Zero-one laws of finitely presented structures

Meng-Che "Turbo" Ho

Joint with Johanna Franklin and Julia Knight

California State University, Northridge
Purdue University Model Theory and Applications Seminar Mar 16, 2021

Zero-one law for graphs

Erdos-Renyi random graphs $G(n, p)$:

Zero-one law for graphs

Erdos-Renyi random graphs $G(n, p)$: vertices $=\{0,1, \cdots, n-1\}$

Zero-one law for graphs

Erdos-Renyi random graphs $G(n, p)$:
vertices $=\{0,1, \cdots, n-1\}$
each pair of vertices has an edge with probability p

Zero-one law for graphs

Erdos-Renyi random graphs $G(n, p)$:
vertices $=\{0,1, \cdots, n-1\}$
each pair of vertices has an edge with probability p
Theorem (Fagin, '76)
Let φ be a first-order sentence in the language of graphs. Then $\operatorname{Pr}(G(n, p) \vDash \varphi) \rightarrow 0$ or 1 as $n \rightarrow \infty$.

Zero-one law for graphs

Erdos-Renyi random graphs $G(n, p)$:
vertices $=\{0,1, \cdots, n-1\}$
each pair of vertices has an edge with probability p

Theorem (Fagin, '76)

Let φ be a first-order sentence in the language of graphs. Then $\operatorname{Pr}(G(n, p) \vDash \varphi) \rightarrow 0$ or 1 as $n \rightarrow \infty$. Furthermore, the probability is 1 iff the random graph $G(\infty, p) \vDash \varphi$.

Knight's conjecture

- Gromov '87: Definition of random groups

Knight's conjecture

- Gromov '87: Definition of random groups
- Random groups are infinite, torsion-free, non-abelian, hyperbolic, one-ended, and has lots of free subgroups.

Knight's conjecture

- Gromov '87: Definition of random groups
- Random groups are infinite, torsion-free, non-abelian, hyperbolic, one-ended, and has lots of free subgroups.
- Tarski's problem (Sela '06; Kharlampovich and Myasnikov '06):

Knight's conjecture

- Gromov '87: Definition of random groups
- Random groups are infinite, torsion-free, non-abelian, hyperbolic, one-ended, and has lots of free subgroups.
- Tarski's problem (Sela '06; Kharlampovich and Myasnikov '06): non-abelian free groups of different ranks are elementarily equivalent

Knight's conjecture

- Gromov '87: Definition of random groups
- Random groups are infinite, torsion-free, non-abelian, hyperbolic, one-ended, and has lots of free subgroups.
- Tarski's problem (Sela '06; Kharlampovich and Myasnikov '06): non-abelian free groups of different ranks are elementarily equivalent

Conjecture (Knight, '13)

A first-order sentence is true in a free group iff it is true in a random group.

A toy example

$$
L=\left\{S(x), S^{-1}(x)\right\}
$$

A toy example

$$
\begin{aligned}
& L=\left\{S(x), S^{-1}(x)\right\} \\
& T=\text { "S and } S^{-1} \text { are inverse functions." }
\end{aligned}
$$

A toy example

$$
\begin{aligned}
L & =\left\{S(x), S^{-1}(x)\right\} \\
T & =\text { "S and } S^{-1} \text { are inverse functions." }
\end{aligned}
$$

Consider a single generator a.

A toy example

$$
\begin{aligned}
& L=\left\{S(x), S^{-1}(x)\right\} \\
& T=\text { "S and } S^{-1} \text { are inverse functions." }
\end{aligned}
$$

Consider a single generator a.
Random identities: $S^{\epsilon_{1}} \ldots S^{\epsilon_{i}}(a)=S^{\epsilon_{1}} \ldots S^{\epsilon_{j}}(a)$

A toy example

$$
\begin{aligned}
& L=\left\{S(x), S^{-1}(x)\right\} \\
& T=" S \text { and } S^{-1} \text { are inverse functions." }
\end{aligned}
$$

Consider a single generator a.
Random identities: $S^{\epsilon_{1}} \ldots S^{\epsilon_{i}}(a)=S^{\epsilon_{1}} \ldots S^{\epsilon_{j}}(a) \Leftrightarrow S^{k}(a)=a$

A toy example

$$
\begin{aligned}
& L=\left\{S(x), S^{-1}(x)\right\} \\
& T=" S \text { and } S^{-1} \text { are inverse functions." }
\end{aligned}
$$

Consider a single generator a.
Random identities: $S^{\epsilon^{\epsilon}} \ldots S^{\epsilon_{i}}(a)=S^{\epsilon_{1}} \ldots S^{\epsilon_{j}}(a) \Leftrightarrow S^{\kappa}(a)=a$ What happens when $i, j \rightarrow \infty$?

