denote the set of points in X0 that are ≼τ -maximal, in the sense that

there does not exist some y ∈ X with x ≼τ y and y ̸≼τ x. Since ≼τ is definable then Xmax

is definable too.

Claim 2.6.1. For every x ∈ X0, it holds that Xmax ∩ A(x) ̸= ∅.

Proof of claim. The claim follows easily from the observation that, for any x ∈ X0, it holds
that A(x) = {y ∈ X : x ≼τ y}. In particular the inclusion A(x) ⊇ {y ∈ X : x ≼τ y}
follows from the definition of ≼τ and A(x) ⊆ {y ∈ X : x ≼τ y} holds by minimality of A(x).

□ (claim)

Claim 2.6.2. Xmax is finite.
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Proof of claim. We first show that, for any x ∈ Xmax, it holds that A(x) = [x]0τ , and hence,
in particular, that [x]0τ is τ -open and finite.

Let x ∈ Xmax. Clearly [x]0τ ⊆ A(x). On the other hand, suppose, towards a contradic-
tion, that there exists some y ∈ A(x) with y /∈ [x]0τ . However, then x ≼τ y but y ̸≼τ x,
contradicting that x is ≼τ -maximal.
We derive that the family {A(x) : x ∈ Xmax} = {[x]0τ : x ∈ Xmax} is a definable family of

identical or pairwise disjoint τ -open sets. Since (X, τ) is definably separable, this definable
family contains finitely many pairwise disjoint sets, each of which is finite, the union of which
contains Xmax. Hence Xmax is finite. □ (claim)

Now recall the notation {(Ii, Ci, fi) : 1 ≤ i ≤ m}. Let J ⊆ {1, . . . ,m} be the set of those
i such that Ii is an interval. We define

D =
⋃
i∈J

fi(Q ∩ Ii) ∪Xmax.

Since (X, τ) is definably separable, by Claim 2.6.2 the set D is countable. We show that it
is dense in (X, τ). Let A be a τ -open set. By making A smaller if necessary we may assume
that it is definable. If A is infinite, then there is some i ∈ {1, . . . ,m} such that A ∩ Ci is
infinite, and so f−1

i (A∩Ci) contains an interval in Ii, and thus ∅ ≠ fi(Q∩ Ii)∩A ⊆ D ∩A.
Now suppose that A is finite and fix x ∈ A. Then x ∈ X0 and A(x) ⊆ A and so, by
Claim 2.6.1, ∅ ≠ Xmax ∩ A(x) ⊆ D ∩ A.
Proof of (3) ⇒ (1).
Suppose that (X, τ) is not definably separable, witnessed by an infinite definable family of

pairwise disjoint τ -open sets A. We show that A is uncountable. Let i ≤ m be such that the
family {Ci ∩ A : A ∈ A} is infinite. We show that the infinite definable family of pairwise
disjoint sets Y = {f−1

i (Ci ∩ A) : A ∈ A} is uncountable.
For each non-empty set Y ∈ Y consider its infimum inf Y ∈ R ∪ {−∞}. By o-minimality

and the fact that the sets in Y are pairwise disjoint, for any given t ∈ R ∪ {−∞} at most
two sets in Y can have infinimum equal to t. So the set R∩{inf Y : Y ∈ Y \ {∅}} is infinite.
Observe that this set is also definable and so, by o-minimality, it contains an interval, which
implies that it is uncountable, and it follows that Y is uncountable too. □

We now give a simple characterization of definable separability for T1 one-dimensional
definable topological spaces.

Lemma 2.7. Let (X, τ) be a T1 definable topological space with dimX ≤ 1. Then (X, τ) is
definably separable if and only if it has finitely many τ -isolated points.

Proof. The set of all τ -isolated points in (X, τ) is clearly definable. If it is infinite, then
(X, τ) fails to be definably separable.

Conversely, suppose that (X, τ) is not definably separable, witnessed by an infinite de-
finable family of pairwise disjoint τ -open sets A. Since dimX ≤ 1, by the Fiber Lemma
for o-minimal dimension [13, Chapter 4, Proposition 1.5 and Corollary 1.6], the family A
contains only finitely many infinite sets, hence infinitely many finite sets. Since τ is T1, any
finite τ -open subset of X must contain only τ -isolated points. It follows that (X, τ) has
infinitely many τ -isolated points. □

Following the above lemma, we now consider definable separability in the context of the
three fundamental topologies that have been introduced so far.
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Proposition 2.8. Let X ⊆ Rn be a definable set.

(a) The space (X, τe) is definably separable.
(b) The space (X, τs) is definably separable if and only if X is finite.
(c) Suppose that n = 1. The spaces (X, τr) and (X, τr) are definably separable.

Proof. Statement (b) is obvious and statement (c) follows immediately from Lemma 2.7,
o-minimality and the fact that the topologies τr and τl are T1.

Statement (a) also follows immediately in the case n = 1, by a similar argument to case (c).
In order to prove (a) in general, suppose that (X, τe), X ⊆ Rn, is not definably separable,
witnessed by an infinite definable family of open pairwise disjoint sets A. By o-minimal cell
decomposition there exists at least one cell C ⊆ X such that the family {A ∩ C : A ∈ A} is
infinite, and in particular the subspace (C, τe) is not definably separable. Recall that every
cell is definably e-homeomorphic to an open cell. Hence to prove (a) it suffices to show that
open cells with the euclidean topology are definably separable.

Towards a contradiction let C be an open cell such that (C, τe) is not definably separable,
witnessed by an infinite definable family of open pairwise disjoint sets A. By o-minimality
every definable non-empty open subset of C has dimension equal to dimC, and in particular
this holds for every non-empty set in A. Applying the Fiber Lemma for o-minimal dimension
[13, Chapter 4, Proposition 1.5 and Corollary 1.6] we conclude that dim

⋃
A > dimC, which

contradicts that
⋃

A ⊆ C. □

We now introduce definable curves, which play a crucial role in the study of o-minimal
definable topologies, often taking the role that sequences have in general topology.

Definition 2.9. Let (X, τ) be a definable topological space. A curve in X is a map γ :
(a, b) → X, where a, b ∈ R±∞, a < b.

We say that γ converges in the τ -topology (or converges in (X, τ), or τ -converges) as t
tends to a to a point x ∈ X if, for every τ -neighbourhood U of x, there exists some a < tU < b
such that γ(t) ∈ U for all a < t < tU . In this case, we say that x is a τ -limit of γ as t tends
to a and, if this limit is unique (which will certainly be the case if τ is Hausdorff), then
we write x = τ -limt→a γ(t). Convergence as t tends to b is defined analogously. When we
say that γ τ -converges to x ∈ X, without reference to a or b, it should be understood that
we have already implicitly fixed an endpoint c ∈ {a, b}, which we will call the convergence
endpoint of γ, and are saying that γ τ -converges to x as t tends to c. We say that γ is
τ -convergent if it τ -converges to some x ∈ X (as t tends to its convergence endpoint).

Remark 2.10. We adopt some further conventions regarding definable curves. Let γ :
(a, b) → Rn be a definable curve. Frequently, we are only concerned with the behaviour of
γ near its convergence endpoint c ∈ {a, b}. By o-minimality, for any definable set X ⊆ Rn

there exists a′ > a such that either γ[(a, a′)] ⊆ X or γ[(a, a′)] ⊆ Rn \X, and the analogous
statement holds for b. If (say) c = a and there is some a′ > a such that γ[(a, a′)] ⊆ X, we
may treat γ as a curve in X by implicitly identifying it with its restriction γ|(a,a′).
Similarly, we will adopt the convention of saying that γ is constant or injective (or some

other property) if it has this property when restricting its domain to an appropriate interval
as above. By o-minimality, every definable curve γ : (a, b) → Rn can be assumed to be either
constant or injective (strictly monotonic if n = 1) and e-continuous.

Whenever we say that γ τ -converges and µ-converges, for two definable topologies τ and µ,
and without explicit reference to a convergence endpoint c ∈ {a, b}, it should be understood
that the same endpoint is being considered in both cases.
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Definition 2.11. A definable topological space (X, τ) is definably compact if any definable
curve γ : (a, b) → X τ -converges as t tends to a and as t tends to b.

Definition 2.11 is motivated by the definition of definable compactness introduced in [30].
Adapting the terminology in [30], we would say that (X, τ) is definably compact if and only
if every definable curve γ in X is τ -completable. In our terminology, this corresponds to the
property that every definable curve (with any convergence endpoint) τ -converges.

It is easy to see that, for a given infinite definable set X ⊆ R, the spaces (X, τr), (X, τl)
and (X, τs) are not definably compact, and the space (X, τe) is definably compact if and only
if X is e-closed and bounded. The fact that euclidean spaces are definably compact if and
only if they are closed and bounded was proved for sets of all dimensions in [30, Theorem
2.1].

Other notions of definable compactness besides the one in Definition 2.11 have been studied
in the o-minimal and other model-theoretic contexts. One of them is the following (recall
that a family of sets B is downward directed if for every pair B,B′ ∈ B there exists some
B′′ ∈ B such that B′′ ⊆ B ∩B′).

(2.1) Every downward directed definable family of non-empty closed sets has non-empty
intersection.

This notion has been studied in the o-minimal context by Johnson [25], the first author[4],
and the authors and Walsberg [6]. It has also been studied in the setting of p-adically closed
fields by the first author and Johnson [5]. In the more general model-theoretic context it has
been approached by Fornasiero [17]. Johnson proved that for o-minimal euclidean spaces it
is equivalent to being closed and bounded [25, Proposition 3.10].

Remark 2.12. Definition 2.11 and condition (2.1) are equivalent for one-dimensional de-
finable topological spaces. The fact that condition (2.1) implies Definition 2.11 can be seen
from [6, Corollary 44], (3) ⇒ (1) (that corollary is presented in the setting of o-minimal
expansions of ordered groups, but this part of the statement does not require that assump-
tion). The fact that Definition 2.11 implies condition (2.1) can be obtained from the results
of the present paper (see Remark 4.8). The details are all presented in [3, Proposition 6.2.4].

For spaces of any dimension, we show together with Walsberg in [6] that the equivalence
holds whenever R expands an ordered group, and more generally in [4] the first author shows
that they are equivalent whenever R has definable choice, and also without any assumption
on R beyond o-minimality whenever the topology of the space is Hausdorff.
Since the focus on the present paper is that of definable topological spaces of dimension

at most one, we will usually be in a position to assume equivalence of the two definitions.
We will largely work with Definition 2.11 (but make clear when we are instead working for
convenience with condition (2.1)).

While it is easy to see that compactness implies definable compactness, the converse is
not true in general. Nevertheless, both notions are equivalent whenever R expands the field
of reals [6, Corollary 48]. In [4] the first author shows that, if R expands (R, <), then a
definable topological space is compact if and only if it is definably compact in the sense of
condition (2.1). By Remark 2.12 it follows that, ifR expands (R, <), then definable compact-
ness and compactness are equivalent notions for definable topological spaces of dimension at
most one.

We will use the following notions frequently throughout this paper.
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Definition 2.13. Let (X, τ) be a definable topological space with definable basis B and
let f : X → Rm be an injective definable map. We define the push-forward of (X, τ)
by f to be the definable topological space (f(X), f(τ)), where f(τ) is the topology on
f(X) with definable basis {f(A) : A ∈ B}. Thus f(τ) is the topology satisfying that
f : (X, τ) → (f(X), f(τ)) is a homeomorphism. Given a bijective definable partial map
g : Rn → X, we define the pull-back of (X, τ) by g to be its push-forward by g−1.

Suppose that we have finitely many topological spaces (Xi, τi), where, for each 0 ≤ i ≤ k,
we have Xi ⊆ Rn and (Xi, τi) has basis Bi. Then their disjoint union is the set

⋃
0≤i≤k({i}×

Xi) with topology given by the basis
⋃

0≤i≤k({i} × Bi). Note that, for each i, the map
Xi →

⋃
0≤i≤k({i} × Xi), given by x 7→ ⟨i, x⟩, is an open embedding. The union of finitely

many definable topological spaces is clearly definable. If the sets Xi are not all part of the
same ambient space Rn and we wish to consider their disjoint union, we first identify them
with their product with singletons through the natural push-forward in order to assume that
they are.

3. Definable metric spaces

In this section, we recall the definition of definable metric spaces, introduce the notion of
definable metrizability, and discuss further our definition of definable separability (Defini-
tion 2.5) in light of the notion with the same name introduced for definable metric spaces
by Walsberg [41].

Throughout this section, we suppose that R expands an ordered group (R, 0,+, <). In
the spirit of the definition of M-norm introduced by the second author in [36] we include
the following definition.

Definition 3.1. Let X be a set. An R-metric on X is a map d : X×X → R≥0 that satisfies
the metric axioms, i.e. identity of indiscernibles, symmetry and subadditivity.

We now recall the following definition of a definable metric space from [41]. Although
Walsberg works under the assumption that R is an o-minimal expansion of an ordered field,
the following definition, as well as any other notion that we borrow from [41], still makes
sense in the ordered group setting.

Definition 3.2 ([41]). A definable metric space is a tuple (X, d), where X is a definable set
and d is a definable R-metric on X.

Any R-metric d generates a topology in the usual way, which we denote by τd. Following
the conventions set in Section 2 for the euclidean, discrete, right and left half-open interval
topologies, we sometimes abuse notation and write d in place of τd.

3.1. Definable metrizability. It is easy to prove that any topology generated by an R-
metric is Hausdorff and regular. Any definable R-metric induces a definable topology, and
so by this identification every definable metric space is a definable topological space. Much
as with the notion of metrizability in general topology, the converse is not true, i.e. there are
definable topologies (including Hausdorff regular topologies) that do not arise from definable
R-metrics. Hence it is reasonable to investigate which topologies have this property. This
motivates the following definitions.
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Definition 3.3. A topological space (X, τ) is R-metrizable if there exists an R-metric d on
X such that τd = τ and definably metrizable if there exists some definable R-metric d on X
such that τd = τ .

We shall simplify our terminology throughout to refer to metrics, rather than R-metrics,
and similarly to metrizability, rather than R-metrizability, without any loss of clarity.
Both the euclidean and discrete topologies are definably metrizable (and hence metrizable)

on any definable set.
A basic example of a definable topological space that is not metrizable would be any

non-Hausdorff definable topological space, e.g. the Sierpinski space X = {0, 1}, τ =
{∅, {1}, {0, 1}}.
An example of a space that is not definably metrizable but displays all the separation

axioms of definable metric spaces would be the space (R, τr), as we now show.

Proposition 3.4. The space (R, τr) is not definably metrizable.

Proof. If (R, τr) were definably metrizable with definable metric d, then there would exist,
for every x ∈ R, some εx > 0 such that Bd(x, εx) ⊆ [x,+∞), where Bd(x, εx) is the d-ball of
radius εx and center x. Let 1 denote some fixed positive element of R and let f : X → (0,∞)
be the definable map given by f(x) = sup{t ≤ 1 : Bd(x, t) ⊆ [x,+∞)}. By o-minimality,
there exists an interval I ⊆ R such that, for some ε > 0, we have f(x) > ε, for all x ∈ I.
Hence, for any distinct x, y ∈ I, it holds that d(x, y) ≥ ε, i.e. (I, τr) is a discrete space,
which contradicts the definition of τr. □

The above result still holds if we consider any infinite definable set X ⊆ R in place
of R and also if we put τl in place of τr. It is worth noting that, in the particular case
where R = R, the Sorgenfrey Line is separable but not second countable, and thus it is not
even metrizable. On the other hand, if R = (Q,+, <), then the space (Q, τr) is metrizable
(meaning (Q,+, <)-metrizable) (see [12]).

In Section 10, we address the question of which metrizable definable topological spaces are
definably metrizable, and give a characterization for o-minimal expansions of certain ordered
fields including (R,+, ·, <) (Theorem 10.2).

3.2. Definable separability. We now turn to justifying our notion of definable separability
(Definition 2.5), in light of a similar definition given by Walsberg for definable metric spaces
in [41, Section 7.1]. There, it is stated that a definable metric space (X, d) is definably
separable if there exists no infinite definable subset Y ⊆ X such that the subspace topology
τd|Y is discrete.

First, we note that this definition is similar to ours, in that it simply asks that the property
we define be hereditary (i.e. that every definable subspace of a definable metric space is
definably separable in our sense). In fact, when restricted to the context of definable metric
spaces, Walsberg’s definition and the one in this paper are equivalent, as shown by the
following.

Lemma 3.5. Let (X, d) be a definable metric space. Then (X, d) is definably separable (in
the sense of Definition 2.5) if and only if there exists no infinite definable discrete subspace.

Proof. Let (X, d) be a definable metric space. Let Y ⊆ X be an infinite definable discrete
subspace of X. Since R expands an ordered group, it has definable choice, so one may
definably select, for each x ∈ Y , some εx > 0 such that, for every y ∈ Y \ {x}, 2εx ≤ d(x, y).
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From the triangle inequality, it follows that the infinite definable family of open d-balls
{Bd(x, εx) : x ∈ Y } is pairwise disjoint, hence (X, d) is not definably separable. The other
direction follows immediately from definable choice. □

From the above lemma it follows that, for the class of definable metric spaces, definable
separability is a hereditary property. Moreover note that the proof of the lemma relies solely
on definable choice and not on the fact that the structure R is o-minimal.

Further to our discussion of definable separability in Section 2 (see Proposition 2.6), our
notion of definable separability is further justified by the following observation. If we drop
the assumption of definable metrizability, then there are definable topological spaces that
are definably separable (according to our definition) but still contain an infinite definable
discrete subspace. Some examples are the generalizations to R of the Moore Plane (defined
assuming ordered field structure in R, see Appendix A, Example A.12) or the Sorgenfrey
Plane (the product of the Sorgenfrey Line with itself); see also Example A.10 in Appendix A
for an example of dimension one. Hence definable separability is not in general a hereditary
property, and Walsberg’s definition turns out to be strictly stronger than ours in the general
context. This is in accordance with general topology, where every subspace of a separable
metric space is separable, but where the Moore Plane and the Sorgenfrey Plane are examples
of separable topological spaces with uncountable discrete subspaces.

Walsberg showed in [41, Theorem 7.1], that, whenever R expands an ordered field, any
definably separable definable metric space is definably homeomorphic to a euclidean space.
This result does not generalize to all T3 definable topologies, as witnessed by the right and left
half-open interval topologies. In Section 9, we address the question of which one-dimensional
definable topological spaces are, up to definable homeomorphism, euclidean.

4. Preliminary results

From now until the end of Section 8, we return to the general setting in which R is an
o-minimal expansion of a dense linear order without endpoints.

4.1. Spaces of all dimensions. In this section we include some preliminary results con-
cerning definable topologies of all dimensions.

The purpose of the following definition is to have a tool that allows us to study definable
topologies in the o-minimal setting. This will in particular allow us to provide a description
of a basis of neighbourhoods of any given point in a T1 definable topological space (see
Lemma 4.18).

Definition 4.1. Let (X, τ), with X ⊆ Rn, be a definable topological space. Let x ∈ X
and let B(x) be a basis of τ -neighbourhoods of x. We define the e-accumulation set of x in

(X, τ), namely E
(X,τ)
x , to be:

E(X,τ)
x :=

⋂
A∈B(x)

{y ∈ Rn
±∞ : A ∩B \ {y} ≠ ∅, for all B ∈ τe with y ∈ B},

where τe refers to the euclidean topology in Rn
±∞. So E

(X,τ)
x is the intersection of the set of

e-accumulation points of every τ -neighbourhood of x.

If (X, τ) is T1 and x, y ∈ X with x ̸= y, then y ∈ E
(X,τ)
x is equivalent to stating that, for

every τ -neighbourhood A of x and every e-neighbourhood B of y, A ∩ B ̸= ∅, i.e. y ∈ cleA,
for every τ -neighbourhood A of x.
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The definition of E
(X,τ)
x is clearly independent of the choice of basis of neighbourhoods.

Note that, if an element x ∈ X is τ -isolated, then it satisfies E
(X,τ)
x = ∅. The converse is not

true in general; it is however true for T1 spaces. In the case where X ⊆ R, this will follow
immediately from Lemma 4.18 and Proposition 4.14(b). We leave it to the reader to check
that the implication holds in higher dimensions, using Remark 2.12 and the fact that the
space (Rn

±∞, τe) for any n is definably compact.

For any point x in a euclidean space (X, τe), with X ⊆ Rn, it holds that E
(X,τe)
x = {x}.

Generally, since there will be no room for confusion, once a definable topological space

(X, τ) is fixed, then, for any x ∈ X, we will write Ex in place of E
(X,τ)
x , and will only resort

to the latter when we also intend to address the e-accumulation set E
(Y,τ)
x for some definable

subspace Y containing x.
The following are facts regarding e-accumulation sets that follow immediately from the

definition. Recall that the euclidean topology is understood in R±∞.

Proposition 4.2. Let (X, τ) be a definable topological space.

(a) Ex is e-closed and Ex ⊆ cleX for every x ∈ X.
(b) The relation {⟨x, y⟩ : y ∈ Ex} ⊆ X ×Rm

±∞ is definable.

We now prove a bound (Lemma 4.5) on the dimension of e-accumulation sets (in particular,
that they are finite when dim(X) ≤ 1). In order to do so, we need two technical lemmas.
For the first of these, recall that the dimension of a definable set X is equal to the dimension
of the interpretation X∗ of X in any elementary extension R∗ of R.

Lemma 4.3. Let R∗ be an elementary extension of R. Let X ⊆ Rn be an R-definable set
and let X∗ denote the interpretation of X in R∗. If Y ⊆ X∗ is R∗-definable and X ⊆ Y (in
(R∗)n) then dimY = dimX (where dimX denotes the dimension of X as a definable set in
R).

Proof. Since Y ⊆ X∗, we have that dimY ≤ dimX∗ = dimX. We show, by induction on
n, that from X ⊆ Y it follows that dimX ≤ dimY . Since otherwise X = Y = X∗, we may
assume that X is infinite.

Suppose that n = 1. Since X is infinite, we have that Y is infinite and so, by o-minimality,
it must contain an interval. In particular, dimY ≥ 1, and so the result follows.
Now suppose that n > 1. By passing to a cell inside X of maximal dimension if necessary,

we may assume that X is a cell. For any given set S ⊆ Rn, let S ′ denote the projection to
the first n− 1 coordinates. For any x ∈ Y ′, let Yx = {t : ⟨x, t⟩ ∈ Y }.
If dimX ′ = dimX, then we are done, since dimY ′ ≤ dimY and by induction hypothesis

dimX ′ ≤ dimY ′. Otherwise, dimX = dimX ′+1 andX is of the form (f, g)X′ , for continuous
functions f, g : X ′ → R±∞ with f < g. In this case, consider the definable set Yinf = {x ∈
Y ′ : Yx is infinite}. Then X ′ ⊆ Yinf and, by induction hypothesis, dimX ′ ≤ dimYinf. By the
Fiber Lemma for o-minimal dimension [13, Chapter 4, Proposition 1.5 and Corollary 1.6],
dimYinf + 1 ≤ dimY . We conclude that dimX = dimX ′ + 1 ≤ dimYinf + 1 ≤ dimY . □

For the next lemma, recall that a family of sets S has the finite intersection property if⋂
F ̸= ∅ for every finite subfamily F ⊆ S.

Lemma 4.4. Let {Su ⊆ Rn : u ∈ Ω} be a definable family with the finite intersection
property. Then there exists Σ ⊆ Ω with dimΣ = dimΩ such that

⋂
{Su : u ∈ Σ} ≠ ∅.
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Proof. Let R∗ = (R∗, <, . . .) denote an |R|+-saturated elementary extension of R. Then, by
saturation, there exists x0 ∈ (R∗)n such that x0 ∈ S∗

u, for every u ∈ Ω. By Lemma 4.3, the
R∗-definable set Σ∗

x0
= {u ∈ Ω∗ : x0 ∈ S∗

u} has dimension equal to dimΩ. For each x ∈ Rn,
let Σx = {u ∈ Ω : x ∈ Su}. Since dimΣ∗

x0
= dimΩ and R ⪯ R∗, there must exist some

x ∈ Rn such that dimΣx = dimΩ. □

Let (X, τ) be a definable topological space. Let x ∈ X and let U be a definable basis of
neighbourhoods of x in (X, τ). For the next lemma, we define the local dimension of (X, τ)
at x to be

dimx(X, τ) = min{dimA : A ∈ U}.
Clearly the definition of local dimension does not depend on the choice of basis of neigh-
bourhoods. This definition generalizes the definition of local dimension of a definable metric
space at a point that was introduced by Walsberg in [41].

Lemma 4.5. Let (X, τ) be a T1 definable topological space. For any x ∈ X, dim(Ex) <
dimx(X, τ). In particular, when dimX ≤ 1, the set Ex is finite for every x ∈ X.

Proof. Towards a contradiction, suppose that there exists x ∈ X such that dimEx ≥
dimx(X, τ). Let {Au : u ∈ Ω} be a definable basis of τ -neighbourhoods of x. If
dimx(X, τ) = 0, then, by definition of Ex, we have that Ex = ∅, which contradicts the
fact that dimEx ≥ dimx(X, τ), so we may assume that dimx(X, τ) > 0.
Let n = dimx(X, τ). We have that dimEx ≥ n > 0, and in particular that dimEx =

dim(Ex \ {x}). For any y ∈ Ex \ {x}, let Ωy = {u ∈ Ω : y /∈ Au}. Since (X, τ) is T1, the
sets Ωy are non-empty and in fact the definable family {Ωy : y ∈ Ex \ {x}} has the finite
intersection property.

By Lemma 4.4, there exists a definable set B ⊆ Ex \ {x} with dimB = dimEx and there
exists u ∈ Ω such that Au ∩ B = ∅. By shrinking A := Au if necessary, we may assume
that dimA = n. Note however that, by definition of Ex, B ⊆ cleA, and so B ⊆ ∂eA. In
particular dimEx = dimB ≤ dim ∂eA. However, by o-minimality, dim ∂eA < dimA = n, a
contradiction. □

We end this subsection with a remark which we will use extensively throughout the paper.
In particular, it allows us to make the assumption, wheneverR expands an ordered field, that
any definable topological space of dimension at most one is, up to definable homeomorphism,
a bounded subset of R.

Remark 4.6. Let X be a definable set and n > 0 be such that dim(X) ≤ n. If R expands
an ordered group and X is bounded, then there exists a definable injection f : X → Rn. In
particular, if τ is a definable topology on X then, by passing to the push-forward of (X, τ)
by f if necessary, one may always assume, up to definable homeomorphism, that X ⊆ Rn.
If, moreover, R expands an ordered field, then such an injection f exists without the

assumption that X is bounded, and with the added condition that f(X) ⊆ (0, 1)n. In
particular one may always assume, up to definable homeomorphism, that X ⊆ (0, 1)n.
The existence of such injections in each case can been seen as follows. Suppose that R

expands an ordered group and that X is bounded. Let X be a finite partition of X into cells.
By o-minimality, each cell in C ∈ X is in bijection, under an appropriate projection πC , with
a subset of RdimC . Let fC : C → Rn be the definable map given by x 7→ πC(x) if dimC = n,
and otherwise x 7→ πC(x)×{aC}, where aC ∈ Rn−dimC is a given fixed parameter. Note that
fC is an injection into Rn. Since X is bounded, then so are the sets fC(C) for C ∈ X . As R
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is an expansion of a group, we can find appropriate translations of these sets such that they
do not intersect each other. The union of the image of these translations is then in definable
bijection with X.

Furthermore note that, whenever R expands an ordered field, the map given coordinate-
wise, for every n, by xi 7→ 2xi−1

(2xi−1)2−1
, for i = 1, . . . , n, gives a definable e-homeomorphism

from (0, 1)n to Rn.

If R does not expand an ordered field, then it is not true in general that a definable set X
with dimX = 1 is in definable bijection with a subset of R. In this case, however, o-minimal
cell decomposition and the observations made in Remark 4.22 below will suffice to generalize
many of the results in this paper concerning spaces (X, τ) with X ⊆ R to one-dimensional
definable topological spaces.

4.2. One-dimensional spaces. We now focus on preliminary results about definable topo-
logical spaces (X, τ) where dimX ≤ 1, or at times more specifically when X ⊆ R, which we
informally refer to as “spaces in the line”.

The following lemma shows that definable curve selection is a property of all one-
dimensional definable topological spaces (if we drop the requirement that the curves be
continuous). In [6], we prove together with Walsberg that it holds for definable topological
spaces of all dimensions when R expands an ordered field, but not in general e.g. when R
expands an ordered group (although in this case one may use definable choice to show that it
still holds for definable metric spaces, arguing similarly to the proof of [6, Proposition 41]).

Lemma 4.7 (Definable curve selection). Let (X, τ), dimX ≤ 1, be a definable topological
space. Then (X, τ) has definable curve selection, that is, for any x ∈ X and definable set
Y ⊆ X, x ∈ clτY if and only if there exists a definable curve γ : I → Y in Y that τ -converges
to x.

Proof. It follows readily from the definition of curve convergence that, if there exists a curve
in Y τ -converging to x ∈ X, then x ∈ clτY . We prove the converse.

Fix x ∈ X and a definable set Y ⊆ X ⊆ Rn with x ∈ clτY . Let U denote a definable
basis of τ -neighbourhoods of x and set B := {U ∩ Y : U ∈ U}. It suffices to prove the
existence of an interval I with an endpoint c ∈ R±∞ and a definable curve γ : I → Rn such
that, for every B ∈ B, γ(t) ∈ B for t ∈ I close enough to c. (We may then restrict γ to a
suitable subinterval close to c to ensure that it maps only into Y .) Since otherwise the proof
is immediate, we may assume that x /∈ Y and hence, for any y ∈ Y , there is B ∈ B such
that y /∈ B.

