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All sets and maps are definable in a polynomially bounded o-minimal

structure over R with the field of exponents F, e.g., semialgebraic

or subanalytic with F = Q.

A set X ⊂ Rn inherits from Rn two metrics:

the outer metric dist(x, y) = |y − x| and the inner metric

idist(x, y) = length of the shortest path in X connecting x and y.

X is normally embedded if these two metrics on X are equivalent.

A surface germ is a closed two-dimensional germ X at the origin.

Germs X and Y are outer (inner) Lipschitz equivalent if there is

an outer (inner) bi-Lipschitz homeomorphism X → Y .
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For β ∈ F, β ≥ 1, the standard β-Hölder triangle is the set

Tβ = {(x, y) ∈ R2 | x ≥ 0, 0 ≤ y ≤ xβ}.

The standard β-horn is Cβ = {(x, y, z) ∈ R3 | z ≥ 0, x2 + y2 = z2β}.
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A β-Hölder triangle is a germ inner Lipschitz equivalent to Tβ.

A β-horn is a germ inner Lipschitz equivalent to Cβ.
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Inner Lipschitz classification of surface germs: Birbrair 99.

Canonical decomposition of a surface germ X into βi-Hölder

triangles with singular boundary arcs and βj-horns.

Complete invariant of the inner Lipschitz equivalence class of X.

Finiteness theorems: Mostowski 85, Parusinski 94, Valette 05.

Any definable family has finitely many outer Lipschitz equivalence

classes.

Our goal: Outer Lipschitz classification of surface germs.

Decomposition of X into normally embedded Hölder triangles, with

some additional data, unique up to outer Lipschitz equivalence.

Complete invariant of the outer Lipschitz equivalence class of X.
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An arc γ in X is a germ of a map γ : [0, ǫ) → X such that |γ(t)| = t.

The Valette link V (X) is the space of all arcs in X.

Tangency order tord(γ, γ′) ∈ F∪ {∞} of γ and γ′ is the exponent κ

in |γ − γ′| = ctκ+(higher terms), c 6= 0.

An arc is Lipschitz non-singular if it is an interior arc of a normally

embedded Hölder triangle T ⊂ X. There are finitely many Lipschitz

singular arcs in V (X).

A Lipschitz singular arc may contain Lipschitz regular points of X.

A Hölder triangle is non-singular if all its interior arcs are Lipschitz

non-singular.
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A zone is a set Z ⊂ V (X) such that for any arcs γ 6= γ′ in Z there

is a non-singular Hölder triangle T bounded by γ and γ′ such that

V (T) ⊂ Z.

The order ord(Z) of a zone Z is the infimum of tangency orders of

arcs in Z. A singular zone Z = {γ} has order ∞.

A zone Z is closed if there are arcs γ and γ′ in Z such that

tord(γ, γ′) = ord(Z), otherwise Z is open.

An arc γ in a β-Hölder triangle T = T(γ1, γ2), bounded by the arcs

γ1 and γ2, is generic if tord(γ, γ1) = tord(γ, γ2) = β.

A zone Z is perfect if, for any γ 6= γ′ in Z, there is a Hölder triangle

T such that V (T) ⊂ Z and both γ and γ′ are generic arcs of T .
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Special case: pizza. Let X be the union of a β-Hölder triangle

T in the xy-plane and a graph z = f(x, y) of a Lipschitz function f

defined on T , such that f(0,0) = 0.

The order of f on γ ⊂ T is ordγf = tord(γ, γ′) where γ′ = (γ, f(γ)).

Let Q(T) ⊂ F ∪ {∞} be the set of q = ordγf for all γ ⊂ T .

The set Q(T) is a closed interval in F ∪ {∞}.

T is elementary if Zq = {γ ⊂ T, ordγf = q} is a zone for any

q ∈ Q(T). The width function on Q(T) is defined as µ(q) = ord(Zq).

T is a pizza slice if either Q(T) is a single point, or µ(q) = aq + b

is affine, where a 6= 0.

The boundary arc γ̃ of T where µ is maximal is its supporting arc.
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A pizza on T associated with f is a decomposition of T into Hölder

triangles Tj, each of them a pizza slice, with several toppings:

• exponent βj of Tj,

• closed interval Qj = Q(Tj) in F ∪ {∞},

• affine width function µj(q) on Qj,

• supporting arc γ̃j of Tj (when Qj is not a point),

• sign sj of f on Tj (not needed if f is non-negative).

A pizza is minimal if the union of any two adjacent pizza slices is

not a pizza slice.

Theorem (Birbrair et al. 17). The minimal pizza exists and

is unique, up to bi-Lipschitz equivalence, for the Lipschitz

contact equivalence class of f.
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For a non-negative Lipschitz function f on T , Lipschitz contact

equivalence class of f is the same as outer Lipschitz equivalence

class of the union X of T and the graph of f .

All toppings of a minimal pizza are canonical, while the pizza slices

Tj are not. However, boundary arcs of Hölder triangles Tj can be

placed in canonical perfect zones Zi ⊂ V (T). Here is the plan:

1. Identify a canonical finite family of perfect boundary zones

Zi ⊂ V (T) where boundary arcs of Tj can be placed.

2. Choose arbitrary boundary arcs of Hölder triangles Tj inside

the zones Zi. All choices define minimal pizzas for f , resulting in

outer Lipschitz equivalent decompositions of X.