A toy example

$$
\begin{aligned}
& L=\left\{S(x), S^{-1}(x)\right\} \\
& T=\text { "S and } S^{-1} \text { are inverse functions." }
\end{aligned}
$$

Consider a single generator a.
Random identities: $S^{\epsilon_{1}} \ldots S^{\epsilon_{i}}(a)=S^{\epsilon_{1}} \ldots S^{\epsilon_{j}}(a) \Leftrightarrow S^{k}(a)=a$
What happens when $i, j \rightarrow \infty$?

Lemma

Over T, every sentence is equivalent to a Boolean combination of:

A toy example

$$
\begin{aligned}
L & =\left\{S(x), S^{-1}(x)\right\} \\
T & =\text { "S and } S^{-1} \text { are inverse functions." }
\end{aligned}
$$

Consider a single generator a.
Random identities: $S^{\epsilon_{1}} \ldots S^{\epsilon_{i}}(a)=S^{\epsilon_{1}} \ldots S^{\epsilon_{j}}(a) \Leftrightarrow S^{k}(a)=a$
What happens when $i, j \rightarrow \infty$?

Lemma

Over T, every sentence is equivalent to a Boolean combination of:

- "there are m disjoint cycles of size n"

A toy example

$$
\begin{aligned}
& L=\left\{S(x), S^{-1}(x)\right\} \\
& T=\text { "S and } S^{-1} \text { are inverse functions." }
\end{aligned}
$$

Consider a single generator a.
Random identities: $S^{\epsilon_{1}} \ldots S^{\epsilon_{i}}(a)=S^{\epsilon_{1}} \ldots S^{\epsilon_{j}}(a) \Leftrightarrow S^{k}(a)=a$
What happens when $i, j \rightarrow \infty$?

Lemma

Over T, every sentence is equivalent to a Boolean combination of:

- "there are m disjoint cycles of size n"
- "there is a chain of length $\geq n$ "

A toy example

$$
\begin{aligned}
& L=\left\{S(x), S^{-1}(x)\right\} \\
& T=\text { "S and } S^{-1} \text { are inverse functions." }
\end{aligned}
$$

Consider a single generator a.
Random identities: $S^{\epsilon_{1}} \ldots S^{\epsilon_{i}}(a)=S^{\epsilon_{1}} \ldots S^{\epsilon_{j}}(a) \Leftrightarrow S^{k}(a)=a$
What happens when $i, j \rightarrow \infty$?

Lemma

Over T, every sentence is equivalent to a Boolean combination of:

- "there are m disjoint cycles of size n"
- "there is a chain of length $\geq n$ "

Theorem

For every sentence φ, φ is true in a 1-generated random structure iff it is true in the 1-generated free structure.

Algebraic varieties and presentations

We consider algebraic varieties in the sense of universal algebra.

Algebraic varieties and presentations

We consider algebraic varieties in the sense of universal algebra.

Definition (Birkhoff, '35)

- A language is algebraic if it contains no relation symbols.

Algebraic varieties and presentations

We consider algebraic varieties in the sense of universal algebra.

Definition (Birkhoff, '35)

- A language is algebraic if it contains no relation symbols.
- algebraic variety: a class of L-structures axiomatized by some sentences of the form $\forall \bar{x} t(\bar{x})=s(\bar{x})$.

Algebraic varieties and presentations

We consider algebraic varieties in the sense of universal algebra.

Definition (Birkhoff, '35)

- A language is algebraic if it contains no relation symbols.
- algebraic variety: a class of L-structures axiomatized by some sentences of the form $\forall \bar{x} t(\bar{x})=s(\bar{x})$.
- presentation $\langle\bar{a} \mid r\rangle$: the "universal" structure where $r \equiv u(\bar{a})=v(\bar{a})$ is satisfied

Algebraic varieties and presentations

We consider algebraic varieties in the sense of universal algebra.