First we consider the case where X ⊆ R, finding an interval I on which we may take γ to
be the identity. Consider the definable set H = {t ∈ R : ∃B ∈ B, B ∩ (−∞, t] = ∅}. If H is
empty then, by o-minimality, for every B ∈ B, there is tB ∈ R such that (−∞, tB) ⊆ B, in
which case we may take I = R and c = −∞.
Now suppose that H is non-empty. Note that H is an interval in R (possibly right closed)

which is unbounded from below. Let c = supH ∈ R ∪ {+∞}.
If c = maxH, then there exists Bc ∈ B such that Bc ∩ (−∞, c] = ∅. Let B ∈ B. If there

exists sB > c such that (c, sB)∩B = ∅, then any set B′ ∈ B with B′ ⊆ Bc ∩B satisfies that
(−∞, sB) ∩ B′ = ∅, contradicting that c = supH < sB. Hence, by o-minimality, for any
B ∈ B, there exists tB > c such that (c, tB) ⊆ B. So let I = (c,+∞).

If c /∈ H, then, for every B ∈ B, B ∩ (−∞, c] ̸= ∅. Let B ∈ B. Suppose that there exists
sB < c such that (sB, c) ∩ B = ∅. By assumptions on B, we may assume that c /∈ B. Since
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sB ∈ H there is B′ ∈ B such that B′∩(−∞, sB] = ∅. But then any B′′ ∈ B with B′′ ⊆ B∩B′

satisfies that (−∞, c] ∩ B′′ = ∅, contradicting that c /∈ H. Hence, by o-minimality, for any
B ∈ B there exists tB < c such that (tB, c) ⊆ B. So let I = (−∞, c).

Now, in the case whereX is not a subset of R, let us pass, by o-minimal cell decomposition,
to a cell Y ′ ⊆ Y such that x ∈ clτY

′, where Y ′ is definably homeomorphic to an interval
J by a function f : J → Y ′. Then we may apply the above argument taking the family
{f−1(U ∩ Y ′) : U ∈ U} in place of B to reach an interval I and an endpoint c of I such that,
for every U ∈ U , we have t ∈ f−1(U ∩ Y ′), for t ∈ I close enough to c. Finally, we take
γ = f |I∩J : I ∩ J → Y ′. □

Note that, in Lemma 4.7, we may relax the condition dimX ≤ 1 and instead draw the
same conclusion, for any x ∈ X, as long as dimx(X, τ) ≤ 1 (i.e. the local dimension of (X, τ)
at x is at most one).

Remark 4.8. Let B be a downward directed family of subsets of Rn (i.e. for every pair
B,B′ ∈ B there is B′′ ∈ B such that B′′ ⊆ B∩B′). We say that a curve γ : (a, b) → Rn with
convergence endpoint c ∈ {a, b} is cofinal in B if, for every B ∈ B, γ(t) ∈ B for all t ∈ (a, b)
close enough to c.
Given this terminology, what the proof of Lemma 4.7 shows is that any definable downward

directed family of non-empty sets of dimension at most one admits a definable cofinal curve.
In [6], the authors and Walsberg study definable topologies through an analysis of definable
directed sets and existence of cofinal maps. We show that definable directed sets of all
dimensions admit definable cofinal curves whenever R expands an ordered field, but that
this property does not hold for o-minimal structures in general.

These results can be used in characterizing definable compactness as described in Re-
mark 2.12. Specifically, the proof of Lemma 4.7 can be expanded to show that, for
one-dimensional definable topological spaces, definable compactness in the sense of Defini-
tion 2.11 implies the definition given in condition (2.1) (see [3, Lemma 6.2.1 and Proposition
6.2.4]).

Definable curve selection allows us to understand continuity in terms of convergence of
definable curves. This was already shown in [6], Proposition 42. We state here explicitly the
analogous statement for one-dimensional spaces that we will use throughout this paper. Note,
however, that the conclusion of the following statement (as well as that of [6], Proposition
42) holds more generally, in that the proof does not specifically require that (X, τ) have
dimension at most one (or be definable in an expansion of a field), only that it have definable
curve selection.

Proposition 4.9. Let (X, τ) and (Y, µ) be definable topological spaces, where dimX ≤ 1.
Let f : (X, τ) → (Y, µ) be a definable map. Then f is continuous at x ∈ X if and only if,
for every definable curve γ : (a, b) → X and c ∈ {a, b}, if γ τ -converges to x as t tends to c,
then f ◦ γ µ-converges to f(x) as t tends to c.

Proof. The proof is identical to that of [6], Proposition 42, except that, in order to invoke
the property of definable curve selection here, the appeal to Proposition 41 therein should
be replaced by one to Lemma 4.7 in this paper. □

Definable curve selection also allows us to prove the following lemma, which we will make
use of in proving our characterization (Theorem 9.1) of which one-dimensional definable
topological spaces are homeomorphic to euclidean space (see in particular Lemma 9.5). By
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Remark 2.12, this is equivalently [25, Lemma 3.11], but we include this direct proof for the
sake of completeness.

Lemma 4.10. Let f : (X, τ) → (Y, µ) be definable continuous bijection between one-
dimensional definable topological spaces. If (X, τ) is definably compact and (Y, µ) is Haus-
dorff, then f is a homeomorphism.

Proof. By Proposition 4.9 it suffices to prove that, for any definable curve γ in Y , if γ
µ-converges to some f(x), then h−1 ◦ γ τ -converges to x.
Let γ be a definable curve in Y µ-converging to some y ∈ Y . By definable compactness of

(X, τ), the curve f−1◦γ τ -converges to some x ∈ X. Then, by Proposition 4.9 and continuity
of f , the curve γ = f ◦f−1 ◦γ µ-converges to f(x). Since µ is Hausdorff, any definable curve
can converge to at most one point, so f(x) = y. This completes the proof. □

Definable curve selection also allows us to prove the following facts regarding e-
accumulation sets. For completeness and in accordance with the focus of this paper we
only prove them for one-dimensional definable topological spaces. Nevertheless, one may
show, using [6, Corollary 25], that Proposition 4.11(a) holds for definable topological spaces
of all dimensions whenever R expands an ordered field and, using the fact that the space
(Rm

±∞, τe) is definably compact for every m and Remark 2.12, that Proposition 4.11(b) holds
in general for definable topological spaces of all dimensions. In the next proposition the
euclidean closure means closure with respect to the euclidean topology on Rm

±∞.

Proposition 4.11. Let (X, τ), X ⊆ Rm, dimX ≤ 1, be a definable topological space.

(a) For any x ∈ X, y ∈ Rm
±∞, it holds that y ∈ Ex if and only if there exists an injective

definable curve in X τ -converging to x and e-converging to y.
(b) Let Y ⊆ X be a definable set and x ∈ ∂τY . If τ is T1, then Ex ∩ cleY ̸= ∅.

Proof. The right to left implication in (a) is immediate. For the left to right implication, fix
x ∈ X and y ∈ Ex. Consider the definable topology µ on X where every z ̸= x is isolated
and where a basis of neighbourhoods of x is given by the family {{x} ∪ (A ∩ B \ {y}) :
x ∈ A ∈ τ, y ∈ B ∈ τe}. Clearly, µ is Hausdorff and finer than τ . Since y ∈ Ex, the sets
(A∩B \ {y}), where x ∈ A ∈ τ and y ∈ B ∈ τe, are non-empty. In particular, they intersect
X \ {x}: if not, then some such set A ∩ B \ {y} must be equal to {x}, so y ̸= x, and there
is an element B′ ∈ τe with B′ ⊆ B that contains y but does not contain x; in this case
x /∈ A∩B′ \ {y} ⊆ A∩B \ {y} = {x}, so A∩B′ \ {y} = ∅, which is a contradication. Hence
x is in the µ-closure of X \ {x}. Applying Lemma 4.7, there necessarily exists an injective
definable curve γ in X \ {x} µ-converging (and thus τ -converging) to x. By construction, γ
must e-converge to y.
To prove (b), note that, if x ∈ ∂τY , then, by Lemma 4.7, there is a definable curve γ

in Y τ -converging to x. If the topology is T1, no such curve can be constant, and so, by
o-minimality, γ can be assumed to be injective. By o-minimality, γ e-converges in Rm

±∞ and
the result then follows from the right to left implication in (a). □

We now turn to the notion of e-accumulation set for definable topological spaces in the
line. While for the rest of the section we deal almost exclusively with spaces in the line, recall
(Remark 4.6) that, whenever R expands an ordered field, any definable topological space of
dimension at most one is definably homeomorphic to a space in the line. Furthermore, in
Remark 4.22 below we describe how the definitions and results for spaces in the line that
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follow can be generalized to all spaces of dimension at most one, regardless of any assumption
on R beyond o-minimality.

Lemma 4.12. Let (X, τ), X ⊆ R, be a definable topological space.

(a) Given x, y ∈ X, y ∈ Ex if and only if at least one of the following holds.
(i) For any τ -neighbourhood A of x, there exists z > y such that (y, z) ⊆ A.
(ii) For any τ -neighbourhood A of x, there exists z < y such that (z, y) ⊆ A.

(b) It follows from (a) that, if (X, τ) is Hausdorff then, for any y ∈ R, there exist as most
two points x0, x1 ∈ X such that y belongs in both Ex0 and Ex1 (i.e. for any distinct
x0, x1, x2 ∈ X, Ex0 ∩ Ex1 ∩ Ex2 = ∅).

Proof. If (a)(i) fails then, by o-minimality, there exists a τ -neighbourhood A′ of x and z′ > y
such that (y, z′) ∩ A′ = ∅. Similarly if (a)(ii) fails there is a τ -neighbourhood A′′ of x and
z′′ < y with (z′′, y)∩A′′ = ∅. So A′∩A′′ is a τ -neighbourhood of x such that (z′′, z′)∩A′∩A′′ ⊆
{y}. This contradicts that y ∈ Ex. The rest of the lemma is immediate. □

Lemma 4.12 motivates the following definition.

Definition 4.13. Let (X, τ), X ⊆ R, be a definable topological space. For x ∈ X, we
define the right e-accumulation set of x, denoted Rx ⊆ Ex, to be the set of points y ∈ R±∞
satisfying that, for any τ -neighbourhood A of x, there exists z > y such that (y, z) ⊆ A. In
other words, if {Au : u ∈ Ωx} is a definable basis of τ -neighbourhoods of x in (X, τ), then

Rx = {y ∈ R±∞ : ∀u ∈ Ωx, ∃z > y, (y, z) ⊆ Au}.
So the set Rx \ {−∞} is definable, for every x ∈ X. Similarly, the left e-accumulation set
of x, denoted Lx ⊆ Ex, is defined to be the set of points y ∈ R±∞ satisfying that, for any
τ -neighbourhood A of x, there exists z < y such that (z, y) ⊆ A. In other words, with
{Au : u ∈ Ωx} as above,

Lx = {y ∈ R±∞ : ∀u ∈ Ωx, ∃z < y, (z, y) ⊆ Au},
and Lx \ {+∞} is likewise a definable set, for every x ∈ X.

The following proposition follows from the definition of right and left e-accumulation set
and Lemma 4.12.

Proposition 4.14. Let (X, τ) be a definable topological space with X ⊆ R and x ∈ X. Then

(a) the relations {⟨x, y⟩ ∈ X × R±∞ : y ∈ Rx} and {⟨x, y⟩ ∈ X × R±∞ : y ∈ Lx} are
definable;

(b) Ex = Rx ∪ Lx;
(c) if (X, τ) is Hausdorff then, for any y ∈ X \ {x}, Rx ∩Ry = ∅ and Lx ∩ Ly = ∅.
Remark 4.15. By Lemma 4.5 and Proposition 4.14(b), if (X, τ) is T1, then Rx and Lx are
finite for every x ∈ X.

Remark 4.16. Let γ be a definable curve in X ⊆ R. By o-minimality, γ e-converges to
some y ∈ R±∞. If γ is injective, then we may assume that it lies in either (y,+∞) or (−∞, y)
(recall Remark 2.10). In the former case, we say that γ e-converges to y from the right and
in the latter that it does so from the left. Let τ be a definable topology on X. Note that, if
γ e-converges to y from the right (respectively left) and x ∈ X, then γ τ -converges to x if
and only if y ∈ Rx (respectively y ∈ Lx).

The following lemma will be useful in Section 9. It follows easily from Remark 4.16.
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Lemma 4.17. A definable topological space (X, τ) with X ⊆ R is definably compact if and
only if, for every interval (a, b) ⊆ X, it holds that [a, b) ⊆

⋃
x∈X Rx and (a, b] ⊆

⋃
x∈X Lx.

It turns out that, if (X, τ) is T1, then, for any x ∈ X, the sets Rx and Lx characterize a
definable basis of neighbourhoods for x. We show this in the next lemma.

Lemma 4.18. Let (X, τ), X ⊆ R, be a definable T1 topological space. Let x ∈ X. By
Remark 4.15, the sets Rx and Lx are finite. Set Rx := {y1, . . . , yn} and Lx := {z1, . . . , zm}.
Define U(x) to be the family of sets of the form

{x} ∪
⋃

1≤i≤n

(yi, y
′
i) ∪

⋃
1≤j≤m

(z′j, zj),

which is a family uniformly definable over (y′1, . . . , y
′
n, z

′
1, . . . , z

′
m) ∈ Rn+m, where yi < y′i and

z′j < zj. The definable family {U ∩X : U ∈ U(x)} is a basis of neighbourhoods of x in (X, τ).
In particular, in the case where R expands an ordered group and x has a bounded τ -

neighbourhood (implying Ex ∩ {−∞,+∞} = ∅), we may take U(x) to be of the form

U(x, ε) := {x} ∪
⋃
y∈Rx

(y, y + ε) ∪
⋃
y∈Lx

(y − ε, y),

for ε > 0.
By passing to a subfamily if necessary, we may always assume that U(x) is a family of

subsets of X.

Proof. Let U(x) be as in the lemma. By definition of Rx and Lx it clearly holds that, for
every τ -neighbourhood A of x, there exists U ∈ U(x) such that U ⊆ A ⊆ X. It therefore
remains to prove that all sets in U(x) are τ -neighbourhoods of x.

Towards a contradiction, suppose that there exists U ∈ U(x) that is not a τ -neighbourhood
of x. So x ∈ ∂τ (X \U). By Lemma 4.7, there exists a definable curve γ : I → X \U (which
is necessarily injective, as (X, τ) is T1) that τ -converges to x and that, by o-minimality, must
e-converge to some a ∈ R±∞. By Remark 4.16, if γ e-converges from the right, then a ∈ Rx,
and otherwise a ∈ Lx. Either way, by construction of U(x), it follows that γ(I) ∩ U ̸= ∅, a
contradiction. □

From the above lemma, it follows that, if (X, τ) is a T1 definable topological space with
X ⊆ R, then a point x ∈ X is τ -isolated if and only if Ex = ∅, and the identity map
(X, τ) → (X, τe) is continuous at x ∈ X if and only if Ex ⊆ {x}.

The following lemma will be fundamental in proofs in later sections.

Lemma 4.19. Let (X, τ), X ⊆ R, be an infinite definable topological space. Let f : I ⊆ X →
R be a function on an interval I = (a, b), a, b ∈ R±∞, such that, for every x ∈ I, f(x) ∈ Ex.
Suppose that f is e-continuous and strictly increasing (respectively decreasing). We extend
f to a function [a, b] → R±∞ by letting f(a) = e-limx→a f(x) and f(b) = e-limx→b f(x). For
all y ∈ X, we have that

(a) for any x ∈ [a, b), if x ∈ Ry, then f(x) ∈ Ry (respectively f(x) ∈ Ly);
(b) for any x ∈ (a, b], if x ∈ Ly, then f(x) ∈ Ly (respectively f(x) ∈ Ry).

Under the additional assumption that τ is regular, the converse also holds. In other words,

(c) for any x ∈ [a, b), if f(x) ∈ Ry (respectively f(x) ∈ Ly), then x ∈ Ry;
(d) for any x ∈ (a, b], if f(x) ∈ Ly (respectively f(x) ∈ Ry), then x ∈ Ly.
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Proof. Let y ∈ X and suppose that f is strictly increasing. We prove (a) and (c) in this
case, with all other parts of the lemma proved analogously to one of these cases.

We begin with case (a). Suppose that x ∈ [a, b)∩Ry. If f(x) /∈ Ry, then, by o-minimality,
there is z > f(x) and an open τ -neighbourhood A of y such that (f(x), z) ∩ A = ∅. Since
x ∈ Ry, there is x′ > x in I such that (x, x′) ⊆ A. Since f is e-continuous and strictly
increasing, there is x′′ ∈ (x, x′) such that f(x′′) ∈ (f(x), z). So A is a τ -neighbourhood of
x′′ and f(x′′) /∈ cleA, which contradicts that f(x′′) ∈ Ex′′ . This completes the proof of (a)
in the increasing case.

To prove (c), suppose that f(x) ∈ Ry, for x ∈ [a, b), and let A be a τ -neighbourhood
of y. Then there is some z > f(x) such that (f(x), z) ⊆ A. Since f is e-continuous and
strictly increasing, there is x′ > x such that f [(x, x′)] ⊆ (f(x), z). For any x′′ ∈ (x, x′),
since f(x′′) ∈ Ex′′ and f(x′′) ∈ (f(x), z) ⊆ A, it follows that x′′ ∈ clτ (f(x), z) ⊆ clτA.
Hence (x, x′) ⊆ clτA. So we have shown that, for every τ -neighbourhood A of y, there
exists x′ > x such that (x, x′) ⊆ clτA. If x /∈ Ry, then there must exist some x′′ > x
and some τ -neighbourhood A′ of y such that (x, x′′) ∩ A′ = ∅. But then, by regularity,
there is a τ -neighbourhood A′′ ⊆ A′ of y such that clτA

′′ ⊆ A′, and in particular such that
(x, x′′) ∩ clτA

′′ = ∅, a contradiction by the above. □

Definition 4.20. Let (X, τ) be a definable topological space. We say that (X, τ) is definably
normal if, given any pair of disjoint definable τ -closed sets B,C ⊆ X, there exist definable
disjoint open sets U, V ⊆ X such that B ⊆ U and C ⊆ V .
We say that (X, τ) is definably completely normal if any definable subspace of (X, τ) is

definably normal.

Proposition 4.21. Let (X, τ), X ⊆ R, be a definable topological space. If (X, τ) is T1 and
regular, then it is definably completely normal.

Proof. We suppose that (X, τ), X ⊆ R, is T1 and regular and prove that it is definably
normal. Since being T1 and regular are hereditary properties we conclude that (X, τ) is
definably completely normal.

Let B,C ⊆ X be disjoint τ -closed definable sets in (X, τ). To prove the proposition it
suffices to show the existence of a definable τ -neighbourhood U of B such that the τ -closure
of U is disjoint from C. We proceed by constructing a suitable partition of B into two sets,
B = B′ ∪ B′′, where B′′ is finite. By regularity of (X, τ), there clearly exists a definable
τ -neighbourhood U ′′ of B′′ such that clτU

′′ ∩C = ∅. It is therefore enough to show, with B′

and B′′ defined in this way, the existence of a definable τ -neighbourhood U ′ of B′ such that
clτU

′ ∩ C = ∅. The proof is then completed by taking U = U ′ ∪ U ′′.
First note that, since (X, τ) is T1 and regular, the space is also Hausdorff. Set EB :=⋃
x∈B Ex. Let inteEB be the euclidean interior of EB and set B′ := {x ∈ B : Ex ⊆ inteEB}.

By o-minimality, EB \ inteEB is finite and so, by Hausdorffness and Lemma 4.12(b), B′′ =
B \B′ is also finite. Applying Lemma 4.18, and using the fact that, by o-minimality, inteEB

is a finite union of intervals, observe that B′ ∪ inteEB is a τ -neighbourhood of B′.
Now note that, for any x ∈ X, if Ex ∩ inteC ̸= ∅ then, by definition of the set Ex, it

holds that x ∈ clτC, and so x ∈ C (since C is τ -closed). Since B ∩ C = ∅ it follows that
EB∩ inteC = ∅, i.e. EB∩C ⊆ C \ inteC, and in particular, by o-minimality, EB∩C is finite.
It follows that inteEB \ C is cofinite in inteEB. Now recall from the previous paragraph
that B′ ∪ inteEB is a τ -neighbourhood of B′. Since (X, τ) is T1 and inteEB \C is cofinite in
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inteB, we conclude that U ′ = B′∪ inteEB \C is also a τ -neighbourhood of B′. We complete
the proof by showing that clτU

′ ∩ C = ∅.
Towards a contradiction, suppose that some x ∈ C is in the τ -closure of U ′. Then, since B

is τ -closed and disjoint from C, xmust be in the τ -closure of inteEB\C. Set E ′
B := inteEB\C.

If there were some τ -neighbourhood A of x such that A ∩ E ′
B were finite, then, since the

space is T1, A \E ′
B would also be a τ -neighbourhood of x, which contradicts that x is in the

τ -closure of E ′
B. On the other hand, suppose that, for every τ -neighbourhood A of x, the

intersection A ∩E ′
B is infinite. Then, for every such A, there exists an interval I ⊆ A ∩E ′

B.
Since, by definition of E ′

B, every point in I lies in Ey, for some y ∈ B, we clearly have that
there exists y ∈ B with Ey ∩ I ̸= ∅, hence there exists y ∈ B ∩ clτI, by definition of Ey, and
in particular y ∈ B ∩ clτA. So, in this case, for every τ -neighbourhood A of x, it holds that
B ∩ clτA ̸= ∅, which contradicts that (X, τ) is regular. □

As we already indicated at the end of Subsection 4.1, the following remark will allow us to
generalize many results in this paper about spaces in the line to definable topological spaces
of dimension at most one, even when R does not expand an ordered field.

Remark 4.22. Let (X, τ), X ⊆ Rn, n > 1, be a definable topological space, let I = (a, b) ⊆
R, a, b ∈ R±∞, be an interval and let f : I → f(I) ⊆ X be an e-homeomorphism (which we
extend continuously to a function f : [a, b] → Rn

±∞). Suppose moreover that f(a) ̸= f(b).
Consider the definable total order ≺ on clef(I) = f([a, b]) given by identifying clef(I) with
[a, b] through f , i.e. for every pair x, y ∈ clef(I), set x ≺ y if and only if f−1(x) < f−1(y).
Accordingly, for any x ≺ y in clef(I), let (x, y)≺ denote the corresponding interval with
respect to ≺.

By means of this identification, we may generalise the notion of right and left e-
accumulation point to points in clef(I). That is, if x ∈ X and y ∈ clef(I), then y ∈ Rx

if and only if, for every τ -neighbourhood U of x, there is z ∈ f(I) such that y ≺ z and
(y, z)≺ ⊆ U . Similarly, y ∈ Lx if and only if, for every τ -neighbourhood U of x, there is
z ∈ f(I) such that z ≺ y and (x, y)≺ ⊆ U . Proposition 4.14 (a) and (c) generalize to this
setting.

Now suppose that dimX ≤ 1. By o-minimal cell decomposition, there is a finite definable
partition X of X into cells such that, for every C ∈ X , there is a projection πC : C → IC ⊆ R
that is an e-homeomorphism onto a cell (i.e. a point or an open interval). Note that, for
every one-dimensional cell C ∈ X , if we set IC = (a, b) and extend (πC)

−1 continuously (as
in the first paragraph of this remark) to a function (πC)

−1 : [a, b] → Rn
±∞, then (πC)

−1(a) ̸=
(πC)

−1(b). By passing to a pushforward of (X, τ) if necessary, we may assume that, for every
distinct pair C,C ′ ∈ X , we have cleC ∩ cleC

′ = ∅. Then, for any C ∈ X such that IC is an
interval, let ≺C be the order on cleC given by identifying cleC with cleIC through πC (as
indicated above). Now let {n(C) < ω : C ∈ X} be an enumeration of the cells in X and
let ≺ be definable linear order on cleX such that, for any x ∈ cleC and y ∈ cleC

′, where
C,C ′ ∈ X , we have that x ≺ y if and only if n(C) < n(C ′) or n(C) = n(C ′) and x ≺C y,
that is, ≺ is the linear order induced by the lexicographic order given the push-forward
x 7→ {n(C)} × πC(x) for x ∈ cleC.
Given this convention, the space (X, τ) behaves very much like a space in the line. The

definitions of right and left e-accumulation set immediately generalise to points x ∈ X, by
saying that y ∈ cleC belongs in Rx or Lx if it does with respect to ≺C . Note that, under this
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construction, the definitions of sets Rx and Lx, for any x ∈ X, are dependent on the choice
of cell decomposition X of X.

Under this correspondence, the statements and proofs of Lemma 4.12, Proposition 4.14,
Lemma 4.17, Lemma 4.18 and Proposition 4.21 generalise to this setting. Moreover, suppose
that, for any C,C ′ ∈ X and partial function f : C → C ′ defined on an interval (a, b)≺C

,
we consider that f is increasing or decreasing to mean with respect to ≺C and ≺C′ . Then
Lemma 4.19 and its proof also generalise to (X, τ).

The following definition is not topological in flavour. Nevertheless, we introduce it as a
natural property to consider when seeking to prove facts about definable topological spaces
via inductive arguments.

Definition 4.23. We say a definable topological space (X, τ) satisfies the frontier dimension
inequality (fdi) if, for every non-empty definable set Y ⊆ X, dim ∂τY < dimY .

The fdi is clearly a hereditary property. The topologies τe, τr, τl and τs all satisfy the fdi;
however, we will show that any T1 definable compactification of (R, τ), where τ ∈ {τr, τl, τs},
does not (see the proof of Corollary 9.6). Observe that the fdi implies in particular that
the frontier of any finite set is empty, and so any space with the fdi is T1. Walsberg
proved [41, Lemma 7.15] that every definable metric space satisfies the fdi. By an inductive
argument on dimension it is easy to show that in any space with this property every definable
set is a boolean combination of definable open sets (i.e. property (A) in [31, Section 2] holds).

The next proposition highlights a connection between the fdi and regularity.

Proposition 4.24. Let (X, τ), dimX ≤ 1, be a Hausdorff definable topological space that
satisfies the frontier dimension inequality. Then (X, τ) is regular.

Proof. We prove that, for any x ∈ X and any τ -neighbourhood A of x, there exists a τ -
neighbourhood U of x such that clτU ⊆ A.
Let x ∈ X and let A be a τ -neighbourhood of x. By passing to a subset of A if necessary,

we may assume that A is definable. By the frontier dimension inequality, ∂τA is finite. Since
(X, τ) is Hausdorff, there exists, for every y ∈ ∂τA, a τ -neighbourhood A(y) of x such that
y /∈ clτA(y). Let

U =
⋂

y∈∂τA

A(y) ∩ A.

Then U is a τ -neighbourhood of x and clτU ⊆ A. □

Recall that any T1 regular topological space is Hausdorff. Since any definable topological
space with the fdi is T1, we derive from Proposition 4.24 that a one-dimensional definable
topological space with the fdi is regular if and only if it is Hausdorff.
The assumptions of Hausdorffness and the fdi in Proposition 4.24 are justified respectively

by Examples A.9 and A.10 in Appendix A, which describe non-regular definable topological
spaces in the line, the first of which is non-Hausdorff and satisfies the fdi, and the second of
which is Hausdorff but does not satisfy the fdi. In Appendix A, Example A.11, we construct
a two-dimensional Hausdorff space which satisfies the fdi but again is not regular, showing
that, in addition, Proposition 4.24 does not generalize to spaces of dimension greater than
one.
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5. T1 and Hausdorff (T2) spaces. Decomposition in terms of the τe, τc, τr and
τl topologies

This section focuses on the properties of T1 and Hausdorff definable topological spaces of
dimension one. The main results are Corollary 5.2 and Theorem 5.9. The first shows that
every infinite T1 definable topological space contains a definable copy of an interval with one
of the τe, τs, τr or τl topologies. We use this to give a positive answer to the Gruenhage
3-element basis conjecture of set-theoretic topology in our setting (see Subsection 5.1). The-
orem 5.9 then improves Corollary 5.2 in the setting of Hausdorff definable topological spaces,
by showing that such spaces in the line can be definably partitioned into finitely many sub-
spaces, each of which has one of the τe, τs, τr or τl topologies, a result which immediately
generalizes to all one-dimensional Hausdorff definable topological spaces (Corollary 5.10).

We begin by approaching the first main result of the section only for spaces in the line.

Proposition 5.1. Let (X, τ), X ⊆ R, be an infinite T1 definable topological space. Then
there exists an interval J ⊆ X such that (J, τ) = (J, τ□), where □ is one of e, r, l or s.

We prove this proposition below. First, however, we present a generalization which follows
directly from Proposition 5.1 and the fact that, by o-minimal cell decomposition, every
infinite definable set contains a one-dimensional cell.

Corollary 5.2. Every infinite T1 definable topological space has a subspace that is definably
homeomorphic to an interval with either the euclidean, right half-open interval, left half-open
interval, or discrete topology.