3. Replace this geometric construction with a canonical abstract

combinatorial object to get outer Lipschitz invariant of X.
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Example: f(x, y) = y2 − x3. We have f |γ± ≡ 0, where

γ± = {x ≥ 0, y = ±x3/2} are singular boundary zones.

There are six boundary zones of finite order µ:
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The set of arcs γ such that q = ordγf = 3 consists of four zones:

Z+, Z−, Z0, Z ′
0. Each of them is perfect of order µ = 3/2.

The set of arcs γ such that q = ordγf = 2 consists of two zones:

Z ′
+ and Z ′

−. Each of them is perfect of order µ = 1.
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A minimal pizza for f consists of eight slices Tj with the boundary

arcs γ+, γ− and an arbitrary arc selected in each of the six other

boundary zones.
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General surface germ X: normal and abnormal zones.

A Lipschitz non-singular arc γ ⊂ X is abnormal if there are normally

embedded Hölder triangles T and T ′ in X such that γ = T ∩ T ′ and

T ∪ T ′ is not normally embedded. Otherwise, γ is normal.

A zone Z ⊂ V (X) is abnormal (resp., normal) if all arcs in Z are

abnormal (resp., normal).

An abnormal (resp., normal) zone is maximal if it is not contained

in a larger abnormal (resp., normal) zone.

Theorem (AG, Souza 21) For any surface germ X, there is a

canonical partition of V (X) into finitely many maximal abnor-

mal and maximal normal zones. All normal zones are normally

embedded. All maximal abnormal zones are closed perfect and

weakly normally embedded.
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Snakes, circular snakes, bubble snakes and non-snake bubbles.

A β-snake is a non-singular β-Hölder triangle T such that each arc

in V (T) is abnormal iff it is generic. A maximal abnormal β-zone

Z ⊂ V (X) is a snake zone if there is a β-Hölder triangle T ⊂ X

such that Z ⊂ V (T).
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A circular β-snake is a β-horn C such that all arcs in the circular

β-snake zone V (C) are abnormal.
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A bubble is a Hölder triangle T bounded by γ1 and γ2, such that
tord(γ1, γ2) > itord(γ1, γ2), partitioned into normally embedded
triangles by an arc γ. A bubble snake is a bubble that is a snake.

A non-snake bubble is a bubble that does not contain a snake.

A non-snake abnormal zone is a maximal abnormal zone Z ⊂ V (T)
where T is a non-snake bubble.
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Theorem (AG, Souza 21) Each maximal abnormal β-zone in

V (X) is either a β-snake zone, or V (C) where C is a circular

β-snake, or a non-snake abnormal β-zone Z ⊂ V (T) where T is

a non-snake η-bubble for some η < β.

Each non-snake abnormal β-zone is closed perfect and normally

embedded.

Each maximal β-snake zone, and each circular β-snake zone, has a

canonical partition into finitely many normally embedded β-zones:
closed perfect segments and open perfect nodal zones.

A boundary nodal zone of a β-snake zone Z is a normal zone

where a boundary arc of a β-snake T may be placed, so that Z is

the set of generic arcs of T .

Each boundary nodal zone is an open, normally embedded β-zone.
If it is not perfect, then it contains either a Lipschitz singular arc or

a perfect boundary nodal zone of an α-snake, for some α > β, or it

is adjacent to a non-snake abnormal α-zone, for some α > β.
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Segments, nodal zones (red) and boundary nodal zones (green).

b

b

b

b

bbb

b

18



Outer Lipschitz invariant decomposition of a surface germ X.

A pair (T, T ′) of normally embedded Hölder triangles is transversal

if T ∪ T ′ is a subset of a normally embedded triangle.

A non-transversal pair (T, T ′) is coherent if it is outer Lipschitz

equivalent to the union of a pizza slice T for a Lipschitz function f

and the graph T ′ of f over T .

Step 1. Define canonical primary zones in V (X) as

• Lipschitz singular arcs,

• Maximal normal zones,

• Segments and nodal zones of snake zones and circular snakes,

• Boundary nodal zones of snakes,

• Non-snake abnormal zones.
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Step 2. Using pizza decomposition for the “distance functions”

between primary zones, define secondary zones in V (X) so that

minimal (by inclusion) secondary zones are perfect.

Step 3. Placing boundary arcs in minimal secondary zones,

decompose X into finitely many isolated arcs and normally embed-

ded Hölder triangles, so that any two triangles are either coherent

or transversal, and all choices of arcs result in outer Lipschitz equiv-

alent decompositions.

This step involves proper order in which the boundary arcs are

placed, starting with isolated arcs and Lipschitz singular arcs.

Extra tertiary zones are associated with some boundary arcs, where

more boundary arcs should be placed.
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Example: Secondary zones in Step 2

21



Example: Tertiary zones in Step 3
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Main Theorem.

There is a unique up to outer Lipschitz equivalence decom-

position of a surface germ X into isolated arcs and normally

embedded Hölder triangles, such that any two triangles are

either coherent or transversal.

Two such decompositions are combinatorially equivalent if

there is one-to-one correspondence between their arcs and

triangles, preserving adjacency relations, tangency exponents

between any two isolated arcs and/or boundary arcs of tri-

angles, and pizza toppings for the distance between any two

coherent triangles: interval Q ⊂ F∪ {∞}, width function µ(q) =

aq + b on Q, supporting arc γ̃.

Two surface germs are outer Lipschitz equivalent if and only if

their canonical decompositions are combinatorially equivalent.
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