Definition (Birkhoff, '35)

- A language is algebraic if it contains no relation symbols.
- algebraic variety: a class of L-structures axiomatized by some sentences of the form $\forall \bar{x} t(\bar{x})=s(\bar{x})$.
- presentation $\langle\bar{a} \mid r\rangle$: the "universal" structure where $r \equiv u(\bar{a})=v(\bar{a})$ is satisfied
- free structure: $\langle\bar{a} \mid \varnothing\rangle$

Algebraic varieties and presentations

We consider algebraic varieties in the sense of universal algebra.

Definition (Birkhoff, '35)

- A language is algebraic if it contains no relation symbols.
- algebraic variety: a class of L-structures axiomatized by some sentences of the form $\forall \bar{x} t(\bar{x})=s(\bar{x})$.
- presentation $\langle\bar{a} \mid r\rangle$: the "universal" structure where $r \equiv u(\bar{a})=v(\bar{a})$ is satisfied
- free structure: $\langle\bar{a} \mid \varnothing\rangle$

Example

Groups and rings are algebraic varieties.

Random presentation

Definition

- $P_{\ell}(\varphi)=$ the probability that $\langle\bar{a} \mid r\rangle \vDash \varphi$ for a randomly chosen r

Random presentation

Definition

- $P_{\ell}(\varphi)=$ the probability that $\langle\bar{a} \mid r\rangle \vDash \varphi$ for a randomly chosen r
- a random structure in V satisfies φ if $\lim _{\ell \rightarrow \infty} P_{\ell}(\varphi)=1$.

Random presentation

Definition

- $P_{\ell}(\varphi)=$ the probability that $\langle\bar{a} \mid r\rangle \vDash \varphi$ for a randomly chosen r
- a random structure in V satisfies φ if $\lim _{\ell \rightarrow \infty} P_{\ell}(\varphi)=1$.
- V satisfies the zero-one law if for every sentence φ, $\lim _{\ell \rightarrow \infty} P_{\ell}(\varphi) \in\{0,1\}$.

Random presentation

Definition

- $P_{\ell}(\varphi)=$ the probability that $\langle\bar{a} \mid r\rangle \vDash \varphi$ for a randomly chosen r
- a random structure in V satisfies φ if $\lim _{\ell \rightarrow \infty} P_{\ell}(\varphi)=1$.
- V satisfies the zero-one law if for every sentence φ, $\lim _{\ell \rightarrow \infty} P_{\ell}(\varphi) \in\{0,1\}$.
- V satisfies the strong zero-one law if for every sentence φ, $\lim _{\ell \rightarrow \infty} P_{\ell}(\varphi)=1$ iff $\langle\bar{a} \mid \varnothing\rangle \vDash \varphi$.

Random presentation

Definition

- $P_{\ell}(\varphi)=$ the probability that $\langle\bar{a} \mid r\rangle \vDash \varphi$ for a randomly chosen r
- a random structure in V satisfies φ if $\lim _{\ell \rightarrow \infty} P_{\ell}(\varphi)=1$.
- V satisfies the zero-one law if for every sentence φ, $\lim _{\ell \rightarrow \infty} P_{\ell}(\varphi) \in\{0,1\}$.
- V satisfies the strong zero-one law if for every sentence φ, $\lim _{\ell \rightarrow \infty} P_{\ell}(\varphi)=1$ iff $\langle\bar{a} \mid \varnothing\rangle \vDash \varphi$.

Example

- This coincides with Gromov's random groups model.

Random presentation

Definition

- $P_{\ell}(\varphi)=$ the probability that $\langle\bar{a} \mid r\rangle \vDash \varphi$ for a randomly chosen r
- a random structure in V satisfies φ if $\lim _{\ell \rightarrow \infty} P_{\ell}(\varphi)=1$.
- V satisfies the zero-one law if for every sentence φ, $\lim _{\ell \rightarrow \infty} P_{\ell}(\varphi) \in\{0,1\}$.
- V satisfies the strong zero-one law if for every sentence φ, $\lim _{\ell \rightarrow \infty} P_{\ell}(\varphi)=1$ iff $\langle\bar{a} \mid \varnothing\rangle \vDash \varphi$.