Proof of Proposition 5.1. By Lemma 4.5, for each x ∈ X the set Ex is finite. Suppose that
there exist infinitely many points x ∈ X satisfying (x,∞) ∩Ex = ∅. In that case, let I ⊆ X
be a bounded interval containing only such points and fix C > I. Otherwise, let I ′ ⊆ X be
an interval such that (x,∞) ∩ Ex ̸= ∅, for every x ∈ I ′, and consider the definable map f
on I ′ taking each x to the smallest y > x such that y ∈ Ex. The map f satisfies x < f(x)
for all x ∈ X and so, by o-minimality, after passing if necessary to a subinterval where f
is continuous and then applying continuity, there exists an interval I ⊆ I ′ and C > I such
that, for all x ∈ I, f(x) > C. In either case, we have that, for all x ∈ I, (x,C] ∩ Ex = ∅.
Similarly, we can isolate a bounded subinterval J ⊆ I and some c < J such that, for every
x ∈ J , [c, x) ∩ Ex = ∅. Thus we have reached an interval J , and c, C ∈ R with c < J < C,
such that, for all x ∈ J , we have [c, C] ∩ Ex ⊆ {x}, and so in particular cleJ ∩ Ex ⊆ {x}.

For any x ∈ J , let U(x) denote a family of τ -neighbourhoods of x as described in
Lemma 4.18. Note that, by construction of J , for any given x ∈ J and y < x < z, there is
U ∈ U(x) such that,

(5.1) U ∩ J =


(y, z) if x ∈ Rx ∩ Lx,

[x, z) if x ∈ Rx \ Lx,

(y, x] if x ∈ Lx \Rx,

{x} if x /∈ Rx ∪ Lx.
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Recall that the families {Rx : x ∈ J} and {Lx : x ∈ J} are definable. Thus we may
partition J into four definable sets as follows:

J1 = {x ∈ J : x ∈ Rx ∩ Lx},
J2 = {x ∈ J : x ∈ Rx, x /∈ Lx},
J3 = {x ∈ J : x /∈ Rx, x ∈ Lx},
J4 = {x ∈ J : x /∈ Rx ∪ Lx}.

By (5.1) and the definitions of Rx and Lx, the subspace topology on J1 is τe. Similarly, the
subspace topologies on J2, J3 and J4 are τr, τl and τs, respectively. At least one of the four
definable sets J1, J2, J2 and J4 must be infinite and thus contain an interval, and so the
proposition follows. □

For a justification for the condition of T1-ness in Proposition 5.1, see Appendix A, Exam-
ple A.7, which describes a T0 definable topological space in the line that fails to be T1 and
does not contain an interval with one of the τe, τr, τl or τs topologies.

5.1. 3-element basis conjecture. We now discuss how Corollary 5.2 relates to an open
conjecture of set-theoretic topology due to Gruenhage known as the 3-element basis conjec-
ture.

Given a class of topological spaces S, a basis for S is a subclass F ⊆ S such that every
member of S contains a subspace that is homeomorphic to one of the members of F . When
the class S consists of topological spaces definable in some structure, we will say that F ⊆
S is a definable basis for S if every member of S contains a subspace that is definably
homeomorphic to one of the members of F .
Consider the following statement.

(5.2)

The class S of uncountable, first-countable, regular, Hausdorff topological spaces
has a basis F consisting of an uncountable discrete subspace, a fixed uncountable
subset of the reals with the euclidean topology, and a fixed uncountable subset of
the reals with the Sorgenfrey topology.

The 3-element basis conjecture for uncountable, first-countable, regular, Hausdorff spaces is
an open conjecture stating that (5.2) is consistent with ZFC. It arose in connection with vari-
ous questions concerning perfectly normal, compact, Hausdorff spaces, in particular questions
due to Fremlin and Gruenhage, which we discuss further in Subsection 9.1. The 3-element
basis conjecture appears as Question 2 in [23], following a series of works by Gruenhage
in which related statements were put forward. In [20] and [21], Gruenhage considered the
statement that all uncountable, first-countable, regular, Hausdorff spaces contain either an
uncountable metrizable subspace or a copy of an uncountable subspace of the Sorgenfrey
Line. He proved under the Proper Forcing Axiom (PFA) that this statement holds for regu-
lar cometrizable spaces (spaces that admit a coarser metric topology such that each point has
a neighbourhood base consisting of sets closed in the metric topology), by showing that all
such spaces either contain an uncountable discrete subspace, contain a copy of an uncount-
able subset of the reals with the Sorgenfrey topology, or are cosmic (i.e. are the continuous
image of a separable metric space). Todorčević then reproved this result under the Open
Colouring Axiom (OCA), which follows from PFA [39]. In both cases, the assumption of
first-countability was not in fact required.
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Following these results, Gruenhage put forward the question of the consistency (with ZFC)
of the version of (5.2) in which the first-countability assumption is not imposed [22]. This
stronger statement was shown to fail by Moore in his solution to the L-space problem [26],
and so the first-countability assumption in (5.2) is necessary if the 3-element basis conjecture
is to have a positive answer. (Note that it is known that L-spaces, which are hereditarily
Lindelöf non-separable spaces, as well as S-spaces, which are hereditarily separable non-
Lindelöf spaces, provide counterexamples to (5.2); these can be constructed, for example,
with the continuum hypothesis (CH), but the existence of S-spaces is independent of ZFC [38]
and, to the best of our knowledge, to date no first-countable L-space has been constructed in
ZFC. See [22] for further discussion.) Beyond the statements above, we note that Todorčević
studied related questions in the context of the class of spaces that can be represented as
relatively compact subsets of the class of all Baire class 1 functions on a Polish space,
endowed with the topology of pointwise convergence [40]. In addition, the conclusion of the
conjecture was shown by Farhat to be consistent under PFA for the class of uncountable
subspaces of monotonically normal compacta, and under Souslin’s Hypothesis (SH) for any
uncountable space having a zero-dimensional monotonically normal compactification [15].
Recently, Peng and Todorčević gave an analysis of different possible approaches to proving
or disproving the conjecture [28].

Here, we indicate how our work provides a number of results related to the 3-element
basis conjecture in the context of topological spaces definable in o-minimal structures. In
particular, Corollary 5.2, shown above, establishes the existence of a 3-element basis, as is
posited by (5.2), for the class of infinite T1 topological spaces definable in any o-minimal
expansion of (R, <). Moreover, in such a basis, the fixed subsets of the reals that form the
underlying sets of the basis elements (i.e. those which have either the discrete, euclidean or
Sorgenfrey topology) can each be taken to be R itself.
More specifically, Corollary 5.2 states that, for any o-minimal structure R = (R,<, . . .),

the collection of definable topological spaces {(I, τ) : I ⊆ R is an interval, τ ∈ {τe, τr, τl, τs}}
is a definable basis for the class of infinite T1 topological spaces definable in R. Clearly, if
R defines an order-reversing bijection (e.g. when R expands an ordered group), then this
definable basis can be reduced to the family {(I, τ) : I ⊆ R is an interval, τ ∈ {τe, τr, τs}}.
In addition, whenever R expands an ordered field, this can in fact be reduced further to a
definable basis consisting only of the three fixed spaces (R, τe), (R, τr) and (R, τs), since, in
this case, any interval with one of the τe, τr, or τs topologies is definably homeomorphic to
one of these three spaces. If there is no requirement that the basis be definable (in the sense
that the homeomorphisms involved are definable), then, as long as the ordered set (R,<) can
be expanded to an ordered field (R,+, ·, <), we have that {(R, τe), (R, τr), (R, τs)} serves as
a 3-element basis, in the sense of (5.2), for the class of infinite T1 topological spaces definable
in any o-minimal expansion of (R,<) (and in particular this holds, as indicated above, in
the special case that (R,<) = (R, <)).
Note that, for none of these results do we require the assumptions of uncountability, first-

countability, Hausdorffness or regularity (although it should be noted that, in the special
case of o-minimal expansions of (R, <), every definable topological space is known to be
first-countable; see [6, Proposition 38]).

5.2. Non-definability of the Cantor space. We now consider the Cantor Space 2ω (i.e.
the product of countably many copies of the discrete space {0, 1}). Whether or not such
a space exists (up to homeomorphism) in the form of a definable topological space in a
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given structure could be considered a means of assessing the tameness of the structure. We
make use of Proposition 5.1 to prove that, in the setting of o-minimal structures, no space
homeomorphic to the Cantor Space is definable.

Note that there is a notion of a ‘Cantor set’, as defined in [18], which has been studied
by various authors in considering notions of tameness expanding o-minimality. A Cantor
set in this sense is (in the terminology of the present paper) any non-empty compact subset
of (R, τe) with empty interior and no isolated points. The Cantor space is known to be
homeomorphic to such a set (for example, to the classical middle thirds Cantor set with
the euclidean topology). On the one hand, in any o-minimal expansion of (R, <), such
a Cantor set is clearly not definable. However, on the other hand, there are examples of
definable topological spaces in this structure which do have non-empty definable subsets
that are compact, have empty interior and do not have isolated points (for example, the
subset [0, 1] × {0} of the definable Alexandrov 2-line, which will be defined in Section 6,
Definition 6.2). We show that, nevertheless, the Cantor space is not homeomorphic to any
definable topological space in an o-minimal structure.

The proof of this fact will follow from a series of auxiliary results, beginning with two
concerning the weights of our key definable topological spaces. Recall the classical definition
of the weight of a topological space (X, τ), wτ (X), namely the minimum cardinality of a
basis for τ .

Lemma 5.3. For any set X ⊆ R it holds that wr(X) = wl(X) = ws(X) = |X|. Furthermore,
in the case where X is infinite and definable and (R,<) can be expanded to an ordered field,
it holds that wr(X) = wl(X) = ws(X) = |R|.

Proof. The second sentence of the lemma follows from the first one by applying o-minimality
and the fact that any interval in an ordered field is in bijection with the whole field. We
prove the first sentence.

In the case of the discrete topology τs the statement ws(X) = |X| is immediate from the
definition. We show that wr(X) = |X|. (An analogous argument shows that wl(X) = |X|.)
We may assume that X is infinite, since otherwise the topology is discrete. By the definition
of τr (Appendix A, Example A.3) we have that wr(X) ≤ |X|2 = |X|. We show the reverse
inequality. Let B be a basis of (X, τr) of minimum cardinality. For every x ∈ X there exists
some A ∈ B such that x ∈ A ⊆ [x,+∞). A map X → B that takes each x ∈ X to one such
neighbourhood A must be injective, so |X| ≤ |B| = wr(X). □

Proposition 5.4. Let (X, τ) be an infinite T1 definable topological space. Let αR :=
min{we(I) : I ⊆ R is an interval}. The following hold.

(a) αR ≤ wτ (X) ≤ |X| ≤ 2we(X).
(b) If R expands an ordered field, then we(R) ≤ wτ (X).

Proof. The inequality wτ (X) ≤ |X| is given by [1, Corollary 2]. The inequality |X| ≤ 2we(X)

follows from noticing that, for any basis for the euclidean topology on X, due to this topology
being T1, the map taking each x ∈ X to the collection of its basic neighbourhoods is injective.
To prove that αR ≤ wτ (X), note that, for any topological space (Z, µ) and subspace

Z ′ ⊆ Z, it holds that wµ(Z
′) ≤ wµ(Z). Now, by Corollary 5.2, there exists an interval I ⊆ R

and a definable embedding (I, µ) ↪→ (X, τ), where µ is one of τe, τr, τl or τs. In particular
we have that wµ(I) ≤ wτ (X). Furthermore by Lemma 5.3 observe that αR ≤ wµ(I), and so
we derive that αR ≤ wτ (X).
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Statement (b) follows from the inequality αR ≤ wτ (X) in (a) and from noticing that, if
R expands an ordered field, then any two intervals are definably e-homeomorphic, and so
αR = we(R). □

Lemma 5.5. Let (X, τ) be a T1 definable topological space, let I ⊆ R be an interval, and
suppose that there exists an injective definable curve γ : I → X. If (X, τ) is compact, then
the linear order (I,<) is Dedekind complete (i.e. every non-empty subset of I that is bounded
above in I admits a supremum).

Proof. Towards a contradiction suppose that there exists a non-empty set S ⊆ I bounded
above in I but with no supremum. Let S ′ be the set of upper bounds of S in I. Consider
the following family of closed non-empty subsets of (X, τ):

S = {clτ (γ[(t, s)]) : t ∈ S, s ∈ S ′}.
This family clearly has the finite intersection property. By compactness of (X, τ), there
exists x ∈ X belonging in

⋂
S. We define a curve γx : I → X as follows. If x /∈ γ(I), then

we fix some tx ∈ I and set

γx(t) =

{
γ(t) if t ̸= tx,

x if t = tx.

Otherwise, let γx = γ. Let (I, τx) be the pull-back of (γx(I), τ) by γx.
Now note that, for every t ∈ S, every s ∈ S ′ and every τx-neighbourhood U of tx, we

have U ∩ (t, s) ̸= ∅. This is clear if tx itself also lies in (t, s). If tx /∈ (t, s), then γ = γx on
(t, s), and so x ∈ clτ (γ[(t, s)]) = clτ (γx[(t, s)]), whence γx(U) ∩ γx[(t, s)] ̸= ∅, as γx(U) is a
τ -neighbourhood of x in (γx(I), τ); it follows that U ∩ (t, s) ̸= ∅, by injectivity of γx.

Now, clearly (I, τx) is T1, and so, by Lemma 4.5, the set E
(I,τx)
tx is finite. Since S has

no supremum in I, there exists t ∈ S with t > {y ∈ E
(I,τx)
tx : ∃z ∈ S with z > y} and s ∈ S ′

with s < S ′ ∩ E
(I,τx)
tx . We may also choose them so that tx /∈ (t, s). The fact that every

τx-neighbourhood of tx intersects the interval (t, s) clearly contradicts Lemma 4.18. □

Remark 5.6. Since any two intervals are order-isomorphic in an ordered field, it follows
from Lemma 5.5 that, under the assumption that R expands an ordered field, if there exists
an infinite compact T1 topological space definable inR, then (R,<) is Dedekind complete. In
particular, since (R,+, ·, <) is, up to (unique) field isomorphism, the only Dedekind complete
ordered field, it must be that R is an expansion of the field of reals.

Proposition 5.7. There exists no infinite definable topological space (X, τ) that is compact,
totally disconnected, and that satisfies wτ (X) < |Y | for every Y ⊆ X that is infinite and
definable.

Proof. Let (X, τ) be an infinite compact totally disconnected definable topological space sat-
isfying wτ (X) < |Y | for every Y ⊆ X that is infinite and definable. We reach a contradiction
by showing that (X, τ) contains an infinite (and in fact definable) connected subspace.
First note that, since (X, τ) is totally disconnected, in particular it is T1. By o-minimality,

there exists an interval I ⊆ R and an injective definable curve γ : I → X. Let (I, µ) be
the pull-back of (γ(I), τ) by γ. Since (I, µ) is T1, by Proposition 5.1 we may assume,
after passing to a subinterval if necessary, that µ ∈ {τe, τr, τl, τs}. Since, by hypothesis,
wµ(I) = wτ (γ(I)) ≤ wτ (X) < |f(I)| = |I|, by Lemma 5.3 it must be that µ = τe. Now
recall that, by compactness and Lemma 5.5, (I,<) is Dedekind complete, and so (I, τe) is
connected. Hence (γ(I), τ) is connected. □
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Corollary 5.8. The Cantor space 2ω is not a definable topological space.

Proof. Let (X, τ) be (homeomorphic to) the Cantor space and towards a contradiction sup-
pose that it is a definable topological space. Let c = |X| denote the cardinality of the
continuum. Recall that the Cantor space is compact, totally disconnected (in particular T1)
and second countable (i.e. wτ (X) ≤ ω). Let Y ⊆ X be an infinite definable set. We show
that |Y | = c. The result then follows from Proposition 5.7.

Clearly |Y | ≤ c. By o-minimality, there exists an interval I ⊆ R and an injective definable
curve γ : I → Y ⊆ X. Since (X, τ) is compact and T1, by Lemma 5.5 we have that (I,<) is
Dedekind complete, so c ≤ |I|, and hence c ≤ |γ(I)| ≤ |Y |. □

It follows from the above corollary that the class of definable topological spaces up to
homeomorphism is not closed under countable products.

5.3. Hausdorff (T2) spaces. We now prove a strengthening of Proposition 5.1 for Hausdorff
spaces. The assumption of Hausdorffness is necessary here; see Appendix A, Example A.8
for a T1, non-Hausdorff space that cannot be decomposed as described in the statement.

Theorem 5.9. Let (X, τ), X ⊆ R, be a Hausdorff definable topological space. Then there
exists a finite partition X of X into points and intervals such that, for every Y ∈ X ,
τ |Y ∈ {τe, τr, τl, τs}.

Proof. We start by proving a simple case. Suppose that, for every x ∈ X, E
(X,τ)
x ⊆ {x}. We

call this condition (†). Then let us partition X into four definable sets as follows.

{x ∈ X : x ∈ Rx ∩ Lx},
{x ∈ X : x ∈ Rx, x /∈ Lx},
{x ∈ X : x /∈ Rx, x ∈ Lx},
{x ∈ X : x /∈ Rx ∪ Lx}.

By Lemma 4.18, these correspond respectively to spaces with the τe, τr, τl and τs topologies.
By o-minimality, we can partition each of these into a finite number of points and intervals,
and the result follows.

In order to prove the theorem, it is enough to show that we may partition (X, τ) into
finitely many definable subspaces where (†) holds. We do so as follows.

Note that, for any definable subspace S ⊆ X and any x ∈ S, E
(S,τ)
x ⊆ E

(X,τ)
x . We prove the

existence of a finite partition of X formed by points and intervals such that, for any interval

I in the partition and any x ∈ I, E
(X,τ)
x ∩ cleI ⊆ {x}. Since any element in E

(I,τ)
x must

belong in cleI (Proposition 4.2(a)), it follows that, for any x ∈ I, E
(I,τ)
x = E

(I,τ)
x ∩ cleI ⊆

E
(X,τ)
x ∩ cleI ⊆ {x}, i.e. (†) holds in (I, τ), which completes the proof.

From now on, for any x ∈ X, let Ex = E
(X,τ)
x . By Lemma 4.5, for any x ∈ X, the set Ex

is finite. By o-minimality (uniform finiteness), there exists some n such that |Ex| ≤ n, for
every x ∈ X. We may partition X into finitely many definable subspaces X0, . . . , Xn, where
Xi = {x ∈ X : |Ex| = i}, for 0 ≤ i ≤ n. We fix Y = Xm, for some 0 ≤ m ≤ n and prove the
existence of a partition of Y with the desired properties. Since otherwise the result is trivial
we assume that m > 0 and that Y is infinite.



ONE-DIMENSIONAL DEFINABLE TOPOLOGIES IN O-MINIMAL STRUCTURES 31

For 1 ≤ i ≤ m, let fi : Y → R±∞ be the definable function taking each element in x ∈ Y
to the i-th smallest element in Ex. Since the family {Ex : x ∈ Y } is definable, these maps
are definable. Moreover, by Hausdorffness (see Lemma 4.12(a)(ii), these functions cannot
be constant on any interval. By o-minimality, let Y be a partition of Y into finitely many
intervals and points such that, for every interval I ∈ Y , the functions fi, 1 ≤ i ≤ m, are
e-continuous and strictly monotone.

Without loss of generality, we fix an interval I ∈ Y and show that, for any x ∈ I,
Ex ∩ cleI ⊆ {x}, completing the proof. Let x ∈ I and y ̸= x be such that y ∈ Ex ∩ cleI.
If y ∈ I, then, by Lemma 4.19, Ey ⊆ Ex. Since |Ey| = |Ex|, it follows that Ey = Ex,
contradicting that the functions fi are injective. Suppose now that y ∈ ∂eI. As y ∈ Ex, we
have that y = fi(x) for some 1 ≤ i ≤ m. By e-continuity and strict monotonicity of fi on I
there exists a point x′ ∈ I such that fi(x

′) ∈ I and fi(x
′) ̸= x′. A contradiction then follows

as before. □

By o-minimal cell decomposition, the above theorem can be immediately generalized to
all one-dimensional spaces.

Corollary 5.10. Let (X, τ), dimX ≤ 1, be a Hausdorff definable topological space. Then
there exists a finite definable partition X of X such that, for every Y ∈ X , (Y, τ) is definably
homeomorphic to a point or an interval with either the euclidean, discrete, right half-open
interval or left half-open interval topology.

Since the topologies τr, τl and τs are all finer that τe, it follows by o-minimality that
any definable function (X, τ) → (R, τe), where dimX ≤ 1 and τ is a Hausdorff definable
topology, is cell-wise continuous.

We end this section with a statement noting that, for spaces in the line, having an in-
terval subspace with any one of the euclidean, discrete or half-open interval topologies is a
definable topological invariant. This is an easy consequence of the monotonicity theorem of
o-minimality, and in particular the observation that the push-forward of an interval with the
τr or τl topology by an e-continuous strictly monotone definable function is an interval with
either the τr or τl topology. This holds in weakly o-minimal structures too, since these have
a form of monotonicity (see [7]).

Lemma 5.11. If (X, τ) and (Y, µ), where X, Y ⊆ R, are definable topological spaces, and
f : (X, τ) → (Y, µ) is a definable homeomorphism, then

(i) if (X, τ) contains an interval subspace with the discrete topology, then (Y, µ) contains
an interval subspace with the discrete topology;

(ii) if (X, τ) contains an interval subspace with the right half-open or left half-open interval
topology, then (Y, µ) contains an interval subspace with the right half-open or left half-
open interval topology;

(iii) if (X, τ) contains an interval subspace with the euclidean topology, then (Y, µ) contains
an interval subspace with the euclidean topology.

Note that (i) and (iii) hold for spaces of all dimensions if we substitute “interval subspace”
with “definable subspace of dimension n”.

Hence definable topological spaces in the line can be classified up to definable homeo-
morphism according to whether or not they contain interval subspaces with the euclidean,
discrete or half-open interval topologies. Moreover, by Proposition 5.1, every infinite T1

space will fall into at least one of these categories.



32 P. ANDÚJAR GUERRERO AND M. E. M. THOMAS

6. Hausdorff regular (T3) spaces. Decomposition in terms of the τlex and
τAlex topologies.

In this section, we study Hausdorff regular (i.e. T3) spaces in the line. The main result is
Theorem 6.3, which states that any such space can be partitioned into a finite set and two
definable open subspaces, one of which definably embeds into a space with the lexicographic
order topology, and the other into a space which we label the definable Alexandrov n-line.
In the next section, we use this result and its proof, as well as Theorem 5.9, to address
universality questions in our setting. In Section 8, we extend Theorem 6.3 to show that any
T3 definable topological space in the line has a definable compactification. We also combine
Theorem 6.3 and its proof with our affineness result (Theorem 9.1) in Section 9 to address
questions of Fremlin and Gruenhage on perfectly normal, compact, Hausdorff spaces (see
Subsection 9.1).

We start by introducing the relevant topologies. Given X ⊆ Rn, we denote by <lex the
lexicographic order onX and by (X, τlex) the topological space induced by <lex onX. Clearly
this space is definable whenever X is.

Definition 6.1 (Definable n-split interval, Appendix A, Example A.5). We call the space
(R × {0, . . . , n− 1}, τlex) the definable n-split interval. This space has the property that all
the points in R× {i}, for 0 < i < n− 1, are isolated. In the case that n > 1, for any x ∈ R
a basis of open neighbourhoods of ⟨x, 0⟩ is given by sets of the form

⟨x, 0⟩ ∪ ((y, x)× {0, . . . , n− 1}) for y < x,

and a basis of open neighbourhoods of ⟨x, n− 1⟩ is given by sets of the form

⟨x, n⟩ ∪ ((x, y)× {0, . . . , n− 1}) for y > x.

If n = 1, then (R× {0}, τlex) = (R× {0}, τe).

Definition 6.2 (Definable Alexandrov n-line, Appendix A, Example A.6). Let τAlex be the
topology on R2 where all points in R2 \ R × {0} are isolated and, for any x ∈ R, a basis of
open neighbourhoods of ⟨x, 0⟩ is given by sets of the form

{⟨x, 0⟩} ∪ (((z, y) \ {x})×R), for z < x < y.

Then, for any n > 0, we call the space (R × {0, . . . , n − 1}, τAlex) the definable Alexandrov
n-line.

Note, in particular, that (R× {0}, τlex) = (R× {0}, τAlex) = (R× {0}, τe).
We may now state the main theorem of this section.

Theorem 6.3. Let (X, τ), X ⊆ R, be a regular and Hausdorff definable topological space.
Then there exist disjoint definable open sets Y, Z ⊆ X with X \ (Y ∪ Z) finite, and nY , nZ >
0, such that the following holds.

(1) There exists a definable embedding hY : (Y, τ) ↪→ (R× {0, . . . , nY }, τlex).
(2) There exists a definable embedding hZ : (Z, τ) ↪→ (R× {0, . . . , nZ}, τAlex).

Lemmas 6.6 and 6.9 are the bulk of the proof of Theorem 6.3. They are also used in
Section 8 to prove that all regular Hausdorff definable topological spaces in the line can
be definably Hausdorff compactified (Theorem 8.6). In Lemma 6.6, we construct a finite
family Xopen of pairwise disjoint definable open subsets of X of a very special form such that
X \

⋃
Xopen is finite. In Lemma 6.9, we construct, for every A ∈ Xopen, a set A∗ of the form
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IA × {0, . . . , nA}, for some interval IA and natural number nA, and a definable embedding
hA : (A, τ) ↪→ (A∗, τA), where τA is either τlex or τAlex. The construction will be such that
IA ∩ IA′ = ∅ for distinct A,A′ ∈ Xopen. Then Z will be the union of all the sets A in Xopen

such that (A∗, τA) = (A∗, τAlex), and hZ the union of the respective embeddings hA. The set
Y and embedding hY are constructed similarly from the remaining sets in Xopen.

Until the end of the proof of Theorem 6.3, we fix a definable topological space (X, τ) with
X ⊆ R.

We introduce an equivalence relation on X induced by the topology τ that is defined as
follows. Given x, y ∈ X, we write x ∼τ y when one of the following holds:

(i) x = y;
(ii) there exists some z ∈ X such that {x, y}∩Ez ̸= ∅ and, for all z ∈ X, x ∈ Ez ⇔ y ∈ Ez.

This relation is clearly reflexive and symmetric, and one easily checks that it is transitive.
Moreover, by Proposition 4.2(b), it is definable. For any x ∈ X, we denote by [x] the
equivalence class {y ∈ X : y ∼τ x}. We prove some preliminary facts regarding this relation.

Lemma 6.4. If (X, τ) is T1, then every equivalence class of ∼τ is finite.

Proof. Let x ∈ X. If x ∈ X \
⋃

y∈X Ey, then [x] = {x}. If there is some y ∈ X such that

x ∈ Ey, then, from the definition of ∼τ , it follows that [x] ⊆ Ey. If (X, τ) is T1, then, by
Lemma 4.5, the set Ey is finite, so [x] is finite. □

Lemma 6.5. If (X, τ) is regular and Hausdorff, then there exists a cofinite set X ′ ⊆ X with
the following properties.

(a) For any x ∈ X, either [x] ⊆ X ′ or [x] ∩X ′ = ∅ (i.e. X ′ is compatible with ∼τ).
(b) For any x ∈ X ′ and y ∈ X, if x ∈ Ey, then y ∈ [x].
(c) For any x ∈ X ′, Ex ⊆ [x]. In particular, if Ex is non-empty, then Ex = [x].

Proof. Let H = {(x, y) ∈ X2 : y ∈ Ex and x ̸∼τ y}. Let H1 and H2 be the projections of H
onto the first and second coordinate respectively. We start by showing that these sets are
finite. If H2 is finite then, by Hausdorffness (see Proposition 4.12(b)), there exist at most
two x ∈ X such that y ∈ Ex, hence H1 is finite. Towards a contradiction, we suppose that
H2 is infinite. Let g : H2 → H1 be the function given by y 7→ min{x : y ∈ Ex and y ̸∼τ x}.
By Hausdorffness, this function is well defined and, by Lemma 4.5, it cannot be constant
on an interval, so, by o-minimality, there exists an interval I ⊆ H2 such that g|I is strictly
monotonic and e-continuous. But then, since (X, τ) is regular, by Lemma 4.19, for any y ∈ I,
it holds that y ∼τ g(y), a contradiction.
Set X ′ := X \ (

⋃
x∈H1∪H2

[x]). By Lemma 6.4 and the finiteness of H1 ∪ H2, this set is
cofinite in X. By definition of H, it follows that X ′ satisfies (a)-(c). □

The next lemma strengthens Lemma 6.5 and is the core construction in the proofs of
Theorems 6.3 and 8.6.

Lemma 6.6. Suppose that (X, τ) is regular and Hausdorff. Let X ′ ⊆ X be as given by
Lemma 6.5. There exists a finite partition X of X into singletons Xsgl and infinite definable
τ -open sets Xopen, the latter being subsets of X ′, with the following properties.

For every A ∈ Xopen, there exists n > 0, an interval I ⊆ A, and definable e-continuous
strictly monotonic functions f0, f1, . . . , fn−1 : I → A such that, for every x ∈ I, [x] = {fi(x) :
0 ≤ i < n}. In particular, f0 is the identity map. Further, the intervals fi(I), for 0 ≤ i < n,



34 P. ANDÚJAR GUERRERO AND M. E. M. THOMAS

are pairwise disjoint and A =
⋃

0≤i<n fi(I) =
⋃

x∈I [x]. Additionally, for every x ∈ I and
0 < i < n− 1, the point fi(x) is τ -isolated.
Moreover, if we set [x]E = {y ∈ [x] : Ey ̸= ∅} for every x ∈ I, then exactly one of the

following conditions holds:

∀x ∈ I, [x] = {x} and Ex = ∅, so [x]E = ∅ (and A = I contains only

τ -isolated points);

∀x ∈ I, [x]E = {x};
∀x ∈ I, [x]E = {x, fn−1(x)} (this case only applies if n > 1).

Finally, in each of the latter two cases, exactly one of the following conditions is also
satisfied:

∀x ∈ I, x ∈ Lx \Rx;

∀x ∈ I, x ∈ Rx \ Lx;

∀x ∈ I, x ∈ Rx ∩ Lx.

Proof. We construct X by describing the family Xopen of τ -open subsets of X ′, while making
sure that

⋃
Xopen is cofinite in X. Since the set X ′ is cofinite in X (see Lemma 6.5) it

suffices to ensure that
⋃

Xopen is cofinite in X ′. In particular, we consider a finite number
of definable sets that partition X ′ and, for each such set S, describe a partition of a cofinite
subset of S, which becomes the collection of subsets of S in Xopen.

Let Aisol = X ′ \
⋃

y∈X Ey. Note that [x] = {x} for every x ∈ Aisol. By Lemma 6.5(c)

and definition of Aisol, for all x ∈ Aisol, Ex = ∅, and so, by Lemma 4.18, these points are
τ -isolated. If Aisol is infinite, let Xisol be a finite family of disjoint intervals whose union is
cofinite in Aisol. Otherwise let Xisol = ∅.

We now consider X ′ \Aisol. By Lemma 6.4 and uniform finiteness, there exists n′ ≥ 1 such
that, for every x ∈ X, |[x]| ≤ n′. For every 1 ≤ n ≤ n′, set Xn := {x ∈ X ′ \Aisol : |[x]| = n}.
These sets are definable and partition X ′ \ Aisol. We fix 1 ≤ n ≤ n′. If Xn is finite, let
Xn = ∅. If Xn is infinite, then the following describes a finite partition Xn of a cofinite
subset of Xn into definable τ -open sets as desired.

Recall the notation [x]E = {y ∈ [x] : Ey ̸= ∅} for x ∈ X. Since X ′ \Aisol ⊆
⋃

y∈X Ey then,

by Lemma 6.5(b), for every x ∈ X ′\Aisol, and hence for every x ∈ Xn, it holds that |[x]E| ≥ 1.
Moreover, by Lemma 6.5(c) and Hausdorffness (see Lemma 4.12(b)), for every x ∈ X ′ \Aisol,

and hence for every x ∈ Xn, we have that |[x]E| ≤ 2. Let X
(1)
n = {x ∈ Xn : |[x]E| = 1} and

X
(2)
n = {x ∈ Xn : |[x]E| = 2}. These sets partition Xn.

Set Dom(X
(1)
n ) :=

⋃
{[x]E : x ∈ X

(1)
n }, Dom(X

(2)
n ) := {min[x]E : x ∈ X

(2)
n } and

Dom(Xn) := Dom(X
(1)
n ) ∪ Dom(X

(2)
n ). Note that, for every x ∈ Xn, it holds that

|Dom(Xn) ∩ [x]| = 1.
First, let f0 denote the identity map on Dom(Xn). Then, for every 1 ≤ i < n, let

fi : Dom(Xn) → X be the function defined as follows. For every x ∈ Dom(X
(1)
n ), fi(x) is

the i-th smallest element in [x] \ {x}. For every x ∈ Dom(X
(2)
n ), if 1 ≤ i < n− 1, then fi(x)

is the i-th smallest element in [x]\ [x]E, while fn−1(x) = max[x]E. By construction, for every
y ∈ Xn there exists a unique x ∈ Dom(Xn) and unique 0 ≤ i < n such that fi(x) = y. In
particular, for every x ∈ Dom(Xn), [x] = {fi(x) : 0 ≤ i < n}, all functions fi are injective
and the family of images {fi(Dom(Xn)) : 0 ≤ i < n} is pairwise disjoint and covers Xn.
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Moreover, by construction, for every x ∈ Dom(Xn) and 0 < i < n − 1, Efi(x) = ∅, so, by
Lemma 4.18, fi(x) is τ -isolated.

Since, by definition of Dom(Xn), Ex ̸= ∅ for all x ∈ Dom(Xn), by Lemma 6.5(c) and
definition of ∼τ it follows that x ∈ Ex for all x ∈ Dom(Xn). So, by Lemma 4.14(b), we may
further partition Dom(Xn) into three definable sets as follows.

Dom(Xn)
′ = {x ∈ Dom(Xn) : x ∈ Lx \Rx},

Dom(Xn)
′′ = {x ∈ Dom(Xn) : x ∈ Rx \ Lx},

Dom(Xn)
′′′ = {x ∈ Dom(Xn) : x ∈ Rx ∩ Lx}.

By o-minimality, there exists a finite partition Dn of Dom(Xn), compatible with

{Dom(X
(1)
n ), Dom(X

(2)
n ), Dom(Xn)

′, Dom(Xn)
′′, Dom(Xn)

′′′}, which contains only single-
tons and intervals and is such that, for every interval I ∈ Dn, fi|I is e-continuous and
strictly monotonic, for every 0 ≤ i < n. The family of those sets in Xopen which are subsets
of Xn is then defined by

Xn =

{ ⋃
0≤i<n

fi(I) : I ∈ Dn, I is an interval

}
.

Note that, by construction,
⋃

0≤i<n fi(I) =
⋃

x∈I [x], for any interval I ∈ Dn. Moreover, since
the functions fi are e-continuous, the sets fi(I) are all intervals. It easily follows that any
A ∈ Xn is τ -open, by observing that, for every x ∈ A, we have Ex ⊆ [x] by Lemma 6.5(c),
and using the form of a basis of τ -neighbourhoods for x given by Lemma 4.18.
Finally, set Xopen := Xisol ∪ X1 ∪ · · · ∪ Xn′ , and let Xsgl denote the collection of singletons

given by the points in X \
⋃

Xopen. By construction, this partition satisfies the properties
stated in the lemma. To check this, for any A ∈ Xopen, if A ⊆ Xn for some n, let I and
fi, for 0 ≤ i < n, be as described above. If A ⊆ Aisol, then simply consider I = A with f0
denoting the identity map on I. □

Continuing with the construction in Lemma 6.6, the next lemma describes how each of
the sets A ∈ Xopen definably embeds into a space with either the lexicographic or Alexandrov
n-line topology.

We first require a definition extending the notion of e-convergence from the right or from
the left (Remark 4.16), and a remark on how this convergence relates to convergence with
respect to the topologies τlex and τAlex.

Definition 6.7. Given a definable set X̃ ⊆ R×{0, 1, . . .} we say that a definable curve in X̃
e-converges to ⟨x, i⟩ ∈ X̃ from the right (respectively left) if it e-converges to ⟨x, i⟩ and its
projection to the first coordinate, namely π ◦γ, e-converges to x from the right (respectively
left).

Remark 6.8. Consider a definable set X̃ = I × {0, . . . , n}, with I ⊆ R an interval, and an
injective definable curve γ in X̃. For x ∈ I, note that, by o-minimality, if n > 0, then γ
converges in (X̃, τlex) to ⟨x, 0⟩ if and only if it e-converges to ⟨x, i⟩ from the left, for some
0 ≤ i ≤ n (recall the basis of open neighbourhoods for ⟨x, 0⟩ described in Definition 6.1).
Similarly, maintaining the assumption that n > 0, we have that γ converges in (X̃, τlex) to
⟨x, n⟩ if and only if it e-converges to ⟨x, i⟩ from the right, for some 0 ≤ i ≤ n (likewise consider
the basis of open neighbourhoods for ⟨x, n⟩ given earlier). Moreover (recalling Definition 6.2),
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by o-minimality, γ converges to ⟨x, 0⟩ in (X̃, τAlex) if and only if it e-converges to ⟨x, i⟩, for
some 0 ≤ i ≤ n (from the right or from the left).

Lemma 6.9. Suppose that (X, τ) is regular and Hausdorff. Let X be a finite partition of
X as given by Lemma 6.6. For each A =

⋃
0≤i<n fi(I) ∈ Xopen, there exists a definable set

A∗ ⊆ R2 and a definable injection hA : A → A∗ such that the following hold.

(1) A∗ = I × {0, . . . ,m}, for some m ∈ {n − 1, n, 2}. In particular, for every distinct pair
A0, A1 in Xopen we have that A∗

0 ∩ A∗
1 = ∅.

(2) For every 0 ≤ i < n and x ∈ fi(I), it holds that (π ◦ hA)(x) = f−1
i (x).

(3) The map hA : (A, τ) ↪→ (A∗, τA) is an embedding, where either
(a) (A∗, τA) = (A∗, τlex) or
(b) (A∗, τA) = (A∗, τAlex).

Proof. Following Lemma 6.6, we distinguish different cases of possible sets A =
⋃

0≤i<n fi(I)
in Xopen, based on properties of I. In each case, we define A∗ and hA (which for simplicity
we denote by h) so that (1), (2) and (3) hold.
Case 0: I = A is a set of isolated points in (X, τ). Specifically, [x] = {x} and Ex = ∅,

for every x ∈ I.
Let A∗ = A×{0, 1, 2} and let h : A → A∗ be given by x 7→ ⟨x, 1⟩. Let τA be the topology

induced by the lexicographic order on A∗. With this topology all the points in A× {1} are
isolated, so h is an embedding.
For the remaining cases we will make use of Proposition 4.9 to prove (3), that is, after

specifying what A∗, τA and h will be in each case in order to satisfy the other requirements,
we will fix a point x ∈ X and prove that an injective definable curve γ converges in (A, τ)
to x if and only if h ◦ γ converges in (A∗, τA) to h(x). To do this we will use Remarks 4.16
and 6.8 extensively.

Case 1: [x]E = {x} and x ∈ Lx \Rx, for every x ∈ I.
In this case, for every x ∈ I, we have the following. Since [x]E = {x}, by Lemma 6.5(c) it

holds that Ex = [x], hence Ex = {fi(x) : 0 ≤ i < n}. Furthermore, any point y ∈ [x] \ {x}
satisfies that Ey = ∅ and so, by Lemma 4.18, it is τ -isolated. Moreover, we will make use
of the following observation, which follows from applying Lemma 4.19 and the fact that
x ∈ Lx \Rx, for all x ∈ I. For every 0 ≤ i < n and x ∈ I,

fi(x) ∈ Lx ⇔ fi is increasing;

fi(x) ∈ Rx ⇔ fi is decreasing.
(6.1)

Let A∗ = I ×{0, . . . , n} and let h : A → A∗ be the definable injection given by h(fi(x)) =
⟨x, i⟩, for every x ∈ I and 0 ≤ i < n.

Note that, for each 0 ≤ i < n, h|fi(I) is given by x 7→ ⟨f−1
i (x), i⟩, and so h is an e-

embedding. We show (using Proposition 4.9) that h is an embedding (A, τ) ↪→ (A∗, τlex).
Fix x ∈ A. If x ∈ fi(I) with i > 0, then both x and h(x) are isolated, and hence not the

limit of any injective definable curve, so we may assume that x ∈ I. Let γ be an injective
definable curve in A that τ -converges to x. By o-minimality, γ is e-convergent. By the
fact that Ex = {fi(x) : 0 ≤ i < n} and Proposition 4.11(a), we have that γ necessarily
e-converges to some fi(x), from either the right or the left (see Remark 4.16). Since h
is an e-homeomorphism, h ◦ γ e-converges to ⟨x, i⟩. If γ e-converges from the left, then,
by Remark 4.16, it must be that fi(x) ∈ Lx. In this case it follows from (6.1) that fi is
increasing, and consequently h ◦ γ also e-converges to ⟨x, i⟩ from the left, and therefore (by
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Remark 6.8), h ◦ γ converges in (A∗, τlex) to ⟨x, 0⟩ = h(x). Similarly, if γ e-converges from
the right, then it must be that fi(x) ∈ Rx, and so, by (6.1), fi is decreasing, and thus h ◦ γ
again e-converges to ⟨x, i⟩ from the left, so again it converges in (A∗, τlex) to ⟨x, 0⟩ = h(x).
Conversely, let γ′ ⊆ h(A) be an injective definable curve converging in (A∗, τlex) to ⟨x, 0⟩, in

which case it must e-converge from the left to some ⟨x, i⟩ (see Remark 6.8). We may assume
that γ′ ⊆ I×{i}, for some 0 ≤ i < n (see Remark 2.10). Note that h−1 ◦γ′ = fi ◦π ◦γ′. If fi
is increasing, then, by (6.1), fi(x) ∈ Lx, and moreover h−1 ◦ γ′ e-converges to fi(x) from the
left, so it τ -converges to x (see Remark 4.16). Similarly, if fi is decreasing, then, by (6.1),
fi(x) ∈ Rx, and moreover h−1 ◦ γ e-converges to fi(x) from the right, so again it τ -converges
to x.

Case 2: [x]E = {x} and x ∈ Rx \ Lx for every x ∈ I.
This case is very similar to Case 1, so we only indicate here the key details and requisite

changes. As in Case 1, it holds that Ex = [x] = {fi(x) : 0 ≤ i < n} for every x ∈ I, and
every point y ∈ A \ I is τ -isolated. On the other hand, in this case we have the following
two equivalences arising from Lemma 4.19. For every 0 ≤ i < n and x ∈ I,

fi(x) ∈ Rx ⇔ fi is increasing,

fi(x) ∈ Lx ⇔ fi is decreasing.
(6.2)

We let A∗ = I × {0, . . . , n} and let h : A → A∗ be the definable injection given by
h(fi(x)) = ⟨x, n − i⟩, for x ∈ I and 0 ≤ i < n. Again, this is clearly an e-embedding. It
can be shown that h : (A, τ) ↪→ (A∗, τlex) is an embedding by analogy to Case 1. That is,
we fix x ∈ I and a definable curve γ in A that τ -converges to x. Then we observe that γ
e-converges to some fi(x) and h ◦ γ e-converges to h(fi(x)) = ⟨x, n− i⟩. Finally, we consider
separately the cases where γ e-converges to fi(x) from the left and from the right and show,
using (6.2) together with Remarks 4.16 and 6.8, that in both cases h◦γ converges in (A∗, τlex)
to h(x). The converse, i.e. the case of a definable curve γ′ in h(A), may be similarly argued
by analogy to Case 1.

Case 3: n > 1, [x]E = {x, fn−1(x)} and x ∈ Lx \Rx for every x ∈ I.
In this case we have that, by Lemma 6.5(c), for every x ∈ I it holds that Ex = Efn−1(x) =

[x] = {fi(x) : 0 ≤ i < n}. Moreover, every point y ∈ A \ (I ∪ fn−1(I)) satisfies that
Ey = ∅ and so (by Lemma 4.18) is τ -isolated. Furthermore, by Hausdorffness of τ (see
Proposition 4.14(c)), it holds that, for every 0 ≤ i < n and x ∈ I, exactly one of the
following two possibilities is satisfied:

fi(x) ∈ Rx ∩ Lfn−1(x);

fi(x) ∈ Rfn−1(x) ∩ Lx.
(6.3)

Let A∗ = I × {0, . . . , n − 1}, and let h : A → A∗ be defined in a similar manner to Case
1, namely by h(fi(x)) = ⟨x, i⟩, for every x ∈ I and 0 ≤ i < n. In this case, h : A → A∗ is
a bijection. We show that h is a homeomorphism (A, τ) → (A∗, τlex), by showing that an
injective definable curve γ in A τ -converges to a point y ∈ A if and only if h◦γ τlex-converges
to h(y).

We fix y ∈ A. The case y ∈ fi(I), for 0 < i < n− 1, is as usual trivial, since in this case
both y and h(y) are isolated in their respective spaces. If y ∈ I, then the required statement
in that case follows from the corresponding argument in Case 1.

Therefore, suppose that y ∈ fn−1(I). Let x ∈ I be such that y = fn−1(x). Let γ be an
injective definable curve in A τ -converging to y. Using that Ey = {fi(x) : 0 ≤ i < n} and
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following the arguments in Case 1, we observe that γ e-converges to some fi(x). Since h is
an e-homeomorphism, h ◦ γ e-converges to ⟨x, i⟩, a priori from either the right or from the
left (see Remark 4.16). However, if h ◦ γ e-converges to ⟨x, i⟩ from the left – converging thus
in (A∗, τlex) to ⟨x, 0⟩ (by Remark 6.8) – then, by continuity of h−1 at h(x) = ⟨x, 0⟩ (i.e. using
that the statement is already established for all points in I), it must be that h−1 ◦ h ◦ γ = γ
τ -converges to x, a contradiction (by Hausdorffness of τ). So h ◦ γ must e-converge to ⟨x, i⟩
from the right, meaning that it converges in (A∗, τlex) to ⟨x, n− 1⟩ = h(y) (see Remark 6.8).
Conversely, let γ′ be an injective definable curve converging in (A∗, τlex) to h(y) = ⟨x, n−1⟩.

Then it e-converges to some ⟨x, i⟩, meaning that h−1 ◦ γ′ e-converges to fi(x). If h−1 ◦ γ′

does not τ -converge to y then, by (6.3) and Remark 4.16, it τ -converges to x, but then, by
continuity of h at x, it follows that γ′ converges in (A∗, τlex) to h(x) = ⟨x, 0⟩, a contradiction.
So h−1 ◦ γ′ τ -converges to y.

Case 4: n > 1, [x]E = {x, fn−1(x)} and x ∈ Rx \ Lx for every x ∈ I.
Again let A∗ = I × {0, . . . , n− 1}, and now let h : A → A∗ be given in a similar manner

to Case 2, namely by h(fi(x)) = ⟨x, n − 1 − i⟩. Note that h is again a bijection. Moreover
we may again in this case show that h : (A, τ) → (A∗, τlex) is a homeomorphism.
The proof of (3) here follows from the proofs of the other cases. The argument in Case 2

shows that, for any x ∈ A\fn−1(I), both h and h−1 are continuous at x and h(x) respectively.
Then, for the points in fn−1(I), one may use an argument analogous to the one in Case 3.

Case 5: x ∈ Rx ∩ Lx for every x ∈ I.
Set A∗ = I ×{0, . . . , n− 1} and let h : A → A∗ be given by h(fi(x)) = ⟨x, i⟩. This map is

clearly bijective. We show that it is a homeomorphism (A, τ) → (A∗, τAlex).
If there exists 0 < i < n and x ∈ I such that Efi(x) ̸= ∅, we must have, by Lemma 6.5(c),

that Efi(x) = [fi(x)] = [x], and in particular x ∈ Rfi(x) ∪ Lfi(x), which contradicts Haus-
dorffness (Proposition 4.14(c)) and the fact that x ∈ Rx ∩ Lx. Thus, for every x ∈ I and
0 < i < n, we have Efi(x) = ∅, meaning that the point fi(x) is τ -isolated. Moreover, by
definition of the topology τAlex, the points ⟨x, i⟩ for x ∈ I and 0 < i < n are isolated in
(A∗, τAlex).

Applying Lemma 4.19, we note that, for every x ∈ I, it follows from x ∈ Rx ∩ Lx that
fi(x) ∈ Rx ∩ Lx, for every 0 ≤ i < n. Furthermore, by Lemma 6.5(c), we have that
Rx = Lx = {fi(x) : 0 ≤ i < n}. Consequently, for any x ∈ I, any injective definable
curve converges in (A, τ) to x if and only if it e-converges to some fi(x) (see Remark 4.16).
Similarly, any injective definable curve converges in (A∗, τAlex) to ⟨x, 0⟩ if and only if it e-
converges to some ⟨x, i⟩ (see Remark 6.8). Thus the result follows from the fact that h is a
e-homeomorphism, which is clear from the definition.

This covers all possible cases for A, and thus completes the proof of the lemma. □

We may now prove Theorem 6.3.

Proof of Theorem 6.3. Let X be a partition of X as given by Lemma 6.6 and, for each
A ∈ Xopen, let A

∗, hA and τA be as given by Lemma 6.9.
Set h :=

⋃
{hA : A ∈ Xopen}. By Lemma 6.9(1), h is an injection

⋃
Xopen →

⋃
A∈Xopen

A∗.
Let

Y =
⋃

{A ∈ Xopen : (A∗, τA) = (A∗, τlex) ̸= (A∗, τAlex)}

and

Z =
⋃

{A ∈ Xopen : (A∗, τA) = (A∗, τAlex)}.
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By construction, these sets are disjoint, τ -open and definable, and X \ (Y ∪ Z) is finite.
Set Y ∗ :=

⋃
{A∗ : A ∈ Xopen, A ⊆ Y } and Z∗ :=

⋃
{A∗ : A ∈ Xopen, A ⊆ Z}. We claim

that h|Y : (Y, τ) → (Y ∗, τlex) and h|Z : (Z, τ) → (Z∗, τAlex) are embeddings. We show that
this claim holds by noting that we may decompose the maps into embeddings between open
subspaces of their domains and codomains.

Recall that, by Lemma 6.9(1), for each A ∈ Xopen, the set A
∗ is of the form I×{0, . . . ,m},

for some m and interval I ⊆ A. It follows that, for each A ∈ Xopen, if A ⊆ Z, then A∗ is open
in (Z∗, τAlex). Similarly, if A ⊆ Y , then A∗ is open in (Y ∗, τlex), and the subspace topology
on A∗ is precisely the topology induced by the lexicographic order on A∗. The claim then
follows from Lemma 6.9(3).

Finally, if Y ̸= ∅, then let nY = max{n : (R×{n})∩Y ∗ ̸= ∅}. It is easy to see that the map
on Y ∗ given by ⟨x,m⟩ 7→ ⟨x, nY ⟩, if m = max{m′ : ⟨x,m′⟩ ∈ Y ∗}, and the identity otherwise
is a definable embedding (Y ∗, τlex) ↪→ (R×{0, . . . , nY }, τlex). Hence we conclude that (Y, τ)
embeds definably into (R × {0, . . . , nY }, τlex). Furthermore, we may define nZ analagously
to nY , and then h|Z is clearly a definable embedding (Z, τ) ↪→ (R× {0, . . . , nZ}, τAlex). □

Remark 6.10. If R expands an ordered field, then, by Remark 4.6, Theorem 6.3 applies
to all T3 one-dimensional spaces. Otherwise, the theorem and its proof may be rewritten to
apply to one-dimensional spaces as follows.

Let (X, τ) be a T3 one-dimensional definable topological space. In the context of
Remark 4.22, one may prove analogues of Lemmas 6.4 and 6.5, and reach a partition
X = Xopen∪Xsgl ofX analogous to the one described in Lemma 6.6. Then, analogously to the
proof of Lemma 6.9, it is possible to show that, for any A ∈ Xopen, there exists some m ≥ 0,
an interval I, and a definable embedding hA : (A, τ) ↪→ (A∗, τA), where A

∗ = I×{0, . . . ,m},
and τA ∈ {τlex, τAlex}. We may then derive that X has a cofinite subset that is definably
homeomorphic to the disjoint union of finitely many spaces of the form (R×{0, . . . ,m}, τlex)
or (R× {0, . . . ,m}, τAlex), for various m.

In [33], Ramakrishnan shows that, if R has definable choice and defines an order-reversing
injection (e.g. if R expands an ordered group), then every definable linear order definably
embeds into (Rn, <lex), for some n. In particular, under these assumptions, for any definable
order topological space one may assume that, up to definable homeomorphism, the topology
is induced by the lexicographic order. Theorem 6.3 adds to the understanding of T3 definable
spaces in the line by describing how the τAlex topology also plays a role describing them. We
complete this picture with the next proposition.

Proposition 6.11. For any interval I and any n > 0, the space (I × {0, . . . , n}, τAlex) does
not definably embed into a definable order topological space.

Proof. It suffices to prove the propostion for n = 1. Towards a contradiction, assume that
there exists an interval I and one such embedding from (I × {0, 1}, τAlex) into a definable
topological space (X, τ), where τ is given by a definable linear order ⪯. Let Y denote the
image of the aforementioned embedding.

We begin by observing that any clopen definable subset of (I×{0, 1}, τAlex) is either finite
or cofinite. We then complete the proof by contradiction by showing that (Y, τ) contains an
infinite coinfinite definable clopen subset.

Let Z ⊆ I ×{0, 1} denote a τAlex-clopen definable subset. Note that, by o-minimality, the
subspace (I×{0}, τAlex) = (I×{0}, τe) is definably connected, and so it must be that either
Z ∩ (I × {0}) = ∅ or Z ∩ (I × {0}) = I × {0}. We show that in the first case Z is finite and
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in the second it is cofinite. By passing from Z to (I × {0, 1}) \ Z in the first case it suffices
to prove the second case. By o-minimality, in order to prove that Z is cofinite it suffices to
show that it contains a point in every set of the form J × {i} for any interval J ⊆ I and
i ∈ {0, 1}. However, this follows directly from the condition Z ∩ (I × {0}) = I × {0}, and
the fact that Z is open in (I × {0, 1}, τAlex).

We now show that (Y, τ) contains an infinite coinfinite definable clopen subset. Let Y1 =
{x ∈ Y : (x,+∞)⪯ ∩ Y is finite}. Since the intervals (x,+∞)⪯ are nested note that, by
uniform finiteness, the set Y1 is finite. Similarly the set Y2 = {x ∈ Y : (−∞, x)⪯∩Y is finite}
is also finite.

Since (Y, τ) is homeomorphic to (I × {0, 1}, τAlex) and all the points in I × {1} are τAlex-
isolated, it follows that (Y, τ) has infinitely many isolated points. Let us fix x ∈ Y , an
isolated point in (Y, τ) that does not belong in Y1 ∪ Y2. There must exist y ≺ z in X such
that

(y, z)⪯ ∩ Y = {x}.
It follows that the set (x,+∞)⪯ ∩ Y = [z,+∞)⪯ ∩ Y is clopen in (Y, τ). Since x /∈ Y1 ∪ Y2,
then this set is also infinite and coinfinite in Y , the desired contradiction. □

Finally, the next corollary of Theorem 6.3 implies that, for any T3 definably separable
definable topological space (X, τ), where X ⊆ R, there exists a cofinite subset Y ⊆ X such
that τ |Y is induced by a definable linear order.

Corollary 6.12. Let (X, τ), X ⊆ R, be a regular Hausdorff definable topological space.
If (X, τ) is definably separable, then there exists a cofinite subset Y ⊆ X, a definable set
Y ∗ ⊆ R× {0, 1} and a definable embedding (Y, τ) → (Y ∗, τlex).

Proof. Let X be a finite partition of X as given by Lemma 6.6 and, for each A ∈ Xopen,
let A∗ and hA be as given by Lemma 6.9. Our aim is to show that, under the additional
assumption that (X, τ) is definably separable, the construction in these lemmas yields that,
for every A ∈ Xopen, we have that A∗ ⊆ R × {0, 1} and (A∗, τA) = (A∗, τlex). We will then
let Y =

⋃
Xopen and Y ∗ =

⋃
{A∗ : A ∈ Xopen}. Following the proof of Theorem 6.3, Y is

cofinite and h =
⋃
{hA : A ∈ Xopen} is an embedding (Y, τ) ↪→ (Y ∗, τlex).

If (X, τ) is definably separable, then it can have only finitely many isolated points. Fol-
lowing Lemma 6.6, fix A =

⋃
0≤i<n fi(I) ∈ Xopen. For every x ∈ I and 0 < i < n − 1, the

point fi(x) is τ -isolated. It follows that we must have n ≤ 2. Similarly, for every x ∈ I,
it must be that [x]E = {x, fn−1(x)}, since otherwise Ey = ∅ (i.e. y is τ -isolated), for every
y ∈ fn−1(I).

If n = 1, this is considered in Cases 1, 2 and 5 in the proof of Lemma 6.9. In Cases 1
and 2, A∗ = I × {0, 1} and (A∗, τA) = (A∗, τlex). In Case 5, we have that A∗ = I × {0} and
(A∗, τA) = (A∗, τAlex), and in this case (A∗, τAlex) = (A∗, τe) = (A∗, τlex). If n = 2, this is
considered in Cases 3 and 4 in the proof of Lemma 6.9. In both of these cases, we have that
A∗ = I × {0, 1} and (A∗, τA) = (A∗, τlex). □

7. Some universality results

In this section, we consider universality questions in the o-minimal definable setting, build-
ing on results from the previous two sections. This will also lead us to introduce several key
concepts that will be important for the results in subsequent sections.

The main type of question that we examine here is the following. Given a certain class of
definable topological spaces C, is there a topological space (X, τ) that is universal for C in
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a definable sense, i.e. such that every space in C embeds definably into (X, τ)? Moreover,
is there such a universal space that lies within the given class C itself? We also consider a
closely related property, which is natural to consider in the context of o-minimality, that we
call ‘almost definable universality’. Our analysis is very much in the spirit of universality
questions considered in the classical study of Banach spaces, where there is an extensive
literature on universal spaces for classes of separable Banach spaces, going back to the
classical Banach–Mazur Theorem [8] (see for example [35], [10], [9], [27], [11]). This question
has also classically been studied in the context of topological spaces, where results of this
kind include the Menger–Nöbeling Theorem [24, Theorem V.2], which states that (R2n+1, τe)
is universal for the class of all n-dimensional compact metric spaces.

We begin with the main definitions.

Definition 7.1. Let C be a class of definable topological spaces and let (X, τ) be a definable
topological space. We say that (X, τ) is definably universal for C if every space (Y, µ) ∈ C
embeds definably into (X, τ).

We say that (X, τ) is almost definably universal for C if, for every (Y, µ) ∈ C, there exists
a definable subset Z ⊆ Y with dim(Y \ Z) < dimY such that (Z, µ) embeds definably into
(X, τ).

Note that, if a space is definably universal for a class, then in particular it is almost
definably universal.

We begin by observing how o-minimality implies that, if R expands an ordered field, then
Rn is almost definably universal for the class of euclidean spaces of dimension at most n.
An analogous result can be proved for the class of bounded euclidean spaces of dimension at
most n when R expands an ordered group, using the observations in Remark 4.6. Moreover,
a slight weakening of the result can also be obtained in the most general case, which we
discuss below in Remark 7.3.

Proposition 7.2. Suppose that R expands an ordered field and n > 0. Then (Rn, τe) is
almost definably universal for the class of euclidean spaces of dimension less than or equal
to n.

Proof. Let (X, τe) be a euclidean space. We prove the case dimX = n. The case dimX = m,
with 1 ≤ m < n, then follows by the easy fact that, for any suchm, the space (Rm, τe) embeds
definably into (Rn, τe), while in the case dimX = 0, i.e. where X is finite, (X, τe) clearly
embeds definably into (Rn, τe).

Applying Remark 4.6, let (Y, µ) denote the push-forward of (X, τe) into Rn by some
definable injection f : X → Rn. We prove that (Y, µ) contains a definable subspace Z ⊆ Y ,
with dim(Y \ Z) < dimY , where the subspace topology is euclidean.

Observe that, by o-minimal cell decomposition applied to f and f−1, the function
f is a finite union of definable e-homeomorphisms. It follows that Y can be parti-
tioned into finitely many cells D where the subspace topology is euclidean (this is the
property discussed in Section 9 of being ‘cell-wise euclidean’; see Definition 9.3). Let
Z =

⋃
{intµD : D ∈ D, dimD = n}. Note that, since (Y, µ) is the push-forward of a eu-

clidean space, it has the frontier dimension inequality. It follows that dim(Y \ Z) < dimY .
Note that, since any cell of dimension n is e-open, we have that, for any D ∈ D with
dimD = n, the set intµD is e-open, as well as µ-open, in Z. Moreover the subspace topol-
ogy on intµD is euclidean. We conclude that the subspace topology on Z is euclidean. □
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Remark 7.3. In the general case where R does not necessarily expand an ordered field one
may still adapt the proof of Proposition 7.2 to show that, if (X, τ) is a euclidean space of
dimension n with cell decomposition D, then the union Z of the interiors in X of cells in D
of dimension n embeds definably into finitely many disjoint copies of Rn (one for each cell).
It follows that the space (Rn+1, τe) is almost definably universal for the class of euclidean
spaces of dimension at most n.

The question of definable universality (as opposed to almost definable universality) for
euclidean spaces is less straightforward. Walsberg has announced to the authors (through
private correspondence) that he and C. Miller have obtained a definable version of the
classical Menger–Nöbeling Theorem which implies that, whenever R expands an ordered
field, any euclidean space of dimension n embeds definably into (R2n+1, τe).

We now illustrate how results from previous sections can be used to derive o-minimal
definable universality results. To begin, we show that Theorem 6.3 may be framed in terms
of existence of an almost definably universal space as follows.

Corollary 7.4. The disjoint union of (R × [0, 1], τlex) and (R × [0,∞), τAlex) is Hausdorff,
regular and almost definably universal for the class of Hausdorff regular definable topological
spaces (X, τ), where X ⊆ R.

Proof. It is easy to observe that the spaces (R×[0, 1], τlex) and (R×[0,∞), τAlex) are Hausdorff
and regular, from where it follows that their disjoint union is too.

Let (X, τ), where X ⊆ R, be a regular Hausdorff definable topological space. By
Theorem 6.3, there exist definable disjoint open sets Y, Z ⊆ X and nY > 0 such that
X \ (Y ∪ Z) is finite and there are definable embeddings (Y, τ) ↪→ (R × {0, . . . , nY }, τlex)
and (Z, τ) ↪→ (R × [0,∞), τAlex). Hence it suffices to show that, for any n > 0, there
exists a definable embedding (R × {0, . . . , n}, τlex) ↪→ (R × [0, 1], τlex). Fix parameters
0 = a0 < a1 < · · · < an = 1. Then the map given by ⟨x, i⟩ 7→ ⟨x, ai⟩ does the job. □

In the specific case of spaces in the line that embed definably into definable order topo-
logical spaces we may refine the above corollary as follows.

Corollary 7.5. The disjoint union of (R× [0, 1], τlex) and (R, τe), with topology given by the
lexicographic order, is almost definably universal for the class of definable topological spaces
(X, τ), with X ⊆ R, that embed definably into a definable order topological space.

Proof. Let (X, τ), with X ⊆ R, be a definable topological space that embeds definably
into a definable order topological space. Observe first that, since order topological spaces
are Hausdorff and regular and these properties are hereditary, then (X, τ) is Hausdorff and
regular. Now note that, in this case, by Proposition 6.11, the partition X of X described
in Lemmas 6.6 and 6.9 is such that, for every A ∈ Xopen, the space (A∗, τA) described in
Lemma 6.9 satisfies τA = τAlex if and only if A∗ = I × {0}, for some interval I ⊆ X (see the
cases in the proof of Lemma 6.9). Following the proof of Theorem 6.3, we derive that there
exist disjoint definable τ -open sets Y, Z ⊆ X, whose union is cofinite in X, and some nY

such that (Y, τ) embeds definably into (R × {0, . . . , nY }, τlex) and (Z, τ) embeds definably
into (R × {0}, τAlex) = (R × {0}, τe). The proof then concludes in a similar manner to the
proof of Corollary 7.4. □

From now on, we let CT3
dim1 denote the class of one-dimensional regular Hausdorff definable

topological spaces.
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Remark 7.6. If R expands an ordered field then, by Remark 4.6, the space described in
Corollary 7.4 is almost definably universal for CT3

dim1.

In general, recall that Remark 6.10 states that any space in CT3
dim1 can be partitioned

into finitely many points and open subsets each definably homeomorphic to some set R ×
{0, . . . , n − 1} with either the τlex or τAlex topology, for various n. Consequently, following
the arguments in the proof of Corollary 7.4, one may show that a space given by infinitely
many copies of (R × [0, 1], τlex) and (R × [0,∞), τAlex) is almost definably universal for
CT3
dim1. Such a space exists as a three-dimensional space. That is, consider (X, τ), where

X = ((−∞, 0)×R× [0, 1])∪ ([0,∞)×R× [0,∞)). Then let τ be the topology such that, for
every t ∈ R, the fiber of X, which is given by either {t} × R × [0, 1] or {t} × R × [0,∞), is
open and its projection to the last two coordinates is a homeomorphism onto (R× [0, 1], τlex)
or (R× [0,∞), τAlex) respectively.

Using Corollary 7.5, as well as Remark 6.10 and Proposition 6.11, one may analogously
identify an almost definably universal space specifically for the class of one-dimensional
definable topological spaces that embed definably into a definable order topological space.
Such a space can be found that is two-dimensional if R expands an ordered field, and three-
dimensional in general.

Note that Proposition 7.2 states that, when R expands an ordered field, the class of
euclidean spaces of dimension at most n contains an almost definably universal space for
itself (namely (Rn, τe)). On the other hand, the space described in Corollary 7.4, which, by
Remark 7.6, is almost definably universal for CT3

dim1 whenever R expands an ordered field,

is two-dimensional, and so it does not belong in CT3
dim1. In light of these results, and in the

context of the classical literature on universal Banach spaces mentioned at the start of the
section, it is natural to ask if, in the case that R expands an ordered field, there exists a
space (X, τ) ∈ CT3

dim1 that is almost definably universal for CT3
dim1, as well as to ask more

generally which classes of spaces admit an almost definably universal space, and when does
the space belong in the class.

We first answer the question regarding the class CT3
dim1 negatively and then derive, from

Theorem 5.9 and Corollary 6.12, positive answers for two other classes of one-dimensional
spaces.

Proposition 7.7. There does not exist a T1 one-dimensional definable topological space
(X, τ) that is almost definably universal for CT3

dim1.

In order to prove the proposition we first introduce a notion of equivalence for curves and
some preliminary results.

Lemma 7.8. Let γ : (a, b) → Rn and γ′ : (a′, b′) → Rn be two definable curves, with
convergence endpoints c ∈ {a, b} and c′ ∈ {a′, b′} respectively. For any s, t ∈ R±∞, let I(s, t)
denote the interval with endpoints s and t. The following are equivalent.

(a) For any a < t < b and a′ < t′ < b′, it holds that γ(I(c, t)) ∩ γ(I(c′, t′)) ̸= ∅.
(b) For any a < t < b, there exists some a′ < t′ < b′ such that γ′(I(c′, t′)) ⊆ γ(I(c, t)).
(c) For any a′ < t′ < b′, there exists some a < t < b such that γ(I(c, t)) ⊆ γ′(I(c′, t′)).
(d) For any definable topological space (X, τ) with γ[(a, b)] ∪ γ′[(a′, b′)] ⊆ X ⊆ Rn, and any

x ∈ X, it holds that γ τ -converges to x if and only if γ′ τ -converges to x.
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Proof. It is easy to see that (b) ∨ (c) ⇒ (a). Similarly, one may easily check, using the
definition of curve convergence (Definition 2.9), that (b) ∧ (c) ⇒ (d). We show that (a) ⇒
(b) ∧ (c) and (d) ⇒ (a).

Proof of (a) ⇒ (b) ∧ (c).
By symmetry of the statements (b) and (c) it suffices to show that (a) ⇒ (b). Hence

suppose that (a) holds, and let us fix some a < t < b. Consider the definable set J of all
a′ < s′ < b′ such that γ′(s′) ∈ γ(I(c, t)). By o-minimality, there exists some a′ < t′ < b′

such that either I(c′, t′) ⊆ J or I(c′, t′) ∩ J = ∅. In the second case however we have that
γ′(I(c′, t′)) ∩ γ(I(c, t)) = ∅, contradicting (a). So I(c′, t′) ⊆ J , meaning that γ′(I(c′, t′)) ⊆
γ(I(c, t)).

Proof of (d) ⇒ (a).
By contraposition, assume that there exists some a < t < b and a′ < t′ < b′ such that

γ(I(c, t)) ∩ γ′(I(c′, t′)) = ∅. In particular, we have that γ′(I(c′, t′)) ⊊ Rn. Fix any point
x ∈ Rn \ γ′(I(c′, t′)). Consider the definable topology τ on Rn where every point in Rn \ {x}
is isolated, and a basis of open neighbourhoods for x is given by the definable family of sets
{{x} ∪ γ(I(c, s)) : a < s < b}. Clearly γ τ -converges to x but γ′ does not, i.e. we reach the
negation of (d). □

Definition 7.9. Let (X, τ) be a definable topological space. We say that two definable
curves γ : (a, b) → X and γ′ : (a′, b′) → X, with fixed convergence endpoints c ∈ {a′, b′}
and c′ ∈ {a, b} respectively, are equivalent if any of the equivalent conditions in Lemma 7.8
holds.

It is easy to check that two injective definable curves in R are equivalent if and only if
they e-converge to the same point in R±∞ from the same side, i.e. from left or right (see
Remark 4.16).

Definition 7.10. Let (X, τ) be a definable topological space. For any x ∈ X, let n(x,X, τ)
(n(x) for short, when the underlying topological space (X, τ) is clear from the context)
denote the maximum cardinality of a set of non-equivalent definable curves (together with
fixed convergence endpoints) in X τ -converging to x.

Let n(X, τ) (n(X) for short) be defined to be sup{n(x) : x ∈ X}.

Example 7.11. For any n and 1 ≤ i ≤ n, let L(i) denote the line

{0} × i−1· · · × {0} ×R× {0} × n−i· · · × {0},
where R is in the i-th coordinate position. Consider the euclidean space X =

⋃
1≤i≤n L(i) ⊆

Rn. For any s, t ∈ R±∞, let I(s, t) denote the interval with endpoints s and t. Observe that,
by o-minimality, a definable curve γ : (a, b) → X, with convergence endpoint c ∈ {a, b},
e-converges to the point ⟨0, . . . , 0⟩ ∈ Rn if and only if there exists some 1 ≤ i ≤ n and
a < t < b such that γ(I(c, t)) ⊆ L(i), and moreover the composition πi ◦ γ, where πi denotes
the projection to the i-th coordinate, e-converges (as t tends to c) to 0, from either the left
or the right. One may derive from this that n(⟨0, . . . , 0⟩, X, τe) = 2n.

Remark 7.12. If dimX ≤ 1 and (X, τ) is T1, then one may easily check that n(x) =
1+ |Rx|+ |Lx|, for every x ∈ X, using Remarks 4.16 and 4.22, as well as the fact that, by T1-
ness, for any x ∈ X, there is only one eventually constant definable curve (up to equivalence)
that τ -converges to x. By Lemma 4.5, Proposition 4.14 (a) and (b), and uniform finiteness,
it follows that n(X) < ω.
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Lemma 7.13. Let f : (X, τ) → (Y, µ), be a continuous injective definable map between
definable topological spaces. For any x ∈ X, it holds that n(x) ≤ n(f(x)). In particular,
n(X) ≤ n(Y ).

Proof. By Proposition 4.9, if γ and γ′ are two definable curves τ -converging to x (with
convergence endpoints c and c′, respectively) then f ◦ γ and f ◦ γ′ (with the same respective
convergence endpoints, namely c and c′) µ-converge to f(x). It therefore suffices to show that
if γ and γ′ are non-equivalent then f ◦γ and f ◦γ′ (taken with the corresponding convergence
endpoints) are non-equivalent. This however follows easily from the characterization of curve
equivalence given by Lemma 7.8 (a) and the injectivity of f . □

Remark 7.14. Some observations can be derived from Lemma 7.13 regarding the exis-
tence of definably universal spaces. Recall that in Example 7.11 we define, for every n,
a one-dimensional set X ⊆ Rn such that n(⟨0, . . . , 0⟩, X, τe) = 2n. By Lemma 7.13 and
Remark 7.12, it follows that there does not exist a one-dimensional T1 definable topological
space that is definably universal for the class of all one-dimensional euclidean spaces, and in
particular neither for CT3

dim1.

We may now prove Proposition 7.7.

Proof of Proposition 7.7. Let Y = R×{0, . . . , n− 1} and consider the space (Y, τlex), which
belongs to CT3

dim1. If, for every 0 ≤ i < n, we identify the subspace R × {i} with R through
the projection to the first coordinate (see Remark 4.22) then, for any x ∈ R, it holds that
L⟨x,0⟩ = {⟨x, 0⟩, . . . , ⟨x, n− 1⟩} and R⟨x,0⟩ = ∅. So n(⟨x, 0⟩) = n, and in fact it can easily be
shown that n(Y ) = n. Moreover note that, for any cofinite subset Y ′ ⊆ Y , it still holds that
n(Y ′) = n, since we may always find an interval I ⊆ R such that I × {0, . . . , n− 1} ⊆ Y ′.
Suppose that (X, τ) is a T1 one-dimensional definable topological space that is almost

definably universal for CT3
dim1. Since (X, τ) is T1, we have n(X) < ω (see Remark 7.12).

However, by Lemma 7.13 and the above observation, we have that n(X) ≥ n for every n, a
contradiction. □

The same proof would still have worked if we had considered the space (R × {0, . . . , n −
1}, τAlex) in place of (R × {0, . . . , n − 1}, τlex). Ultimately, one may show that there exists
no one-dimensional definable topological space that is almost definably universal for either
of the following two classes: all one-dimensional spaces with the τlex topology and all one-
dimensional spaces with the τAlex topology.

It is our belief that Proposition 7.7 can likely be improved by dropping the condition of
being T1. In other words, we believe that the following question has a negative answer:

Question 7.15. Is there a one-dimensional definable topological space (which is necessarily
not T1 by Proposition 7.7) that is almost definably universal for CT3

dim1?

As a counterpoint to Proposition 7.7, Theorem 6.3 – more specifically, Corollary 6.12 –
and Theorem 5.9 do yield the existence of two classes of one-dimensional spaces, each of
which contains a space that is almost definably universal for itself, as shown by the following
corollaries (see also Remark 7.18).

Let CT3, sep
dim1 denote the class of Hausdorff regular definably separable one-dimensional

spaces.
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Corollary 7.16. The disjoint union of (R, τe) and (R × {0, 1}, τlex) is Hausdorff, regular,
definably separable and almost definably universal for the class of Hausdorff, regular, definably
separable spaces (X, τ), where X ⊆ R.

It follows that, whenever R expands an ordered field, the class CT3, sep
dim1 contains an almost

definably universal space.

Proof. The second paragraph of the corollary follows from the first by direct application of
Remark 4.6. We prove the first paragraph.

Since (R, τe) and (R × {0, 1}, τlex) are regular, Hausdorff and definably separable (see
Lemma 2.7 and Proposition 2.8(a)) their disjoint union is too.

By Corollary 6.12, it suffices to show that, for any definable set X ⊆ R × {0, 1}, there
exists a cofinite subspace Y of (X, τlex) that embeds definably into the disjoint union of
(R, τe) and (R× {0, 1}, τlex).

We partition X ⊆ R × {0, 1} as follows. Let X1 = {⟨x, i⟩ ∈ X : ⟨x, 1 − i⟩ /∈ X} and
X2 = X \ X1. By o-minimality, there exists a partition X of a cofinite subset of X with
the following properties. For every A ∈ X , there exists an interval I ⊆ R such that either
A = I × {i}, for some i ∈ {0, 1}, and A ⊆ X1, or A = I × {0, 1} (and so A ⊆ X2). Let
X1 = {A ∈ X : A ⊆ X1} and X2 = X \ X1.
Note that every A ∈ X is open in (X, τlex), and that the subspace topology on A cor-

responds precisely to the lexicographic order topology on A. If A ⊆ X1, then the projec-
tion ⟨x, i⟩ 7→ x is an open embedding (A, τlex) ↪→ (R, τe), and otherwise the identity is an
open embedding (A, τlex) ↪→ (R × {0, 1}, τlex). Hence the projection to the first coordi-
nate is an open embedding (

⋃
X1, τlex) ↪→ (R, τe) and the identity is an open embedding

(
⋃

X2, τlex) → (R× {0, 1}, τlex), which completes the proof. □

Finally, we consider the class of one-dimensional Hausdorff definable topological spaces
satisfying the frontier dimension inequality (fdi; see Definition 4.23), which we denote CT2, fdi

dim 1 .
By Proposition 4.24, we know that these spaces are regular. We show that, whenever R
expands an ordered field, the class contains an almost definably universal space. This is a
corollary of Theorem 5.9.

Corollary 7.17. The disjoint union of the spaces (R, τe), (R, τr), (R, τl) and (R, τs) is
Hausdorff, satisfies the frontier dimension inequality, and is almost definably universal for the
class of Hausdorff definable topological spaces (X, τ) with the frontier dimension inequality,
where X ⊆ R.
It follows that, whenever R expands an ordered field, the class CT2, fdi

dim1 contains an almost
definably universal space.

Proof. As in the proof of Corollary 7.16, the second paragraph of the corollary follows from
the first by direct application of Remark 4.6. We prove the first paragraph.

Since the spaces (R, τe), (R, τr), (R, τl) and (R, τs) are Hausdorff and satisfy the fdi, their
disjoint union has these properties too.

We fix (X, τ), X ⊆ R, a Hausdorff definable space which satisfies the fdi. By Theorem 5.9,
there exists a finite partition X of X into points and intervals such that, for each I ∈ X ,
the subspace topology τ |I is one of τe, τr, τl or τs. Let X ′ be the subfamily of intervals
in X and let X ′ =

⋃
{intτI : I ∈ X ′}. By the fdi, the set X ′ is cofinite in X. Let

Xe = {x ∈ X ′ : x ∈ I ∈ X , (I, τ) = (I, τe)}. Then the identity is an open embedding
(Xe, τ) ↪→ (R, τe). By repeating this argument with the topologies τr, τl and τs, we may
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conclude that X ′ can be partitioned into four definable open subspaces on which the identity
is an embedding into one of (R, τe), (R, τr), (R, τl) or (R, τs). The corollary follows. □

Remark 7.18. Following Remarks 7.3 and 7.6, if R does not expand an ordered field, then
one may adapt the proof of Corollaries 7.16 and 7.17 to show the existence of two-dimensional
almost definably universal spaces for each of the classes CT3, sep

dim1 and CT2, fdi
dim 1 . More precisely,

any space containing infinitely many disjoint copies of (R, τe) and (R×{0, 1}, τlex) is almost

definably universal for CT3, sep
dim1 , and any space with infinitely many disjoint copies of the spaces

(R, τe), (R, τr), (R, τl) and (R, τs) is almost definably universal for CT2, fdi
dim 1 .

Note that, by Lemma 2.7 and o-minimality, any definable subspace of (R, τe) or (R ×
{0, 1}, τlex) is definably separable. By Corollary 7.16 and Remark 7.18, it follows that any

definable subspace of a space in CT3, sep
dim1 is also definably separable. In other words, definable

separability is a hereditary property for T3 one-dimensional spaces. Since being T3 is also a
hereditary property, we have that the class CT3, sep

dim1 is closed under passing to one-dimensional
definable subspaces.

8. Definable Hausdorff compactifications

In this section, we use the decomposition of T3 spaces described in Section 6 to address the
question of which definable topological spaces can be Hausdorff compactified in a definable
sense. Our main result (Theorem 8.6) shows that a Hausdorff definable topological space
in the line has a definable Hausdorff compactification of dimension at most one if and only
if it is T3. This result then generalizes to all one-dimensional definable topological spaces
(Remark 8.8).

Recall that a definable topological space is definably compact (Definition 2.11) if and only
if every definable curve in it converges. We present the following definition, and prove that
it characterizes the one-dimensional T3 spaces that can be definably one-point Hausdorff
compactified.

Definition 8.1. A definable topological space (X, τ), dimX ≤ 1, is definably near-compact
if, up to equivalence, there are only finitely many non-convergent definable curves in (X, τ).
Clearly definable compactness implies definable near-compactness. We say that a definable

topological space (X∗, τ ∗), X∗ ⊆ R, is a definable near-compactification of (X, τ) if (X∗, τ ∗)
is definably near-compact and there exists a definable embedding (X, τ) ↪→ (X∗, τ ∗).

We have the following characterization of definably near-compact definable topological
spaces in the line, which is a direct consequence of Remark 4.16, and can be seen as an
analogue of Lemma 4.17, a statement about definably compact spaces in the line.

Lemma 8.2. A definable topological space (X, τ), where X ⊆ R, is definably near-compact
if and only if the set (

⋃
x∈X Rx) ∩ (

⋃
x∈X Lx) is cofinite in cleX.

Remark 8.3. Note that, for any n and interval I, the spaces (I × {0, . . . , n}, τlex) and (I ×
{0, . . . , n}, τAlex) are definably near-compact, and furthermore they are definably compact if
and only if I is a closed interval. It follows that, if (X, τ), X ⊆ R, is a regular Hausdorff
definable topological space, then the embedding h : (Y ∪Z, τ) ↪→ (Y ∗∪Z∗, τlex|Y ∗ ∪ τAlex|Z∗)
described in the proof of Theorem 6.3 is a definable near-compactfication of a cofinite open
subspace of X.
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We extract the following observation from the proof of Lemma 6.9, which can be seen as
an improvement of Theorem 6.3 for T3 definably near-compact spaces in the line. We will
use this result in Section 9 (Corollary 9.7).

Lemma 8.4. Let (X, τ) be a regular Hausdorff definable topological space with X ⊆ R.
Let X be a finite partition of X as given by Lemma 6.6. For each A ∈ Xopen, let A

∗ and
hA : A → A∗ be as given by Lemma 6.9.
If (X, τ) is definably near-compact, then, for any A ∈ Xopen, the map hA is a bijection. In

particular, by Lemma 6.9(3), it is a definable homeomorphism (A, τ) → (A∗, µ), where µ is
one of τlex or τAlex.

Proof. Recall the proof by cases of Lemma 6.9. Let A =
⋃

0≤i<n fi(I). Observe that, by
Lemma 8.2, if (X, τ) is definably near-compact then, for all but finitely many x ∈ I, it holds
that x ∈ Ry ∩ Lz, where, by Lemma 6.5(b), y, z ∈ [x]E ⊆ {x, fn−1(x)}. It follows that, if
(X, τ) is definably near-compact, Cases 0, 1 and 2 in the proof of Lemma 6.9 are not possible.
In the remaining cases, the function hA defined is a bijection. □

In the context of Remark 6.10, Lemma 8.4 generalizes in the natural way to all T3 one-
dimensional spaces.

We now show that if a T3 one-dimensional space is definably near-compact then it can be
definably one-point Hausdorff compactified. The converse implication can also be derived,
from the observation that, given a Hausdorff definably compact definable topological space
(Xc, τ c), with dimXc = 1, and any point x ∈ Xc, by Lemmas 4.5 and 8.2 and Remark 4.22
the subspace (Xc \ {x}, τ c) is definably near-compact. We will use the following result to
show that T3 spaces in the line can be definably Hausdorff compactified (Theorem 8.6).

Proposition 8.5. Let (X, τ), dimX ≤ 1, be a regular Hausdorff definably near-compact
definable topological space. Then there exists a Hausdorff definably compact definable topo-
logical space (Xc, τ c) and a definable embedding h : (X, τ) ↪→ (Xc, τ c), where Xc \ h(X) is a
singleton.

If R expands the field of reals then we leave it to the reader to check that (Xc, τ c) is the
classical one-point compactification of (X, τ).

Proof of Proposition 8.5. We prove the lemma in the case where X ⊆ R. Given the assump-
tions in Remark 4.22, the proof adapts to a proof of the general case.

Let c = ⟨0, 1⟩ ∈ R2 and let Xc = (X×{0})∪{c}. Let h : X → Xc be given by x 7→ ⟨x, 0⟩,
and let τh be the push-forward topology of τ by h (see Definition 2.13). We will define τ c as
an extension of τh to a topology on Xc. If τ is definably compact then it clearly it suffices
to let τ c = τh ∪ {c}, and so we assume otherwise.
Set Rc := {x ∈ R±∞ \

⋃
x∈X Rx : ∃ y > x (x, y) ⊆ X} and Lc := {x ∈ R±∞ \

⋃
x∈X Lx :

∃ y < x (y, x) ⊆ X}. Set Ec := Rc ∪ Lc. Since (X, τ) is definably near-compact, Ec is finite,
by Lemma 8.2. Since, by assumption, (X, τ) is not definably compact, we also have that
Ec ̸= ∅. Let Rc = {y1, . . . , yn} and Lc = {z1, . . . , zm}, and let U(c) be the family of sets

U =
⋃

1≤i≤n

(yi, y
′
i) ∪

⋃
1≤j≤m

(z′j, zj)

definable uniformly over those parameters (y′1, . . . , y
′
n, z

′
1, . . . , z

′
m) ∈ Rn+m for which yi < y′i,

z′j < zj and moreover U ⊆ X.
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Let τ c be the definable topology with basis {(intτU × {0}) ∪ {c} : U ∈ U(c)} ∪ τh. It is
routine to check that this is a well-defined topology and that h : (X, τ) ↪→ (Xc, τ c) is an
embedding. Since (X, τ) is Hausdorff, by definition of U(c) and Lemma 4.18 it is immediate
that (Xc, τ c) is also Hausdorff. It remains to prove that it is definably compact.

Let γ′ be a definable curve in (Xc, τ c). We may assume that γ′ is injective and hence lies
in X ×{0}. Let γ = h−1 ◦ γ′. Let x0 ∈ R±∞ denote the limit of γ in the euclidean topology.
Since the remaining case is analogous, we consider only the case where γ e-converges to x0

from the right. Then clearly there must exist y > x0 such that (x0, y) ⊆ X. If x0 /∈ Rc, then
x0 ∈

⋃
x∈X Rx and so, by Remark 4.16, γ τ -converges to some x ∈ X, and it follows that γ′

τ c-converges to h(x).
Therefore, it remains to consider the case x0 ∈ Rc. We will show that γ′ τ c-converges to

c. To prove this, it suffices to show that, for every U ∈ U(c), there is xU > x0 such that
(x0, xU) ⊆ intτU .

Towards a contradiction, suppose otherwise. Then, by o-minimality, there exists U1 ∈ U(c)
and x1 > x0 such that (x0, x1) ∩ intτU1 = ∅. By definition of U(c), we may moreover take
x1 close enough to x0 to satisfy that (x0, x1) ⊆ U1. For every x0 < x < x1, we have that
x ∈ ∂τ (X \U1), and so, from Proposition 4.11(b), it follows that Ex \U1 ̸= ∅, as U1 is e-open.
Let f : (x0, x1) → R±∞ be the definable map given by x 7→ minEx \ U1. By Hausdorffness
(Lemma 4.12(b)) and o-minimality, this function is e-continuous and strictly monotone on
some subinterval (x0, x2) ⊆ (x0, x1). Let y0 = e-limx→x0 f(x). If f is increasing on (x0, x2),
then, by construction of U(c) and the fact that f maps into R±∞ \ U1, it cannot be that
y0 ∈ Rc. However, there clearly exists y′ ∈ R such that (y0, y

′) ⊆ X. So there exists
y ∈ X such that y0 ∈ Ry and, by Lemma 4.19(c) and regularity, it follows that x0 ∈ Ry, a
contradiction since x0 ∈ Rc. The case where f is decreasing is analogous. □

We now present the main result of this section.

Theorem 8.6. Let (X, τ), X ⊆ R, be a Hausdorff definable topological space. Then (X, τ)
is regular if and only if there exists a definably compact Hausdorff definable topological space
(Xc, τ c), with dimXc ≤ 1, and a definable embedding (X, τ) ↪→ (Xc, τ c).

The “if” direction of the theorem is proven largely by the following lemma.

Lemma 8.7. Let (X, τ), dimX ≤ 1, be a definably compact Hausdorff definable topological
space. Then (X, τ) is regular.

Proof. Let (X, τ) be as in the lemma and towards a contradiction suppose that it is not
regular. Let x ∈ X and let C ⊆ X be a τ -closed set such that x /∈ C and clτ (A) ∩ C ̸= ∅,
for every τ -neighbourhood A of x. By passing to a larger set if necessary (i.e. by passing
if necessary to the complement of a definable τ -neighbourhood of x contained in X \ C),
we may assume that C is definable. Let U denote a definable basis of τ -neighbourhoods
of x. Note that {clτ (U) ∩ C : U ∈ U} is a definable downward directed family of non-
empty sets of dimension at most one, so, by Remark 4.8, there exists a definable curve
γ : (a, b) → C that is cofinal for this family. By definable compactness, γ τ -converges
to some point y ∈ C ⊆ X \ {x}. By definition of γ, it holds that y ∈ clτ (A) for every
τ -neighbourhood A of x. So x and y cannot be separated by τ -neighbourhoods, which
contradicts that (X, τ) is Hausdorff. □

In light of the above lemma, the question arises of whether or not definably compact
Hausdorff spaces of any dimension are regular. Using [6, Corollary 25], one may show that



50 P. ANDÚJAR GUERRERO AND M. E. M. THOMAS

the answer is positive whenever R expands an ordered field. On the other hand, it is easy
to prove that if a Hausdorff definable topological space is definably compact in the sense of
condition (2.1) (i.e. every downward directed definable family of non-empty closed sets has
non-empty intersection), then it is regular (see [3, Lemma 5.4.7] for a proof). Furthermore,
as noted earlier in Remark 2.12, the first author proved in [4] that condition (2.1) is equiv-
alent to definable compactness for all Hausdorff definable topological spaces. Consequently,
Lemma 8.7 can be generalized to spaces of any dimension.

We now prove Theorem 8.6.

Proof Theorem 8.6. Let (X, τ) be a Hausdorff definable topological space with X ⊆ R.
Since the finite case is trivial, we assume that dimX = 1. The “if” implication of the
theorem follows directly from Lemma 8.7 using the observation that regularity is a hereditary
property. We prove the “only if” implication.

Assume that (X, τ) is regular. We will make use of Lemmas 6.6 and 6.9 and Proposition 8.5
to construct a one-dimensional definable Hausdorff compactification for (X, τ).
Recall the embedding (Y ∪ Z, τ) ↪→ (Y ∗ ∪ Z∗, τlex|Y ∗ ∪ τAlex|Z∗) described in the proof of

Theorem 6.3. As noted in Remark 8.3, this embedding is a definable near-compactfication of
a cofinite τ -open subspace of X. The idea of the current proof is to extend this embedding
to an embedding of (X, τ) into a regular Hausdorff definably near-compact space (X∗, τ ∗),
with X∗ ⊆ R× {0, 1, . . .}. Applying Proposition 8.5 then completes the proof.
Let X = Xopen∪Xsgl be a finite partition of X as given by Lemma 6.6. For each A ∈ Xopen,

let A∗, τA and hA be as given by Lemma 6.9. In particular, recall that each set A∗ is of the
form I × {0, . . . , n}, for some interval I ⊆ A and some n, and that τA is either the τlex or
the τAlex topology on A∗. Moreover, hA : (A, τ) ↪→ (A∗, τA) is a definable embedding.
Let X∗ =

⋃
{A∗ : A ∈ Xopen} ∪ {⟨x, 0⟩ : {x} ∈ Xsgl} and h =

⋃
{hA : A ∈ Xopen} ∪ h′,

where h′ is the map with domain Fsgl :=
⋃
Xsgl given by x 7→ ⟨x, 0⟩. Note that h is injective.

We construct a regular Hausdorff topology τ ∗ on X∗ such that, for every A ∈ Xopen, A
∗

is τ ∗-open and (A∗, τ ∗) = (A∗, τA). Since every space (A∗, τA) is definably near-compact, it
follows that (X∗, τ ∗) is definably near-compact. We then prove that h : (X, τ) ↪→ (X∗, τ ∗)
is an embedding.

Let s = |Xopen|. We define τ ∗ as follows. For every x ∈ Fsgl and A ∈ Xopen, we first
construct a downward directed definable family BA(x) of τA-open subsets of A∗. Then we
use this to define, for each x ∈ Fsgl,

B(x) := {{⟨x, 0⟩} ∪ V1 ∪ · · · ∪ Vs : (V1, . . . , Vs) ∈
∏

A∈Xopen

BA(x)}.

It is then routine to check that the family
⋃
{B(x) : x ∈ Fsgl} ∪

⋃
{τA : A ∈ Xopen} is a basis

for a topology τ ∗ on X∗, which will clearly satisfy that τ ∗|A∗ = τA, for every A ∈ Xopen. Since
Fsgl is finite and the topologies τA are definable, τ ∗ is also definable. It will then remain to
check that (X∗, τ ∗) is Hausdorff and regular, and that h : (X, τ) ↪→ (X∗, τ ∗) is an embedding.
We fix x ∈ Fsgl and A ∈ Xopen and describe BA(x). Recall the notation A =

⋃
0≤i<n fi(I)

from Lemma 6.6, and let I = (a, b). We define families of sets Va(x, y) and Vb(x, y), as y ∈ I
varies, as follows, according to whether or not a ∈ Rx and whether or not b ∈ Lx:

Va(x, y) =

{
((a, y)×R) ∩ A∗ for all y ∈ I, if a ∈ Rx,

∅ for all y ∈ I, if a /∈ Rx,
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Vb(x, y) =

{
((y, b)×R) ∩ A∗ for all y ∈ I, if b ∈ Lx,

∅ for all y ∈ I, if b /∈ Lx.

Note that these sets are always open in (A∗, τA). Then BA(x) is defined to be the family
of sets

VA(x, y, z) = Va(x, y) ∪ Vb(x, z),

definable uniformly in y and z with a < y < z < b. Clearly, BA(x) is a definable downward
directed family of τA-open subsets of A∗.

We now consider the induced topology τ ∗ as described above. Since
⋂

a<y<z<b VA(x, y, z) =

∅, for each A ∈ Xopen, it is immediate from the definition that τ ∗ is T1. We now show that
(X∗, τ ∗) is regular. It will follow (since in a T1 topological space singletons are closed) that
it is also Hausdorff.

Consider the sets VA(x, y, z), as x ∈ Fsgl varies, for some fixed A ∈ Xopen and fixed
a < y < z < b. By Hausdorffness of τ , for any two distinct x, x′ ∈ Fsgl, if a ∈ Rx, then
a /∈ Rx′ and, if b ∈ Lx, then b /∈ Lx′ , so VA(x, y, z) ∩ VA(x

′, y, z) = ∅, from where it follows
that, for all x ∈ Fsgl, clτ∗VA(x, y, z) ⊆ {⟨x, 0⟩} ∪ A∗, and consequently clτ∗VA(x, y, z) =
{⟨x, 0⟩} ∪ clτAVA(x, y, z). Moreover, note that, since τA is one of τlex or τAlex, it holds, for all
x ∈ Fsgl and y, z ∈ I, that clτAVa(x, y) ⊆ ((a, y]×R)∩A∗ and clτAVb(x, z) ⊆ ([z, b)×R)∩A∗.
So, for any x ∈ Fsgl, a < y′ < y and z < z′ < b, we have that clτAVA(x, y

′, z′) ⊆ VA(x, y, z).
It follows that, for all x ∈ Fsgl and U ∈ B(x), there exists U ′ ∈ B(x) such that clτ∗U

′ ⊆ U .
Since each A∗ is τ ∗-open with (A∗, τ ∗) = (A∗, τA), it is easy to check that the same property
holds among τ ∗-neighbourhoods of points in A∗. It follows that the topology τ ∗ is regular.

It remains to show that h : (X, τ) ↪→ (X∗, τ ∗) is an embedding. We fix x ∈ X and show
continuity of h and h−1 at x and h(x) respectively. Since, for every A ∈ Xopen, hA : (A, τ) ↪→
(A∗, τA) is an embedding between open subsets of (X, τ) and (X∗, τ ∗) respectively, where
τ ∗|A∗ = τA, this holds whenever x ∈ A, for some A ∈ Xopen, so we may assume that x ∈ Fsgl.
We make use of Proposition 4.9.

Fix γ, an injective definable curve in X, and set γ′ := h ◦ γ. We may assume that there
is some fixed A =

⋃
0≤i<n fi(I) ∈ Xopen and 0 ≤ j < n such that γ is contained in the

interval fj(I). Recall from Lemma 6.6 that, for every 0 ≤ i < n, fi : I → R is a definable
e-continuous strictly monotonic function. We will prove the case where fj is increasing. The
decreasing case is analogous. Let I = (a, b) and fj(I) = (aj, bj). We require the following
simple fact that follows, for each x ∈ Fsgl, from the definition of the definable families BA(x)
(recall that π : R2 → R denotes the projection to the first coordinate).

(8.1)
The curve γ′ τ ∗-converges to h(x) = ⟨x, 0⟩ if and only if either a ∈ Rx and π ◦ γ′

e-converges to a, or b ∈ Lx and π ◦ γ′ e-converges to b.

Suppose that γ τ -converges to x. Recall that, by Lemmas 6.5(b) and 6.6, if A ∩ Ex ̸=
∅, then x ∈ A, a contradiction. So, by o-minimality and Proposition 4.11(a), γ must e-
converge to either aj or bj. Suppose that γ e-converges to aj, in which case aj ∈ Rx (see
Remark 4.16). Since fj is increasing, we have that f−1

j ◦ γ e-converges to a. By regularity
of τ and Lemmas 4.19 and 6.6, it follows that a ∈ Rx. Now note that, by Lemma 6.9(2),
π ◦ γ′ = π ◦ h ◦ γ = f−1

j ◦ γ. Hence π ◦ γ′ e-converges to a. So, by (8.1), we conclude that γ′

τ ∗-converges to h(x) = ⟨x, 0⟩. Analogously, if γ e-converges to bj, then bj ∈ Lx and, again
by regularity of τ and Lemmas 4.19 and 6.6, b ∈ Lx. Moreover, again by Lemma 6.9(2),
π ◦ γ′ e-converges to b and so, by (8.1), γ′ τ ∗-converges to h(x) = ⟨x, 0⟩ in this case as well.
Hence, by Proposition 4.9, h is continuous at x.
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Now suppose that γ′ τ ∗-converges to h(x). By (8.1), there are two cases to consider: either
a ∈ Rx and π◦γ′ e-converges to a, or b ∈ Lx and π◦γ′ e-converges to b. In the first case, since
fj is increasing, by Lemmas 4.19 and 6.6 we have that aj ∈ Rx. Moreover, by Lemma 6.9(2)
and since fj is increasing, γ = h−1 ◦ γ′ = fj ◦ π ◦ γ′ e-converges to aj. We conclude that
h−1 ◦ γ′ τ -converges to x, by Remark 4.16. In the other case it can analogously be shown
that h−1 ◦ γ′ τ -converges to x. Hence h−1 is continuous at h(x). This completes the proof of
the theorem. □

Remark 8.8. Theorem 8.6 may be generalized to all Hausdorff definable topological spaces
of dimension at most one. In particular, using Remark 6.10, one may note that every T3 one-
dimensional space (X, τ) has a cofinite subspace that embeds definably into a finite disjoint
union of spaces of the form (I×{0, . . .}, τlex) or (I×{0, . . .}, τAlex), where I ⊆ R is an interval
and m ≥ 0. Then, using a construction similar to the one in the proof of Theorem 8.6, one
may expand this disjoint union, by adding finitely many points, to a definably near-compact
space (X∗, τ ∗), and extend the embedding of a cofinite subspace of (X, τ) into an embedding
(X, τ) ↪→ (X∗, τ ∗). Finally, by applying Proposition 8.5 to (X∗, τ ∗), one reaches a definable
compactification of (X, τ).

9. Affine topologies

Unless stated otherwise, throughout this section we assume that R expands an ordered
field. We restrict to this setting to be able to assume, using Remark 4.6, that, up to definable
homeomorphism, every definable topological space (X, τ) satisfies that X is a bounded set.
We will also use in this section (in the proof of Lemma 9.5) facts about o-minimal expansions
of ordered fields from [13, Chapter 10].

We wish to classify the one-dimensional definable topologies that are, up to definable home-
omorphism, euclidean. We will refer to these topologies as affine1. Our main result is the
following, which will utilize results of the previous sections, in particular the decomposition
of Hausdorff one-dimensional definable topological spaces (Corollary 5.10) and the Hausdorff
compactification of certain one-dimensional T3 definable topological spaces (Proposition 8.5).
Later in the section we will use all of these results to address in our setting several questions
of Fremlin and Gruenhage on the nature of perfectly normal, compact, Hausdorff spaces (see
Subsection 9.1).

Theorem 9.1. Suppose that R expands an ordered field. Let (X, τ), dimX ≤ 1, be a
Hausdorff definable topological space. Exactly one of the following holds.

(1) (X, τ) contains a subspace definably homeomorphic to an interval with either the discrete
or the right half-open interval topology.

(2) (X, τ) is definably homeomorphic to a euclidean space (i.e. (X, τ) is affine).

Note that, since the map x 7→ −x is a homeomorphism (R, τr) → (R, τl), Theorem 9.1
still holds if we replace the right half-open interval topology by the left half-open interval
topology in (1).

The main theorem (Theorem 7.1) in [41] states that if a definable metric space contains no
infinite definable discrete subspace (equivalently, by Lemma 3.5, if it is definably separable),

1In the o-minimal context, euclidean and affine are used by different authors to refer to the same canonical
topology on definable sets. For clarity, we use only the latter to denote these topologies up to definable
homeomorphism.
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then it is affine. Hence, taking into account this result and the fact that the euclidean topol-
ogy τe is definably separable (Proposition 2.8(a)) and definably metrizable, statement (2) in
Theorem 9.1 can be changed to “(X, τ) is definably separable and definably metrizable”.

Remark 9.2. Recall that, for any interval I ⊆ R, the space (I, µ), where µ ∈ {τr, τs}, is
totally definably disconnected (i.e. singletons are the only definably connected non-empty
subspaces). On the other hand, by o-minimality, every euclidean space has finitely many de-
finably connected components. Hence Theorem 9.1 implies that a Hausdorff one-dimensional
definable topological space (X, τ) is affine if and only if every definable topological subspace
has finitely many definably connected components (or is not totally definably disconnected).

A definition, a remark and a lemma precede the proof of Theorem 9.1.

Definition 9.3. We say that a definable topological space (X, τ) is cell-wise euclidean if
there is a finite partition X of X into cells such that, for each C ∈ X , (C, τ) = (C, τe).

By o-minimal cell decomposition, we can clearly relax the requirement in Definition 9.3
that the sets in X be cells to just that they be any definable subset of X. Furthermore,
since it also follows by o-minimal cell decomposition that every definable bijection is a finite
union of disjoint definable e-homeomorphisms, the property of being cell-wise euclidean is
maintained by definable homeomorphism, and is equivalent to being cell-wise affine (i.e.
the property that X admits a finite partition into cells on which the subspace topology is
affine). In particular, any affine space is cell-wise euclidean. Theorem 9.1 implies that the
converse holds for one-dimensional Hausdorff definable topological spaces. This statement
cannot be generalized to definable topological spaces of all dimensions, as illustrated by
Appendix A, Example A.16, which describes a two-dimensional definable topological space
that is T3 and cell-wise euclidean but not even definably metrizable (and hence not affine).
Moreover, in Section A, Example A.9, we produce a cell-wise euclidean one-dimensional
definable topological space that is not Hausdorff, and in particular not affine.

Remark 9.4. By Corollary 5.10 (and the fact that the map x 7→ −x is a definable homeomor-
phism (R, τl) → (R, τr)), if a Hausdorff definable topological space (X, τ), with dimX ≤ 1,
does not have a subspace that is definably homeomorphic to an interval with either the τr
or the τs topology, then (X, τ) is cell-wise euclidean.

By the above remark, in order to prove that the negation of (1) implies (2) in Theorem 9.1,
it suffices to show that if a Hausdorff one-dimensional space is cell-wise euclidean then it is
affine.

The following lemma is essentially Lemma 5.7 in [41], proved for definable metric spaces,
which we extend to one-dimensional spaces using Lemma 4.10 and results of van den Dries
[13], one of which requires the setting of an o-minimal expansion of an ordered field. Recall
that a euclidean space is definably compact if and only if it is closed and bounded.

Lemma 9.5. Suppose that R expands an ordered field. Let (X, τ) be a definably compact
Hausdorff definable topological space. Let (Y, τe) be a definably compact euclidean space that
admits a definable continuous surjection f : (Y, τe) → (X, τ). Then there exists a definable
set Z and a definable homeomorphism (Z, τe) → (X, τ).

Proof. Let E be the kernel of f , namely E = {⟨x, y⟩ ∈ Y 2 : f(x) = f(y)}. By continuity of
f , E is closed in Y 2, and so definably compact. By [13, Chapter 10, Corollary 2.16], there
exists a definable set Z and a definable quotient map g : (Y, τe) → (Z, τe) of E, i.e. g has
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kernel E, is surjective, continuous and, for every C ⊆ Z, if g−1(C) is closed in (Y, τe), then
C is closed in (Z, τe). Moreover, by [13, Chapter 6, Proposition 1.10], the space (Z, τe) is
definably compact.

The definable map h : (Z, τe) → (X, τ) given by h(g(x)) = f(x) is well-defined, and clearly
continuous and bijective. By Lemma 4.10, it is a homeomorphism. □

We may now prove Theorem 9.1.

Proof of Theorem 9.1. Let (X, τ) be a Hausdorff definable topological space. The case where
dim(X) = 0 is trivial (as (2) trivially holds in this case) and so we assume that dim(X) = 1.
By Remark 4.6, we may assume that X ⊆ R and is bounded. Note that, by Remark 2.4,
(X, τ) cannot be both cell-wise euclidean and have a definable copy of an interval with
either the τr or the τs topology, so (1) and (2) in the statement of the theorem are mutually
exclusive. Applying Remark 9.4, we assume that (X, τ) is cell-wise euclidean and derive that
it is affine.

Since (X, τ) is cell-wise euclidean, it is also definably near-compact so, by Proposition 8.5,
by passing to (Xc, τ c) if necessary, we may assume that (X, τ) is definably compact.
Let X be a partition of X into points and intervals such that, for each C ∈ X , the subspace

(C, τ) is euclidean. We define, for each C ∈ X , a continuous function fC : (cleC, τe) →
(clτC, τ) extending the identity on C. Once we have defined these functions, we complete
the proof as follows.

Let num : X → ω be an enumeration of the elements in X and let Y =
⋃

C∈X (cleC ×
{num(C)}) be the disjoint union of the euclidean closures of the sets in X . Clearly, (Y, τe) is
definably compact. Let f : (Y, τe) → (X, τ) be the function given by f(x, num(C)) = fC(x),
where x ∈ cleC. This function is clearly definable, surjective and continuous. The result
then follows by Lemma 9.5.

It remains to define, for each C ∈ X , the function fC . If C ∈ X is a singleton, let fC
simply be the identity. Now let us fix an interval C = I = (aI , bI) ∈ X . By Hausdorffness
(Proposition 4.14(c)) and definable compactness (Lemma 4.17), there exists a unique point
xI ∈ X such that aI ∈ RxI

and similarly a unique point yI ∈ X such that bI ∈ LyI . Note
that, since (I, τ) = (I, τe), the points xI and yI do not belong in I. Let fI be defined as

fI |I = id, f(aI) = xI and f(bI) = yI .

It is routine to check that fI is continuous as a map ([aI , bI ], τe) → (clτI, τ) □

In Appendix A, Example A.14 we describe a Hausdorff definable topological space of
dimension two that has no definable copy of an interval with either the τs or the τr topology
but fails to be cell-wise euclidean. In Appendix A, Example A.16, we describe, as already
noted, a T3 definable topological space of dimension two that is cell-wise euclidean but
not affine. Hence, although equivalent for one-dimensional definable topological spaces, the
following three implications are strict in general.

Affine ⇒ Hausdorff and ⇒ Hausdorff and does not contain
cell-wise euclidean a definable copy of an interval

with either the τr or τs topology

In fact it is not even the case that being Hausdorff and cell-wise euclidean implies being
definably metrizable, since, by o-minimality, a cell-wise euclidean space cannot contain an
infinite definable discrete subspace, and so, by [41, Theorem 7.1], every cell-wise euclidean
definably metrizable space is affine.
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This complicates the task of generalising Theorem 9.1 to spaces of all dimensions. The
next corollary however offers a possibility.

Corollary 9.6. Suppose that R expands an ordered field. Let (X, τ), dimX ≤ 1, be a
definably compact Hausdorff definable topological space. The following are equivalent.

(1) (X, τ) satisfies the frontier dimension inequality.
(2) (X, τ) is definably metrizable.
(3) (X, τ) is affine.

Proof. We fix (X, τ), dimX ≤ 1, a definably compact Hausdorff definable topological space.
(3) ⇒ (2) is trivial. If (X, τ) is definably metrizable, then, by [41, Lemma 7.15], it satisfies

the fdi, i.e. (2) ⇒ (1). We complete the proof by showing (1) ⇒ (3), that is, if (X, τ) satisfies
the fdi, then it is affine.

We prove the contrapositive. Suppose that (X, τ) is not affine. Then, by Theorem 9.1,
there exists an interval with either the τr or the τs topology that definably embeds into
(X, τ). We prove that (X, τ) does not have the fdi.

By Remark 4.6, we may assume that X ⊆ R. By Lemma 5.11, there exists an interval
I ⊆ X such that τ |I ∈ {τr, τl, τs}. Considering the push-forward of (X, τ) by x 7→ −x if
necessary, we may assume that τ |I ∈ {τr, τs}. By definable compactness and Hausdorffness,
for every y ∈ I, there exists a unique x ∈ X such that y ∈ Lx (see Proposition 4.14(c)
and Lemma 4.17). Since τ |I ∈ {τr, τs}, we have that this x must not belong in I, and in
particular x ∈ ∂τI. By Lemma 4.5, it follows that ∂τI is infinite, and so (X, τ) does not
satsify the fdi. □

Using our work in Sections 6 and 8, we present a second refinement of Theorem 9.1 for
definably compact spaces. We do not know whether or not this result generalizes to spaces
of any dimension.

Corollary 9.7. Suppose that R expands an ordered field. Let (X, τ), dimX ≤ 1, be a
definably compact Hausdorff definable topological space. Exactly one of the following holds.

(1) There exists an interval I ⊆ R, some n > 0, and a definable open embedding (I ×
{0, . . . , n}, µ) ↪→ (X, τ), where µ ∈ {τlex, τAlex}.

(2) (X, τ) is affine.

Furthermore, if (X, τ) is definably separable, then we can take n to be 1 and µ to be τlex in
(1).

Proof. Applying Remark 4.6, we may assume that X ⊆ R. On the one hand, if (X, τ) is
affine, then in particular it is cell-wise euclidean (see comments after Definition 9.3). On the
other hand, note that, for any interval I and n > 0, the space (I × {0, . . . , n}, µ), where µ
is τlex (respectively τAlex), satisfies that the subspace I × {n} is homeomorphic, taking the
projection to the first coordinate, to the interval I with the τr (respectively τs) topology.
Hence, if (1) in the corollary holds, then (X, τ) contains a subspace definably homeomorphic
to an interval with the τr or τs topology, and so, by Remark 2.4, (1) and (2) are mutually
exclusive.

By Lemma 8.7, the space (X, τ) is regular. Let X = Xopen ∪ Xsgl be a partition of X
as defined by Lemma 6.6 and, for every A ∈ Xopen, let A∗, τA and hA be as given by
Lemma 6.9. Since (X, τ) is definably compact, by Lemma 8.4 we have that, for every
A ∈ Xopen, hA : (A, τ) → (A∗, τA) is a homeomorphism. Furthermore, since every set in
Xopen is τ -open, we have that, for every A ∈ Xopen, the map h−1

A : (A∗, τA) ↪→ (X, τ) is an
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open embedding. Now recall from Lemma 6.9 that, for every A ∈ Xopen, the set A∗ is of
the form I × {0, . . . , n}, for some interval I ⊆ R and some n = nA ≥ 0, and moreover τA is
one of τlex or τAlex. On the one hand, if nA > 0 for some A ∈ Xopen, then we clearly have
condition (1) in the corollary. On the other hand, if nA = 0 for every A ∈ Xopen then, using
the fact that, for any interval I it holds that (I ×{0}, τlex) = (I ×{0}, τAlex) = (I ×{0}, τe),
we derive that (X, τ) is cell-wise euclidean (see comments after Definition 9.3), and so, by
the proof of Theorem 9.1, it is affine.

It remains to show that, if (X, τ) is definably separable, then we may take n to be 1 and
µ to be τlex in (1). By the above paragraph, it suffices to show that, if (X, τ) is definably
separable, then nA ≤ 1 and τA = τlex for every A ∈ Xopen. This however is shown in the
proof of Corollary 6.12. □

9.1. Fremlin’s conjecture. As indicated in Subsection 5.1, the 3-element basis conjecture
(which asserts that statement (5.2) is consistent with ZFC) arose as a result of interest in
various questions about the nature of perfectly normal, compact, Hausdorff spaces. (Recall
that a topological space is perfectly normal if and only if it is normal and any open set
is a countable union of closed sets.) In particular, this conjecture is closely related to a
conjecture of Fremlin, which posits that the following statement is consistent with ZFC (see
Question 1 in [23]):

(9.1)
Every perfectly normal, compact, Hausdorff space admits a continuous, at most
2-to-1 map onto a compact metric space.

The underlying question is whether or not the Split Interval, which in our setting is ([0, 1]×
{0, 1}, τlex) defined in (R, <) (see Example A.4), is in essence the only example in ZFC
of a non-metrizable, perfectly normal, compact, Hausdorff space, and how to make that
notion precise. Fremlin’s initial conjecture (see [23]) had been that every perfectly normal,
compact, Hausdorff space in ZFC is a continuous image of ([0, 1] × {0, 1}, τlex) × ([0, 1], τe)
(where likewise, in our setting, this space should be understood as being defined in (R, <)),
but this does not hold (see [42]). However, ([0, 1]×{0, 1}, τlex) certainly admits a continuous,
at most 2-to-1 map onto a compact metric space, as does the counterexample of [42].

In considering Fremlin’s conjecture, Gruenhage put forward the following question that is
in the same spirit in [20] (see also Question 2.2 in [22]). He asked if the following statement
is consistent with ZFC:

(9.2)
Every non-metrizable, perfectly normal, compact, Hausdorff space contains a copy
of (A× {0, 1}, τlex), for some uncountable A ⊆ [0, 1].

It is indicated in [22] and [23] that, under PFA, statement (9.1) is equivalent to the existence
of a 3-element basis, as posited in (5.2), for the class of subspaces of perfectly normal,
compact, Hausdorff spaces, and furthermore that, under PFA, both of these statements
imply (9.2). It is also indicated that, even without assuming PFA, statement (5.2) implies
both (9.1) and (9.2).

Here, we consider the questions above and show, as a corollary to Theorems 6.3 and 9.1,
that statement (9.1) holds in a definable sense for any regular, Hausdorff one-dimensional
topological space which is either perfectly normal or separable and which is definable in any
o-minimal expansion of (R,+, ·, <) (Corollary 9.10). Moreover, we address statement (9.2)
by showing that any one-dimensional, perfectly normal, compact, Hausdorff space definable
in any o-minimal expansion of (R,+, ·, <) is either affine or there exists an interval I ⊆ R
and a definable open embedding (I×{0, 1}, τlex) ↪→ (X, τ) (Corollary 9.11). We also address
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definable generalizations of some of these statements for o-minimal expansions of ordered
fields.

We begin by proving a definable result in our setting that is closely related to state-
ment (9.1). We then specifically address statement (9.1) in our setting, whenever R expands
the field of reals, through a subsequent lemma and corollary.

Corollary 9.8. Suppose that R expands an ordered field. Let (X, τ), dim ≤ 1, be a regular
and Hausdorff definable topological space. If (X, τ) is definably separable, then there exists a
definable continuous map f : (X, τ) → (Rn, τe), for some n, where f is at most 2-to-1 (i.e.
|f−1(z)| ≤ 2 for every z ∈ Rn).

Proof. Applying Remark 4.6 we may assume that X ⊆ R. We will use the construction in
the proof of Theorem 8.6 of a (definably near-compact) space (X∗, τ ∗) and of a definable
embedding h : (X, τ) ↪→ (X∗, τ ∗). We show that, if (X, τ) is definably separable, then
(X∗, τ ∗) admits a definable at most 2-to-1 continuous map into a Hausdorff cell-wise euclidean
space (Y, µ), with Y ⊆ R. Since (Y, µ) is Hausdorff and cell-wise euclidean it follows from
Remark 2.4 and Theorem 9.1 that it is affine, completing the proof.

Let X = Xopen∪Xsgl be a partition of X as defined by Lemma 6.6 and, for every A ∈ Xopen,
let A∗ and τA be as given by Lemma 6.9. Set Fsgl :=

⋃
Xsgl, and let (X∗, τ ∗) be as given by

the proof of Theorem 8.6. Recall that X∗ =
⋃
{A∗ : A ∈ Xopen}∪{⟨x, 0⟩ : x ∈ Fsgl}. Now, in

the proof of Corollary 6.12 it is shown that, if (X, τ) is definably separable, then, for every
A ∈ Xopen, it holds that A∗ ⊆ R × {0, 1} and (A∗, τA) = (A∗, τlex). In particular, we have
that X∗ ⊆ R × {0, 1}. Consider the projection π : X∗ → R to the first coordinate. Since
X∗ ⊆ R× {0, 1}, then π is at most 2-to-1. Let Y = π(X∗). We define a Hausdorff cell-wise
euclidean topology µ on Y such that π : (X∗, τ ∗) → (Y, µ) is continuous.

For every A ∈ Xopen, recall that the set A∗ is of the form I × {0, 1} for some interval
I ⊆ A. We denote this interval by (aA, bA). In particular, for every A ∈ Xopen, we have
that π(A∗) = (aA, bA), and Xsgl ∪ {(aA, bA) : A ∈ Xopen} is a partition of Y . We define µ
as follows. For every A ∈ Xopen, the interval (aA, bA) is µ-open and its subspace topology is
euclidean. Furthermore, for every x ∈ Fsgl, we say that a set V ⊆ Y is a µ-neighbourhood
of x if and only if π−1(V ) is a τ ∗-neighbourhood of ⟨x, 0⟩.
We give a precise description of a basis of neighbourhoods in (Y, µ) for each point in Fsgl.

Let x ∈ Fsgl and let B(x) denote the definable basis of neighbourhoods of the point ⟨x, 0⟩ in
(X∗, τ ∗) described in the proof of Theorem 8.6. Then a definable basis of neighbourhoods
of x in (Y, µ) is given by the family U(x) = {π(V ) : V ∈ B(x)}. We can describe U(x) more
precisely using the definition of B(x) as follows. Let XRx

open = {A ∈ Xopen : aA ∈ Rx} and

X Lx
open = {A ∈ Xopen : bA ∈ Lx}. Then U(x) consists of every set of the form

{x} ∪
⋃

A∈XRx
open

(aA, yA) ∪
⋃

A∈XLx
open

(zA, bA),

for parameters {yA : A ∈ XRx
open} and {zA : A ∈ X Lx

open} satisfying that, for every A ∈ XRx
open, we

have yA ∈ (aA, bA) and, for every A ∈ X Lx
open, we have zA ∈ (aA, bA). It is thus easy to check

that the topology µ is well defined and, by Proposition 4.14(c), Hausdorff. Furthermore it
is cell-wise euclidean by definition.

It remains to show that π : (X∗, τ ∗) → (Y, µ) is continuous; in other words, that, for
every point ⟨x, i⟩ ∈ X∗ and every µ-neighbourhood V of π(⟨x, i⟩) = x, the set π−1(V ) is
a τ ∗-neighbourhood of ⟨x, i⟩. We observe that this follows easily from the definitions of
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(X∗, τ ∗) and (Y, µ). Specifically, if x ∈ Fsgl then, by definition of X∗, we have that i = 0,
and the observation is explicit in the definition of µ. For the remaining case, suppose that
x ∈ (aA, bA) for some A ∈ Xopen. By definition of τlex note that every interval J ⊆ (aA, bA)
satisfies that π−1(J) is open in (A∗, τlex). Hence the observation follows from the facts that
((aA, bA), µ) = ((aA, bA), τe), and A∗ is τ ∗-open with (A∗, τ ∗) = (A∗, τlex). □

Through the following lemma and corollary we prove a stronger form of statement (9.1)
in our setting, where we do not require the assumption that the space be compact, and fur-
thermore we may replace perfect normality by separability. Since the proof of Corollary 9.10
is similar to the proof of Corollary 9.8 above, we only sketch its proof.

Lemma 9.9. Let I ⊆ R be an interval and 0 ≤ n ≤ m. The subspace I × {0, . . . , n} of the
space (I×{0, . . . ,m}, τlex) is perfectly normal if and only if either n = 0 or n = m = 1. The
space (I × {0, . . . , n}, τAlex) is perfectly normal if and only if n = 0.

Proof. The fact that the euclidean space (I × {0}, τlex) = (I × {0}, τAlex) = (I × {0}, τe)
and the space (I × {0, 1}, τlex) are both perfectly normal is classical and so we omit the
proofs. Similarly, it is also classical that the space (I, τl) is perfectly normal, and so, for any
m > 0, the subspace I×{0} of the space (I×{0, . . . ,m}, τlex) is perfectly normal, since this
subspace corresponds to the push-forward of (I, τl) by the map x 7→ ⟨x, 0⟩.
Let (I × {0, . . . , n}, µ) be a space in any of the remaining cases, i.e. such that n > 0, and

either with µ = τAlex or otherwise satisfying that there is m > n such that µ is the subspace
topology inherited from the space (I×{0, . . . ,m}, τlex). Note that, in all of these cases, there
exists some 0 < i ≤ n such that the subset (I × {i}, µ) only contains µ-isolated points, and
in particular it is µ-open. We fix such an i.

Recall that a topological space is perfectly normal if and only if it is normal and any open
set is a countable union of closed sets. Hence to show that (I×{0, . . . , n}, µ) is not perfectly
normal it suffices to show that I × {i} is not a countable union of µ-closed sets. Towards a
contradiction, suppose that it were, in which case there would exist an uncountable µ-closed
subset C of I × {i}. Since such a C is uncountable, the projection π(C) of C to the first
coordinate would satisfy that there exists a point x ∈ π(C) such that, for any a < x < b, it
holds that (a, x) ∩ π(C) ̸= ∅ and (x, b) ∩ π(C) ̸= ∅ (see Lemma 10.5 for a generalization of
this classical fact of the reals). By definition of the τlex and τAlex topologies, it follows that
⟨x, 0⟩ is in the µ-closure of C, a contradiction, since C is a µ-closed subset of I × {i} with
i > 0. □

Corollary 9.10. Suppose that R expands the ordered field of reals (R,+, ·, <). Let (X, τ),
dimX ≤ 1, be a regular and Hausdorff definable topological space. If (X, τ) is either separable
or perfectly normal, then there exists a definable continuous map f : (X, τ) → (Rn, τe), for
some n, where f is at most 2-to-1.

Proof. If (X, τ) is separable then, by Proposition 2.6, it is also definably separable, and the
result follows from Corollary 9.8. Suppose that (X, τ) is perfectly normal.
Applying Remark 4.6 we may assume that X ⊆ R. Let X = Xopen ∪ Xsgl be a partition

of X as defined by Lemma 6.6 and, for every A ∈ Xopen, let hA be as given by Lemma 6.9.
Since perfect normality is a hereditary property we have that, for every set A ∈ Xopen, the
subspace (A, τ) is perfectly normal. Applying Lemma 9.9 to the construction by cases in the
proof of Lemma 6.9, we observe that, for every A ∈ Xopen, it holds that hA(A) ⊆ R×{0, 1}.
The rest of the proof is now analogous to the proof of Corollary 9.8, taking (h(X), τ ∗) in
place of (X∗, τ ∗) in said proof. □
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Observe that the proofs of Corollaries 9.8 and 9.10 can be adapted to yield a different
version of Corollary 9.8, which holds for any expansion R of an ordered field, where the
condition that (X, τ) is definably separable is replaced by the weaker condition that (X, τ)
does not have a subspace definably homeomorphic to any space that is the R-definable
analogue of one of the spaces that Lemma 9.9 shows are not perfectly normal.

We now consider statement (9.2) in our setting. We present a definable version of this
statement, in which the metrizability condition is replaced by the stronger property of being
affine. It is an immediate consequence of Lemma 9.9 applied to the dichotomy described in
Corollary 9.7.

Corollary 9.11. Suppose that R expands the ordered field of reals (R,+, ·, <). Let (X, τ),
dimX ≤ 1, be a definably compact (equivalently, by Remark 2.12, compact) and Hausdorff
definable topological space. If (X, τ) is perfectly normal then it is either affine or otherwise
there exists an interval I ⊆ R and a definable open embedding (I × {0, 1}, τlex) ↪→ (X, τ).

One may in fact replace the assumption of perfect normality in Corollary 9.11 by the
weaker condition that there does not exist an interval I ⊆ R and a definable embedding
(I × {0, 1}, τAlex) ↪→ (X, τ). By Corollary 9.7 alone, this condition already implies that
(X, τ) is affine or otherwise there exists an interval I ⊆ R and a definable embedding
(I × {0, 1}, τlex) ↪→ (X, τ). (To see this observe that, for any interval I ⊆ R and n > 0,
the subspace I × {0, n} of the space (I × {0, . . . , n}, τlex) is definably homeomorphic to
(I × {0, 1}, τlex).) Additionally, since Corollary 9.7 holds in the setting of an arbitrary o-
minimal expansion R of an ordered field, this version of Corollary 9.11 moreover holds in
this more general setting.

10. Definable metrizability

In this section, we use our affineness characterization of the previous section (Theorem 9.1)
to derive the equivalence of metrizability and definable metrizability for one-dimensional
definable topological spaces in certain o-minimal expansions of ordered fields.

Throughout, we continue to assume that R expands an ordered field. Recall that in our
setting “metric” refers to an R-metric (Definition 3.1), including those instances when it
appears implicitly in notions such as metrizability and metric space.

We will frequently utilize two classical topological notions in stating and proving results
throughout this section. The first of these is the weight wτ (X) of a topological space (X, τ),
i.e. the minimum cardinality of a basis for τ (this was discussed earlier in Subsection 5.2).
Note that it follows from Theorem 9.1, Lemma 5.3 and Proposition 5.4(b) that, whenever
R expands an ordered field, every one-dimensional Hausdorff definable topological space
(X, τ) satisfies that wτ (X) ∈ {we(R), |R|}. The other classical notion that we will use is the
density of (X, τ), i.e. the minimum cardinality of a τ -dense subset of X, which we denote
by denτ (X).

Our main result, Theorem 10.2, shows that, whenever R is an o-minimal expansion of an
ordered field satisfying that dene(R) < |R| (e.g. whenever R expands the field of reals),
every metrizable one-dimensional space is in fact definably metrizable.

We begin by deriving the following as a straightforward corollary of Theorem 9.1.

Corollary 10.1. Let (X, τ), dim(X) ≤ 1, be a definable topological space that is metrizable
and separable. Suppose that either of the following two conditions holds.

(a) R expands the field of reals.
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(b) (X, τ) is compact.

Then (X, τ) is affine. In particular it is definably metrizable.

Proof. The case where X is finite is trivial, so we assume that dim(X) = 1. Recall from
Remark 5.6 that, if there exists a compact infinite T1 topological space definable in R, then
R expands the field of reals. Since a metrizable space is T1, the second case here therefore
reduces to the first, and we may consequently assume that R expands the field of reals, i.e.
R = R.

By Remark 4.6, we assume that X ⊆ R. By Theorem 9.1, it is enough to show that
(X, τ) does not have a definable copy of an interval with either the discrete or the right half-
open interval topology. This follows from the fact that (X, τ) is a separable metric space,
hence second countable, so wτ (X) < |R|, while the topological weight of an interval with the
Sorgenfrey Line or discrete topology is |R| (see Lemma 5.3). □

We now state the main theorem of this section, which improves the metrization part of
Corollary 10.1.

Theorem 10.2. Suppose that R expands an ordered field and satisfies that dene(R) < |R|.
Let (X, τ), dimX ≤ 1, be a definable topological space. Then (X, τ) is metrizable if and only
if it is definably metrizable.

In the case where dene(R) = |R|, we point the reader towards [12] for a proof that the
space (R, τr), which is shown in Proposition 3.4 not to be definably metrizable, is metrizable
whenever R expands a countable densely ordered group. Classically, the Sorgenfrey Line
(R, τr) is separable but not second countable, and so it is not (R-)metrizable. We show below
(Remark 10.4) that the analogous statement holds whenever dene(R) < |R|, i.e. in this case,
(X, τr) is not (R)-metrizable when X ⊆ R is any infinite set.

In order to prove Theorem 10.2, we require two simple lemmas, whose aim is to generalise
basic results in metric topology and the topology of the real line to our setting. In what
follows, recall that, since R expands an ordered field, any two intervals are definably e-
homeomorphic and in particular, for any interval I ⊆ R, we have that |I| = |R| and dene(I) =
dene(R).

Lemma 10.3. Let (X, d) be a metric space. Let τ := τd, and let A,C ⊆ X satisfy that
A ⊆ clτC (i.e. C is τ -dense in A). Let D be an e-dense subset of (0,+∞). Consider the
family of d-balls B = {Bd(y, δ) : y ∈ C, δ ∈ D}. Then, for every x ∈ A, there exists a
subfamily Bx of B that is a basis of open τ -neighbourhoods of x.

In particular wτ (X) ≤ denτ (X)dene(R).

Proof. Let x ∈ A and ε > 0. We must show that there exists y ∈ C and δ ∈ D such that
x ∈ Bd(y, δ) ⊆ Bd(x, ε).

Let δ ∈ D be such that 0 < δ < ε/2. Since A ⊆ clτC, there exists y ∈ C such that
d(x, y) < δ. Consider the ball Bd(y, δ). Clearly x ∈ Bd(y, δ) and, if z ∈ Bd(y, δ), then, by
the triangle inequality, d(x, z) ≤ d(x, y)+d(y, z) ≤ δ+δ < ε. Hence x ∈ Bd(y, δ) ⊆ Bd(x, ε),
which completes the proof of the first part of the lemma.

For the second part, suppose that C is a dense subset of (X, τ) of cardinality denτ (X) and
D is an e-dense subset of (0,+∞) of cardinality dene(R). Then, by the above, the family
{Bd(y, δ) : y ∈ C, δ ∈ D} is a basis for τ which has cardinality bounded by denτ (X)dene(R).

□



ONE-DIMENSIONAL DEFINABLE TOPOLOGIES IN O-MINIMAL STRUCTURES 61

Remark 10.4. Let X ⊆ R be an infinite definable set. Recall that, by Lemma 5.3, because
R expands an ordered field, the space (X, τ∗), where τ∗ ∈ {τl, τr}, has weight |R|. Moreover,
clearly the density of (X, τ∗) is equal to dene(R). From Lemma 10.3, it follows that, if
(X, τ∗) is metrizable, then |R| = wτ∗(X) ≤ denτ∗(X)dene(R) = dene(R)2 = dene(R) ≤ |R|,
i.e. dene(R) = |R|. It follows that, if in fact we have dene(R) < |R|, then (X, τ∗) is not
metrizable.

For the next lemma recall that, for any set X ⊆ R, a right (respectively left) limit point
of X is a point x ∈ R satisfying that, for every y > x (respectively y < x), (x, y) ∩X ̸= ∅
(respectively (y, x) ∩X ̸= ∅).

Lemma 10.5. Suppose that dene(R) < |R| and let X ⊆ R be a subset of cardinality |R|.
Then there exist |R|-many elements of X that are both right and left limit points of X.

Proof. We show that all but at most dene(R)-many points in X are right limit points of X.
The same holds for left limit points. The result then follows from the fact that dene(R) <
|R| = |X|.

Let Y be the set of points in X that are not right limit points of X. For every x ∈ Y , there
is some x′ > x such that the interval (x, x′) = Ix is disjoint from X. The family {Ix : x ∈ Y }
has cardinality |Y | and contains only non-empty pairwise disjoint intervals. It follows that
|Y | ≤ dene(R). The proof for the set of left limit points is analogous. □

We may now prove Theorem 10.2.

Proof of Theorem 10.2. Clearly any definably metrizable topological space is metrizable. Fix
(X, τ), with dimX ≤ 1, a definable topological space whose topology is induced by a metric

d. We prove that (X, τ) is definably metrizable by describing a definable metric d̂ that
induces τ . Since every finite metric space is discrete, we may assume that dimX = 1. Let
D be a dense subset of R of cardinality dene(R). By Remark 4.6, we assume that X is a
bounded subset of R.
Consider the definable set S = {x ∈ X : Ex \{x} ≠ ∅}. We begin by proving the following

claim.

Claim 10.5.1. S is finite.

Proof of claim. Towards a contradiction suppose that S is infinite. Let f : S → R±∞ be the
map given by x 7→ minEx \ {x}, which, by Proposition 4.2(b) and Lemma 4.5, is definable.
By Hausdorffness (Lemma 4.12(b)) and o-minimality, there exists an interval I ⊆ S on which
f is e-continuous and strictly monotonic. Note (see Lemma 4.18) that I is in the τ -closure
of D ∩ f(I). Consider the family of d-balls B = {Bd(q, δ) : q ∈ D ∩ f(I), δ ∈ D ∩ (0,+∞)}.
This family has cardinality bounded by dene(R) and, by Lemma 10.3, contains, for every
x ∈ I, a subfamily that is a basis of open τ -neighbourhoods of x.

Now, let h : I → B be a function with the property that, for every x ∈ I, h(x) ∈ B is a
τ -neighbourhood of x such that f(x) /∈ h(x). Such a function can be defined since, for every
x ∈ I, f(x) ̸= x and τ is T1. Since |I| = |R| and |B| ≤ dene(R) < |R|, there must exist,
by the pigeonhole principle, some d-ball B ∈ h(I) such that the set h−1(B) has cardinality
|R|. By Lemma 10.5, there exists x ∈ h−1(B) that is both a right and left limit point of
h−1(B). Recall that f(x) ∈ Ex. Suppose that f(x) ∈ Rx. Then, since B = h(x) is a τ -
neighbourhood of x, there is some z > f(x) such that (f(x), z) ⊆ B. If f is increasing then,
by e-continuity, there is some y > x with (x, y) ⊆ I such that f [(x, y)] ⊆ (f(x), z). Hence,
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for every x′ ∈ (x, y), it holds that f(x′) ∈ B and so, by definition of h, that h(x′) ̸= B.
However, this contradicts that x is a right limit point of h−1(B). Similarly, if f is decreasing,
there is some y < x with (y, x) ⊆ I such that (y, x) ∩ h−1(B) = ∅, contradicting that x is
a left limit point of h−1(B). The argument in the case where f(x) ∈ Lx is analogous. This
completes the proof of the claim. □ (claim)

We now continue the proof of Theorem 10.2. By Theorem 5.9 and Remark 10.4, there
exists a partition X of X into finitely many points and intervals where each interval subspace
in X has either the euclidean or the discrete topology. Let ES =

⋃
x∈S Ex. By Claim 10.5.1

and Lemma 4.5, both S and ES are finite sets. By passing to a finer partition if necessary,
we may require that X has the following two properties.

(i) The elements in S and in ES do not belong in any interval in X .
(ii) For any interval (a, b) ∈ X with the discrete subspace topology, it holds that, if a ∈⋃

x∈X Rx, then b /∈
⋃

x∈X Lx and, if b ∈
⋃

x∈X Lx, then a /∈
⋃

x∈X Rx.

Note that (ii) can be arranged since any discrete interval subspace I that is disjoint from
ES is also disjoint from

⋃
x∈X Ex, and so any proper subinterval of I has the desired property.

First note that, by (i), for any interval I = (a, b) ∈ X , any x ∈ I and any y ∈ X \ I,
it holds that Ex ⊆ {x} and Ey ∩ I = ∅. So, by Lemma 4.18, I is τ -open and, if y ∈ ∂τI,
then it must be that either a ∈ Ry or b ∈ Ly. In particular, by (ii) and Hausdorffness
(Proposition 4.14(c)), if I is discrete then |∂τI| ≤ 1.
Now, let Y ⊆ X be the family of all discrete interval subspaces in X . Let |Y| = n. We

prove the theorem by induction on n.
If n = 0, then X is cell-wise euclidean. In particular, by Remark 2.4, it contains no

definable copy of an interval with either the discrete or the right half-open interval topology
and so, applying Theorem 9.1, (X, τ) is affine, and in particular it is definably metrizable.
Suppose that n > 0 and let Y = {I1, . . . , In}. Let X ′ = X \ In. By induction hypothesis,

the space (X ′, τ) is definably metrizable with some definable metric d′. We extend d′ to a

definable metric d̂ on X such that τd̂ = τ . Let In = I = (a, b). By the argument above,
∂τI = ∅ or |∂τI| = 1. We consider each of these two cases in turn.

Case 0: ∂τI = ∅. In this case, I is a τ -clopen subset of X. Note that the metric min{1, d′}
induces the same topology as d′, hence, by passing to the former if necessary, we may assume
that d′ ≤ 1. We define the metric d̂ on X as follows.

• For all x, y ∈ X ′, d̂(x, y) = d′(x, y).

• For all x ∈ I, y ∈ X, d̂(x, y) = d̂(y, x) = 1, if x ̸= y, and d̂(x, y) = d̂(y, x) = 0
otherwise.

Since the τ -topology on I is discrete, it is easy to check that d̂ is a metric that induces the
topology τ on X.
Case 1: |∂τI| = 1, i.e. ∂τI = {x0} for some x0 ∈ X\I. Recall that, by (i), Ex0∩(a, b) = ∅,

and so (see Lemma 4.18) it must be that either a ∈ Rx0 or b ∈ Lx0 , but not both (by (ii)).
We prove the case where a ∈ Rx0 . The remaining case, where b ∈ Lx0 , is analogous.

Recall that X is bounded, and so I is a bounded interval. Consider the following definable
metric d̂ in X.

• For all x, y ∈ X ′, d̂(x, y) = d′(x, y).

• For all x, y ∈ I, d̂(x, y) = |x− a|+ |y − a|, if x ̸= y, and d̂(x, y) = 0 otherwise.

• For all x ∈ I, y ∈ X ′, d̂(x, y) = d̂(y, x) = |x− a|+ d′(y, x0).
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It is routine to check that d̂ is a metric. We show that τd̂ = τ by proving, using Propo-
sition 4.9, that the identity map (X, τ) → (X, τd̂) is a homeomorphism. Note that, by

definition, d̂ induces the corresponding subspace topologies of τ on X ′ and I, and moreover
I is d̂-open. In particular, since I is τ -open too, we have that X ′ is both τ -closed and d̂-closed
in X. Since τ |X′ = τd̂|X′ , we derive that any definable curve in X ′ τ -converges to a point in

X (necessarily inside X ′) if and only if it d̂ converges to that same point.

Furthermore, note that, by definition of d̂, an injective definable curve γ in I d̂-converges
if and only if it e-converges to a from the right, d̂-converging thus to x0. By the fact that
a ∈ Rx0 and Remark 4.16, γ must then also τ -converge to x0. Conversely, if an injective
definable curve γ in I τ -converges then, by the facts that the τ -topology on I is discrete and
∂τI = {x0}, γ must τ -converge to x0. Recall that, by the assumptions on I, we have that
Ex0 ∩ (a, b) = ∅, a ∈ Rx0 and b /∈ Lx0 . Hence, by Remark 4.16, it must be that γ e-converges

to a from the right, and so, from the definition of d̂, it follows that γ d̂-converges to x0 too.
This completes the proof of the theorem. □

It remains open whether or not Theorem 10.2 can be generalized to spaces of dimension
greater than one.

Question 10.6. Let R be an o-minimal expansion of an ordered field satisfying that
dene(R) < |R|. Is any R-metrizable topological space definable in R definably metrizable?

11. A note on an affiness result by Peterzil and Rosel

The majority of the work in this paper already appeared in the first author’s doctoral
dissertation [3]. After that work had been completed, the authors learned that Peterzil and
Rosel were working on similar questions. Their work resulted in [29]. The main theorem
(page 1) in said paper is the following affiness result, which we present in the terminology of
the present paper.

Theorem 11.1 ([29]). Suppose that R expands an ordered group. Let (X, τ) be a Hausdorff
definable topological space, where dimX = 1 and X is a bounded set. The following are
equivalent.

(1) (X, τ) is affine.
(2) There is a finite set G ⊆ X such that the subspace topology τ |X\G is coarser than the

euclidean topology on X \G.
(3) Every definable subspace of (X, τ) has finitely many definably connected components.
(4) (X, τ) is regular and has finitely many definably connected components.

Furthermore, if R expands an ordered field then the above is true even without the as-
sumption that the set X is bounded.

Their work is in some ways parallel to ours. For example, their notion of set of shadows
S(x) of a point x is effectively the e-accumulation set Ex of x (both notions are equivalent
for Hausdorff topologies, which are the only topologies studied in [29], while in general it
holds that Ex ⊆ S(x)). Similarly, x inhabits the left (respectively right) side of y means
y ∈ Lx (respectively y ∈ Rx).

Moreover, for a definable topological space (X, τ), they refer to the property almost τ ⊆
τaf |X (where τaf is their notation for the euclidean topology τe) to mean the condition
that (X, τ) has a cofinite subspace on which the τ -topology is coarser than the euclidean
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topology. This property clearly implies being cell-wise euclidean. The converse implication
also holds in the case where dimX = 1 as follows. Suppose that X is a finite definable
partition of X into subsets where the subspace τ -topology is euclidean. Consider the set
A =

⋃
{C \ cle(X \C) : C ∈ X , dimC = dimX}. Since τ |C = τe|C for every C ∈ X , observe

that it must be that that τ |A = τe|A. Furthermore, since the euclidean topology satisfies the
fdi, it holds that dimX \A < dimX. In particular if dimX = 1 then X \A is finite, and so
(X, τ) satisfies almost τ ⊆ τaf |X . Statement (2) in Theorem 11.1 can thus be reformulated
as stating either that (X, τ) is almost τ ⊆ τaf |X or that (X, τ) is cell-wise euclidean.
We remark here that there appears to be an infelicity in the proof of the first assertion

in [29, Lemma 3.16], of which the authors of [29] are aware (per private correspondence).
Specifically, the proof relies on the assertion (in our terminology) that, for any Hausdorff
one-dimensional definable topological space (X, τ) and x ∈ X, it holds that Ex \ {x} ⊆⋂

U∈B(x) ∂eU , where B(x) denotes a definable basis of τ -neighbourhoods of x. However,

to see that this statement is false in general suppose that Ex \ {x} ̸= ∅ and X ∈ B(x).
The authors of [29] have communicated to us (by private correspondence) a correction to
their proof, which we understand may be forthcoming. Moreover, observe that the first
statement of [29, Lemma 3.16] in fact corresponds to our Lemma 4.5 localised to Hausdorff
one-dimensional spaces. Therefore, this issue does not present any reason to suppose that
the statement of Theorem 11.1 does not hold.

Furthermore, it is straightforward to derive the statement of Theorem 11.1, in the case
that R expands an ordered field, from the results of this paper. In this setting, in light
of Theorem 5.9, the implications (1) ⇔ (2) ⇔ (3) in Theorem 11.1 are equivalent to our
Theorem 9.1 and Remark 9.2. The implication (1) ⇒ (4) is a classical corollary of o-minimal
cell decomposition (see [13, Chapter 3, Proposition 2.18]) and the easy fact that the euclidean
topology is regular. Finally, the implication (4) ⇒ (1) can be derived using the framework
that we introduced to prove Theorem 6.3 (in particular Lemmas 6.6 and 6.9). We outline
this later in the section (Proposition 11.5).

Although our approach in this paper leads to an affineness characterization only in the case
where R expands an ordered field, whereas the equivalence in Theorem 11.1 can be shown
to hold when R expands an ordered group as long as the underlying set X is bounded, our
alternative approach does allow us to give answers to a number of questions left open in [29].

Firstly, Peterzil and Rosel ask (remark at the end of Section 2 in [29]) if, given a definable
topological space (X, τ) and x ∈ X, the union of all (definable) definably connected sets
containing x is itself definable, i.e. if there exists a (definable) definably connected component
containing x. We answer this question in the positive in the case that (X, τ) is T3 with
dim(X) = 1 in Proposition 11.4 below. In order to prove it we require two lemmas.

Lemma 11.2. Let (X, τ) be a Hausdorff regular definable topological space, with X ⊆ R.
Let Xopen be as defined by Lemma 6.6, and consider a set A =

⋃
0≤i<n fi(I) in Xopen, with

I = (a, b). Let (A∗, τA) and hA : (A, τ) ↪→ (A∗, τA) be as given by Lemma 6.9, with A∗ =
I × {0, . . . ,m}. Suppose that m > 0 and τA = τlex. For any a < c < d < b, if we set

A(c, d,m) = ((c, d]× {0}) ∪ ([c, d)× {m}) ∪
⋃

0<i<m

(c, d)× {i},

then h−1
A (A(c, d,m)) is clopen in (X, τ).

Proof. Fix a < c < d < b. By definition of the τlex topology, the set A(c, d,m) is clopen in
(A∗, τA) = (A∗, τlex) and so, since hA is continuous, the set B = h−1

A (A(c, d,m)) is clopen in
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(A, τ). Since A is τ -open in X it immediately follows that B is τ -open in X too. It remains
to show that it is τ -closed in X.

Let x ∈ clτB. We show that x ∈ B. By Lemma 6.9(2) note that

B ⊆
⋃

0≤i<n

fi([c, d]).

In particular cleB ⊆ A. Since x ∈ clτB then, by Proposition 4.11(b), we have that ∅ ̸=
Ex∩cleB ⊆ A. However, by Lemma 6.5(b) and the fact that A is closed under the equivalence
relation addressed in said lemma (i.e. A =

⋃
z∈I [z] by Lemma 6.6), this implies that x ∈ A.

Since B is closed in (A, τ), we conclude that x ∈ B. □

Lemma 11.3. Let (X, τ) be a Hausdorff regular definable topological space, with X ⊆ R. Let
Xopen be as defined by Lemma 6.6. Suppose that there exists x ∈

⋃
Xopen with x /∈ Rx ∩ Lx.

Then, for every y ∈ X \ {x}, there exists a definable τ -clopen set B with x ∈ B and y /∈ B.
In particular {x} is a maximal definably connected subspace of (X, τ).

Proof. Let us fix x ∈
⋃

Xopen with x /∈ Rx ∩ Lx and y ∈ X \ {x}. Since otherwise the result
is obvious we may assume that neither x nor y is τ -isolated in X.
Following the terminology in Lemma 6.6, let A =

⋃
0≤i<n fi(I) be the set in Xopen satisfying

that x ∈ A, with I = (a, b). Let (A∗, τA) and hA : (A, τ) ↪→ (A∗, τA) be as given by
Lemma 6.9, with A∗ = I × {0, . . . ,m}. Now since x /∈ Rx ∩ Lx and moreover x is not τ -
isolated, note that this avoids Case 5 in the proof of Lemma 6.9, and in all the other cases it
holds that m > 0 and τA = τlex. Consequently, by Lemma 11.2, in order to prove the lemma
it suffices to show that there exists some a < c < d < b such that the set B = h−1

A (A(c, d,m))
contains exactly one point among {x, y}. If y /∈ A then this is obvious, and so we assume
that y ∈ A.

Let hA(x) = ⟨x0, i⟩ and hA(y) = ⟨x1, j⟩, for points x0, x1 ∈ I and 0 ≤ i, j ≤ m. If
x0 ̸= x1, then suppose without loss of generality that x0 < x1. Then it suffices to choose any
a < c < x0 and any x0 < d < x1, and the result clearly follows. Now suppose that x0 = x1.
In particular, by Lemma 6.9(2), note that {x, y} ⊆ {fi(x0) : 0 ≤ i < n}.
Since by assumption both x and y are not τ -isolated then, by Lemma 4.18, we have that

Ex ̸= ∅ and Ey ̸= ∅. In particular, by Lemma 6.6, it holds that [x0]
E = {x0, fn−1(x0)} =

{x, y}. Observe that this corresponds in the proof of Lemma 6.9 to Cases 3 and 4. In both
these cases it holds thatm = n−1, and moreover {hA(x), hA(y)} = {hA(x0), hA(fn−1(x0))} =
{⟨x0, 0⟩, ⟨x0,m⟩}. Finally, note that the set A(x0, b,m) contains the point ⟨x0,m⟩ but does
not contain the point ⟨x0, 0⟩, and so we conclude that the set B = h−1

A (A(x0, b,m)) contains
exactly one point among {x, y}, as desired. □

Proposition 11.4. Let (X, τ) be a Hausdorff regular definable topological space, with X ⊆ R.
For each x ∈ X there exists a maximal definably connected definable set C ⊆ X containing
x. Furthermore, either C = {x} or (C, τ) is an infinite cell-wise euclidean subspace.

Proof. Let Xopen be as defined by Lemma 6.6. Let Z =
⋃
Xsgl∪{x ∈

⋃
Xopen : x ∈ Rx∩Lx}.

Note that, by Lemma 11.3, any point in X \ Z is not contained in any definably connected
set in (X, τ) besides {x}. We show that (Z, τ) is cell-wise euclidean. The proposition follows.
Since Xsgl is finite, to prove that (Z, τ) is cell-wise euclidean it suffices to show that the set

{x ∈
⋃

Xopen : x ∈ Rx ∩ Lx} with the subspace τ -topology is cell-wise euclidean. Let us fix
x in this set. Following the terminology in Lemma 6.6, let A =

⋃
0≤i<n fi(I) ∈ Xopen be such

that x ∈ A. We complete the proof by showing that x ∈ I ⊆ {x ∈
⋃

Xopen : x ∈ Rx ∩ Lx}
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and (I, τ) = (I, τe). Let (A∗, τA) and hA be as given by Lemma 6.9. Since x ∈ Rx ∩ Lx,
note that, by Lemma 6.6, x ∈ I ∪ fn−1(I), and moreover this corresponds to Case 5 in the
proof of Lemma 6.9. Observe that, in Case 5, every point in fi(I) for 0 < i < n is τ -isolated,
and so we derive that x ∈ I. Furthermore, every point x′ ∈ I satisfies that x′ ∈ Rx′ ∩ Lx′ ,
and so I ⊆ {x ∈

⋃
Xopen : x ∈ Rx ∩ Lx}. Additionally, again by the fact that we are in

Case 5, it holds that τA = τAlex and hA(fi(x
′)) = ⟨x′, i⟩ for every x′ ∈ I and 0 ≤ i < n.

Since (I × {0}, τAlex) = (I × {0}, τe), and hA : (A, τ) ↪→ (A∗, τA) is an embedding given by
x′ 7→ ⟨x′, 0⟩ for every x′ ∈ I, we derive that (I, τ) = (I, τe). □

Using Lemma 11.3, we may now also explain how implication (4) ⇒ (1) in Theorem 11.1
(in the case that R expands an ordered field) can be obtained from our approach to these
ideas. Specifically, the implication follows immediately from the proposition below and the
proof of Theorem 9.1, which shows that, if R expands an ordered field, then every one-
dimensional Hausdorff cell-wise euclidean definable topological space is affine.

Proposition 11.5. Let (X, τ) be a Hausdorff regular definable topological space, with X ⊆ R.
If (X, τ) has finitely many definably connected components then it is cell-wise euclidean.

Proof. Let (X, τ) be a T3 definable topological space with X ⊆ R and suppose that it has
finitely many definably connected components. Let Xopen be as defined by Lemma 6.6 and
let A =

⋃
0≤i<n fi(I) be a set in Xopen. We show that (A, τ) = (I, τe). Since

⋃
Xopen is

cofinite in X it follows that (X, τ) is cell-wise euclidean.
Let (A∗, τA) and hA be as defined by Lemma 6.9. Since (X, τ) has finitely many definably

connected components, by Lemma 11.3 it follows that there can only be finitely many points
in A satisfying that x /∈ Rx ∩ Lx. Observe that this rules out Cases 0, 1, 2, 3 and 4 in
the proof of Lemma 6.9. Furthermore observe that, in the only remaining case – Case 5 –
it holds that every point x ∈ fi(I), for 0 < i < n − 1, is τ -isolated, and so, since (X, τ)
has finitely many definably connected components (in particular finitely many τ -isolated
points), it must be that n = 1, i.e. A = f0(I) = I. It then follows directly from the fact
that we are in Case 5 that (A∗, τA) = (I × {0}, τAlex) = (I × {0}, τe). Moreover, hA is a
homeomorphism (I, τ) → (I × {0}, τe) which, by Lemma 6.9(2), is given by x 7→ ⟨x, 0⟩. So
(A, τ) = (I, τ) = (I, τe), as desired. □

Peterzil and Rosel also raise the question of whether or not an analogue to their result,
Theorem 11.1 above, could be obtained for Hausdorff definable topological spaces in higher
dimensions ([29], Section 4.3 (2)). They note that being affine (condition (1)) cannot be
equivalent to condition (2), namely having a cofinite subspace whose topology is coarser than
the euclidean topology, in arbitary dimensions, but they leave as open questions whether or
not being affine is equivalent to condition (3), namely that every definable subspace has
finitely many definably connected components, or to condition (4), namely being regular
and having finitely many definably connected components. We can answer both of these
questions negatively: the non-equivalence of conditions (1), (3) and (4) in dimension greater
than one is given by Examples A.14 and A.16 in the Appendix.

Appendix A. Examples

In this appendix we compile examples that witness the heterogeneity of definable topo-
logical spaces with reference to their (definable) topological properties, and help frame the
results in this paper and their limitations when trying to improve or generalize them.
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The examples are given in the language (0, 1,+,−, ·, <), where R is assumed to expand
an ordered group (R, 0,+,−, <) or an ordered field (R, 0, 1,+,−, ·, <) whenever the corre-
sponding function symbols are involved.

Since we are working in the generality of an o-minimal structure, it is important to note
that we will not address certain classical topological properties of definable topological spaces,
because they are dependent on the specifics of the underlying structure R. These include
compactness, connectedness, separability, normality or metrizability. We consider however
definable versions of these properties (as per the definitions in this paper).

All the examples that are generalizations of classical topological spaces (e.g. definable
Split Interval (Example A.4), definable Alexandrov Double Circle (Example A.13)) behave,
in terms of their definable topological properties, exactly like their classical counterparts.
The only exception to this is the Definable Moore Plane (Example A.12), which is definably
normal.

We begin by recalling the key examples of definable topological spaces that are used and
studied extensively throughout the paper.

Example A.1 (Euclidean topology). The euclidean topology τe on Rn has definable basis{ ∏
1≤i≤n

(xi, yi) : xi < yi, 1 ≤ i ≤ n

}
.

It is T3, definably separable (Proposition 2.8(a)), definably connected and definably metriz-
able. It is moreover definably compact if and only if it is restricted to a closed and bounded
set [30].

Example A.2 (Discrete topology). The discrete topology τs on Rn has definable basis

{{x} : x ∈ Rn}.

Note that this topology is definable on any definable set in any model-theoretic structure.
It is T3 and definably metrizable.

Example A.3 (Half-open interval topologies). The right half-open interval topology (or
lower limit topology) τr has definable basis

{[x, y) : x, y ∈ R, x < y}.

The space (R, τr) is classically called the Sorgenfrey Line.
The left half-open interval topology (or upper limit topology) τl has definable basis

{(x, y] : x, y ∈ R, x < y}.

These topologies are T3 and definably separable (Proposition 2.8(c)). They are also to-
tally definably disconnected (the only definably connected subspaces are singletons) and not
definably metrizable (see Proposition 3.4).

Example A.4 (Definable Alexandrov Double Arrow space or definable Split Interval). Let
X = [0, 1] × {0, 1}. The definable Alexandrov Double Arrow space (or definable Split
Interval) is the space (X, τlex), where τlex denotes the topology induced by the lexicographic
order on X. The space is classically called the Alexandrov Double Arrow space (or Split
Interval) whenR expands (R, <). It is T3, definably compact, definably separable and totally
definably disconnected.
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It is not definably metrizable since the bottom line [0, 1]×{0} is definably homeomorphic
to ([0, 1], τl) and the top line [0, 1] × {1} to ([0, 1], τr). It is also worth noting that (X, τ)
does not satisfy the fdi, since ∂([0, 1] × {0}) = [0, 1) × {1}. Moreover, one may show
that [0, 1]× {0} is not a boolean combination of open definable sets, which was a tameness
condition for definable topologies considered by Pillay in [31].

The following two examples, the definable n-split interval and definable Alexandrov n-line,
were already introduced in Definitions 6.1 and 6.2, and play a crucial role in Theorem 6.3.
They were motivated by the classical Split Interval (see Example A.4 above) and Alexandrov
Double Circle (see Example A.13 below) respectively.

Example A.5 (Definable n-split interval). Let n > 0. We call the space (R × {0, . . . , n −
1}, τlex) the definable n-split interval.
If n = 1, then note that (R × {0}, τlex)= (R × {0}, τe). If n > 1, then, by analogy to

the definable Split Interval (Example A.4), the definable n-split interval is T3, definably
separable, totally definably disconnected, not definably metrizable and it does not have the
fdi. Furthermore, it is not definably compact but every subspace of the form I×{0, . . . , n−1},
where I ⊆ R is a closed and bounded interval, is definably compact.
Moreover, for any 0 < n < m < ω, the spaces (R×{0, . . . , n−1}, τlex) and (R×{0, . . . ,m−

1}, τlex) are not definably homeomorphic. In fact, they are not even in definable bijection,
since they have different Euler characteristic (see [13, Chapter 4]). Specifically, observe that
every finite cell partition of R × {0, . . . , n − 1} will contain n more cells of dimension one
than points. And similarly every cell partition of R × {0, . . . ,m − 1} will contain m more
cells of dimension one than points. On the other hand, by o-minimal cell decomposition,
every definable injection from R× {0, . . . , n− 1} to R× {0, . . . ,m− 1} can be decomposed
into disjoint definable bijections between singletons and one-dimensional cells, and so any
such injection is not surjective.

Example A.6 (Definable Alexandrov n-line). For any y < x < z in R, let

A(x, y, z) = {⟨x, 0⟩} ∪ (((y, z) \ {x})×R).

Let τAlex be the topology on R2 with definable basis

{A(x, y, z) : y < x < z} ∪ {{⟨x, y⟩} : y ̸= 0}.

Let n > 0. The definable Alexandrov n-line is the definable topological space (R×{0, . . . , n−
1}, τAlex). In the case that n = 1, this is a definable analogue of the classical Alexandrov
double of the space (R, τe) (see [14]).

This space is T3. If n = 1, then it is simply the euclidean topology on R × {0}. Suppose
that n > 1. The subset R × {i} for any i > 0 contains only isolated points, and so the
space is not definably separable. For any closed and bounded interval I ⊆ R, the subspace
I × {0, . . . , n− 1} is definably compact but not definably separable. It follows that it is not
definably metrizable (see [41, Lemma 7.4], which states that any definably compact definable
metric space is definably separable). Hence the definable Alexandrov n-line, for n > 1, is
not definably metrizable.

For any 0 < n < m < ω, the sets R × {0, . . . , n − 1} and R × {0, . . . , n − 1} are not in
definable bijection (see Example A.5), and so in particular the spaces (R×{0, . . . , n−1}, τAlex)
and (R× {0, . . . ,m− 1}, τAlex) are not definably homeomorphic.
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The next five examples are provided in order to illustrate the necessity of certain hypothe-
ses in some of the key results of this paper, in particular Proposition 4.24, Proposition 5.1,
Corollary 5.2, Theorem 5.9, Corollary 5.10 and Theorem 9.1.

Example A.7. Consider the following definable basis for a topology on R.

{(−∞, x] : x ∈ R}.

The resulting space is T0 but not T1. Any subspace with more than one element fails to be
T1; in particular, no interval subspace of this space has the euclidean, discrete or half-open
interval topologies. Consequently, the T1 assumption in Proposition 5.1 and Corollary 5.2
(the definable version of the Gruenhage 3-element-basis Conjecture) cannot be weakened to
T0.

Example A.8. Consider the definable family of sets

{(−∞, x) ∪ (y, z) : x < y < z}.

It is a basis for a topology τ on R that is T1 but not Hausdorff.
Any finite definable partition of R must include an interval of the form (−∞, x), whose

subspace topology is not Hausdorff. In particular, (R, τ) cannot be decomposed into finitely
many definable subspaces with the euclidean, discrete or half-open interval topologies. It
follows that the Hausdorffness assumption in Theorem 5.9 (and hence in Corollary 5.10)
cannot be weakened to T1-ness.

Example A.9. Let X = [0, 1)∪{2} and consider a topology τ on X such that the subspace
topology τ |[0,1) is euclidean and a basis of open neighbourhoods of {2} is given by

{(0, x) ∪ {2} : 0 < x < 1}.

This topology is clearly definable and T1 but not Hausdorff, since points 0 and 2 fail to have
disjoint neighbourhoods. In particular, it is not regular. It is easy to observe that it satisfies
the fdi. Since it fails to be regular, it illustrates the necessity of the Hausdorffness assumption
in Proposition 4.24. Moreover, we note, by considering the partition into subspaces (0, 1)
and {2}, that this space is cell-wise euclidean. So it is also not true that every cell-wise
euclidean one-dimensional space is Hausdorff, and in particular affine.

Example A.10. Let X = R× {0, 1} and consider a topology τ on X given by the basis

{{⟨x, 0⟩} ∪ ((x, y)× {1}) : x < y} ∪ {(z, x]× {1} : z < x}.

This space is Hausdorff but not regular, since R×{0} is a closed set and, for any x ∈ R and
any neighbourhood U = (z, x]×{1} of ⟨x, 1⟩, we have clτ (U)∩ (R×{0}) = [z, x)×{0} ≠ ∅.
Moreover, note that, since ∂τ (R × {1}) = R × {0}, this space does not satsify the fdi.
This example therefore illustrates the necessity of the assumption of satisfying the fdi in
Proposition 4.24.

This example also illustrates a key fact about our notion of definable separability (Defini-
tion 2.5). Recall that any definable subspace of a definably separable definable metric space
is also definably separable (see Lemma 3.5). The space (X, τ) in the current example is
definably separable, but the subspace R×{0} is infinite and discrete, hence (X, τ) is not de-
finably metrizable, and, moreover, we see that definable separability, much like separability,
is not in general a hereditary property.
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Example A.11. Let X = {⟨0, 0⟩} ∪ [0, 1) × (0, 1). Consider the topological space (X, τ),
where the subspace X \ {⟨0, 0⟩} is euclidean, and a basis of open neighbourhoods for ⟨0, 0⟩
is given by sets

A(t) = {⟨0, 0⟩} ∪ ((0, 1)× (0, t)) ,

for 0 < t < 1. The topology τ is clearly definable and Hausdorff. Moreover, for any 0 < t < 1,
the τ -closure of A(t) is {⟨0, 0⟩}∪ [0, 1)× (0, t], and so the space is not regular, since the point
⟨0, 0⟩ and the closed set {0} × (0, 1) are not separated by neighbourhoods.

Since (X, τ) is T1 and the subspace X \ {⟨0, 0⟩} is euclidean, it easily follows that (X, τ)
satisfies the fdi. Hence (X, τ) is Hausdorff and satisfies the fdi but fails to be regular, thus
is a counterexample to the generalization of Proposition 4.24 to spaces of dimension greater
than one.

Moreover, the space can be partitioned into two euclidean subspaces, namely {⟨0, 0⟩} and
X \{⟨0, 0⟩}; in particular it contains no definable copy of an interval with either the discrete
or the right half-open interval topology. However, it is not metrizable, since it is not regular.
Hence it is a counterexample to a generalization of Theorem 9.1 to spaces of dimension two.

For the remaining examples, let B2(⟨x, y⟩, t), for ⟨x, y⟩ ∈ R2 and t > 0, denote the ball in
the 2-norm of center ⟨x, y⟩ and radius t, namely

B2(⟨x, y⟩, t) = {⟨x′, y′⟩ ∈ R2 : (x− x′)2 + (y − y′)2 < t2}.

Example A.12 (Definable Moore Plane). LetX = {⟨x, y⟩ ∈ R2 : y ≥ 0} be the closed upper
half-plane. Let Be be a definable basis for the euclidean topology in {⟨x, y⟩ ∈ R2 : y > 0}
and, for any x ∈ R and ϵ > 0, let

A(x, ε) = B2(⟨x, ε⟩, ε) ∪ {⟨x, 0⟩}.

The family B = Be ∪ {A(x, t) : x ∈ R, t > 0} is clearly definable and forms a basis for a
topology τ . We call the space (X, τ) the definable Moore Plane.

This space is T3 and definably separable but not definably metrizable since the subspace
R × {0} is infinite and discrete (see Lemma 3.5). When R expands the field of reals, the
Moore Plane is a classical example of a separable non-normal space (and in particular, it is
not metrizable).

It is worth noting that, even though our definition of definable normality (Definition 4.20)
seems the natural adaptation of the classical notion, the classical Moore Plane fails to be
normal, but one may show that the definable Moore Plane is definably normal. This suggests
that our notion of definable normality might not be adequate. Moreover, Fornasiero also
considered this same notion of definable normality in unpublished work [17] (seen in private
correspondence) where he showed that a definable topological space that is definably compact
(in the sense of condition (2.1)) and Hausdorff is not necessarily definably normal, in contrast
to the classical fact that a compact Hausdorff space is normal. (However, he did also show
that if a definably compact, Hausdorff space is given by a definable uniformity (see [34] for
definitions), then it is indeed definably normal in this sense.)

Example A.13 (Definable Alexandrov Double Circle). Let X = C1 ∪C2, where C1 and C2

denote respectively the unit circle and circle of radius two in R2 centered at the origin. Let
f : C1 → C2 be the natural e-homeomorphism given by x 7→ 2x. Let

B1 = {(B2(x, t) ∩ C1) ∪ f(B2(x, t) ∩ C1 \ {x}) : x ∈ C1, t > 0}
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and B2 = {{x} : x ∈ C2}. The definable Alexandrov Double Circle is the topology on X
generated by the basis B1 ∪ B2.
This space is definably compact and Hausdorff, but not definably separable, since C2 is

an infinite definable set of isolated points. It follows (see [41, Lemma 7.4]) that it is not
definably metrizable. It also fails to satisfy the fdi, since the outer circle C2 is a dense subset.

When R expands the field of reals this space is simply called the Alexandrov Double
Circle and is a classical example of a compact non-separable space (hence one that is not
metrizable).

The following example shows that there exists a Hausdorff two-dimensional definable topo-
logical space that does not contain a definable copy of an interval with either the discrete or
the lower limit topology but still fails to be cell-wise euclidean. This shows that Remark 9.4
cannot be generalized to higher dimensions. In particular, this example is not affine but, by
Theorem 9.1, any one-dimensional subspace is affine (i.e. it is “line-wise” affine). This is
proved below in Proposition A.15.

Example A.14 (The definable hollow plane). We construct a basis for a topology τ̂ on R2

by considering, for each point x, a basis of open neighbourhoods given by open euclidean
balls without the graph of f(t) = t2, for 0 < t, translated to have its origin at x. That is,
for a given x = ⟨x1, x2⟩ ∈ R2, let Γx := {⟨x1+ t, x2+ t2⟩ : t > 0}. Now let B be given by sets

A(x, t) = B2(x, t) \ Γx,

for x ∈ R2 and t > 0. We call A(x, t) a τ̂ -ball of center x and radius t.
We claim that B is a basis for a topology on R2. In order to prove this, let A0 and A1 be

intersecting sets in B and let x ∈ A0 ∩ A1. We show that there exists some ε > 0 such that
A = A(x, ε) satisfies that A(x, ε) ⊆ A0 ∩ A1.

For any y ∈ R2 and t > 0, let A∗(y, t) = A(y, t) \ {y}. Note that, for any A ∈ B, the set
A∗ is e-open.

Case 1: x ∈ A∗
0 ∩ A∗

1.: Since A
∗
0∩A∗

1 is e-open, there is some ε > 0 such that B2(x, ε) ⊆
A∗

0 ∩ A∗
1 ⊆ A0 ∩ A1. Hence we may take A = A(x, ε) ⊆ B2(x, ε).

Case 2: x /∈ A∗
0 ∩ A∗

1.: Without loss of generality, suppose that A0 = A(x, ε0), for
some ε0 > 0. If A1 = A(x, ε1), for some ε1 > 0, let ε = min{ε0, ε1} and A = A(x, ε).
Otherwise, by analogy to Case 1, let ε2 > 0 be such that A(x, ε2) ⊆ A∗

1 and let
A = A(x, ε), where ε = min{ε0, ε2}.

So we may conclude that B is a topological basis. Let τ̂ be the corresponding topology. We
call (R2, τ̂) the definable hollow plane.

Every e-open set in R2 is also τ̂ -open, i.e. τe ⊊ τ̂ . In particular (R2, τ̂) is Hausdorff.
It fails, however, to be regular, since it is easy to check that, for any x ∈ R2 and ε > 0,
clτ̂A(x, ε) = cleB2(x, ε), and so, for every τ̂ -neighbourhood A of x, clτ̂A ∩ Γx ̸= ∅. This
space, however, is definably separable, which follows from (1) in the following proposition.
One may also show that it is definably connected.

Proposition A.15. The following are properties of the definable hollow plane (R2, τ̂).

(1) Any one-dimensional subspace of (R2, τ̂) is affine.
(2) No two-dimensional subspace of (R2, τ̂) is cell-wise euclidean. In particular, no two-

dimensional subspace of (R2, τ̂) is affine.
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Proof. Statement (2) is obvious from the definition. We prove (1). By Theorem 9.1, it
suffices to show that (R2, τ̂) contains no subspace definably homeomorphic to an interval
with either the discrete or the right half-open interval topology.

Towards a contradiction, let I ⊆ R be an interval and let f : (I, µ) ↪→ (R2, τ̂) be a
definable embedding, where µ ∈ {τr, τs}. By o-minimality, after restricting f if necessary,
we may assume that f is an e-embedding too.

Since µ = τr or µ = τs and f is an embedding, it follows that, for any t ∈ I,
τ̂ -lims→t− f(s) ̸= f(t) (see Proposition 4.9). So, by o-minimality, for every t ∈ I, there
exists some εt > 0 and s′ < t in I such that, for all s′ < s < t, f(s) /∈ A(f(t), εt).
However, since f is an e-embedding, there is also some s′ < s′′ < t such that, for
all s′′ < s < t, f(s) ∈ B2(f(t), εt), and so f [(s′′, t)] ⊆ Γf(t). For any t ∈ I, let
st = inf{s ∈ I : s < t, f [(s, t)] ⊆ Γf(t)}. This family is definable uniformly in t ∈ I.
Since st < t for all t ∈ I, by o-minimality, passing to a subinterval on which t 7→ st is
continuous, if necessary, there exists an interval J ⊆ I such that, for every t ∈ J , st < J . In
other words, for every s < t in J , it holds that f(s) ∈ Γf(t).
We now claim that, for any two distinct points y, z ∈ R2, |Γy ∩ Γz| = 1. In that case, we

have a contradiction, since we have shown that, for any s, s′, t, t′ ∈ J , if s < s′ < t < t′, then
{f(s), f(s′)} ⊆ Γf(t) ∩ Γf(t′). It therefore remains to prove the claim.

Let y = ⟨y1, y2⟩ ∈ R2 and z = ⟨z1, z2⟩ ∈ R2, with y ̸= z. Suppose that there exist t, s > 0
such that

⟨y1 + t, y2 + t2⟩ = ⟨z1 + s, z2 + s2⟩.
If y1 = z1, then we would have t = s and hence y = z, so in fact we must have y1 ̸= z1. We
then substitute s = t+ y1 − z1 into t2 = z2 − y2 + s2 in order to get

t2 = z2 − y2 + t2 + 2t(y1 − z1) + (y1 − z1)
2,

and hence

t =
y2 − z2 − (y1 − z1)

2

2(y1 − z1)
, s =

y2 − z2 + (y1 − z1)
2

2(y1 − z1)
,

which gives us the unique point in Γy ∩ Γz, which proves the claim. □

In light of Example A.14, a natural question to ask is whether or not we may instead
obtain an analogue to Theorem 9.1 for spaces of all dimensions by substituting the condition
of having a definable copy of an interval with either the τr or the τs topology (condition (1)
in Theorem 9.1) for simply not being cell-wise euclidean. The answer, even if adding the
additional assumption that the space be regular, is no, as witnessed by the following, our
final example.

Example A.16 (Space that is T3 and cell-wise euclidean but not definably metrizable). Let
X = {⟨x, y⟩ ∈ R2 : y ≥ 0} be the closed upper half-plane. Let Be be a definable basis for
the euclidean topology in {⟨x, y⟩ ∈ R2 : y > 0}. For any x ∈ R and t > 0, let

A(x, t) = {⟨x, 0⟩} ∪ {⟨x′, y⟩ ∈ R2 : |x′ − x| < t, 0 ≤ y < t|x′ − x|}.
Note that, for every x ∈ R and t > 0, there is t′ > 0 such that A(x, t′) ⊆ B2(⟨x, 0⟩, t), while
the converse is not true (we have that B2(⟨x, 0⟩, t′) ⊈ A(x, t) for every x ∈ R and t, t′ > 0).
Moreover, for every x ∈ R, the family {A(x, t) : t > 0} is nested and, for every t > 0, the set
A(x, t)\{⟨x, 0⟩} is e-open in X. From these three facts it follows, in a manner similar to the
case analysis in Example A.14 , that the definable family Bτ̃ = Be ∪ {A(x, t) : x ∈ R, t > 0}
is a basis for a topology τ̃ on X.
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Since we have τe|X ⊊ τ̃ , the topology τ̃ is Hausdorff. Note that, for every x ∈ R and
t > 0, we have clτ̃A(x, t) = cleA(x, t), and so (X, τ̃) is also regular. Moreover, the disjoint
subspaces {⟨x, y⟩ : x ∈ R, y > 0} and {⟨x, y⟩ : x ∈ R, y = 0} are both euclidean, i.e. the
space is cell-wise euclidean. In particular, the space is definably separable. Finally, it is also
definably connected.

When R expands the field of reals this space is separable but not second countable and
thus not metrizable. From the completeness of the theory of real closed fields it follows that
there is no metric on X definable in the language of ordered rings that induces τ̃ . We show
that this holds in greater generality.

Proposition A.17. The space (X, τ̃) is not definably metrizable.

Proof. Towards a contradiction, suppose that (X, τ̃) is definably metrizable with definable
metric d. For every x ∈ R, let

rx = sup{0 < t < 1 : Bd(⟨x, 0⟩, t) ∩ ({x} × (0,∞)) = ∅}.
Note that, by definition of the neighbourhoods A(x, t), we have necessarily that rx > 0, for
every x ∈ R. By o-minimality, there exists an interval I ⊆ R and some r > 0 such that,
for every x ∈ I, we have r ≤ rx. Now fix x ∈ I and consider the d-ball Bd(⟨x, 0⟩, r/2).
By definition of τ̃ , there exists some y ∈ I \ {x} and some s > 0 such that {y} × [0, s] ⊆
Bd(⟨x, 0⟩, r/2). But then, by the triangle inequality, d(⟨y, 0⟩, ⟨y, s⟩) ≤ d(⟨y, 0⟩, ⟨x, 0⟩) +
d(⟨x, 0⟩, ⟨y, s⟩) < r ≤ ry. This is a contradiction since, for every 0 < t < ry, Bd(⟨y, 0⟩, t) ∩
({y} × (0,∞)) = ∅. □
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