Example

- This coincides with Gromov's random groups model.
- The variety with a pair of inverse functions satisfies the strong zero-one law.

General question

Question
 Classify the three possibilities:

General question

Question

Classify the three possibilities:

- the variety does not admit a limiting theory

General question

Question

Classify the three possibilities:

- the variety does not admit a limiting theory
- (weak) zero-one law: the variety admits a limiting theory but differs with the free structure

General question

Question

Classify the three possibilities:

- the variety does not admit a limiting theory
- (weak) zero-one law: the variety admits a limiting theory but differs with the free structure
- Strong zero-one law: the variety admits a limiting theory that agrees with the free structure

General question

Question

Classify the three possibilities:

- the variety does not admit a limiting theory
- (weak) zero-one law: the variety admits a limiting theory but differs with the free structure
- Strong zero-one law: the variety admits a limiting theory that agrees with the free structure

In the variety with a pair of inverse functions:

General question

Question

Classify the three possibilities:

- the variety does not admit a limiting theory
- (weak) zero-one law: the variety admits a limiting theory but differs with the free structure
- Strong zero-one law: the variety admits a limiting theory that agrees with the free structure

In the variety with a pair of inverse functions:
(1) Random identities cannot be detected locally

General question

Question

Classify the three possibilities:

- the variety does not admit a limiting theory
- (weak) zero-one law: the variety admits a limiting theory but differs with the free structure
- Strong zero-one law: the variety admits a limiting theory that agrees with the free structure

In the variety with a pair of inverse functions:
(1) Random identities cannot be detected locally
(2) Every sentence is equivalent to a Boolean combination of local sentences

Another example

Example

The variety with $L=\{f(x), g(x)\}$ and $T=\varnothing$ does not satisfy the 0-1 law.

Yet another example

Example

The variety with $L=\{f(x)\}$ and $T=\varnothing$ satisfy the 0-1 law, but the limiting theory differs from the theory of the free structure.

Gaifman's Locality Theorem

Definition

Let A be a relational structure. The Gaifman graph of A is the graph with $V=A$ and $(a, b) \in E$ if there is some R with $R(\bar{x})$ and $a, b \in \bar{x}$.

Gaifman's Locality Theorem

Definition

Let A be a relational structure. The Gaifman graph of A is the graph with $V=A$ and $(a, b) \in E$ if there is some R with $R(\bar{x})$ and $a, b \in \bar{x}$.

Let $B_{r}(\bar{x})$ be the r-neighborhood of \bar{x}. Then $y \in B_{r}(\bar{x})$ is definable in A.

Gaifman's Locality Theorem

Definition

Let A be a relational structure. The Gaifman graph of A is the graph with $V=A$ and $(a, b) \in E$ if there is some R with $R(\bar{x})$ and $a, b \in \bar{x}$.

Let $B_{r}(\bar{x})$ be the r-neighborhood of \bar{x}. Then $y \in B_{r}(\bar{x})$ is definable in A. We write $\varphi^{(r)}(\bar{x})$ if all quantifiers are $\exists y \in B_{r}(\bar{x})$ or $\forall y \in B_{r}(\bar{x})$.

Gaifman's Locality Theorem

Definition

Let A be a relational structure. The Gaifman graph of A is the graph with $V=A$ and $(a, b) \in E$ if there is some R with $R(\bar{x})$ and $a, b \in \bar{x}$.

Let $B_{r}(\bar{x})$ be the r-neighborhood of \bar{x}. Then $y \in B_{r}(\bar{x})$ is definable in A. We write $\varphi^{(r)}(\bar{x})$ if all quantifiers are $\exists y \in B_{r}(\bar{x})$ or $\forall y \in B_{r}(\bar{x})$.

Theorem (Gaifman Locality Theorem, '82)

Let L be a relational language. Then every sentence is equivalent to a Boolean combination of sentences of the form

$$
\exists v_{1}, \cdots, v_{s}\left(\bigwedge_{i} \alpha_{i}^{(r)}\left(v_{i}\right) \wedge \bigwedge_{i<j} d\left(v_{i}, v_{j}\right)>2 r\right)
$$

Gaifman's Locality Theorem

Theorem (Gaifman Locality Theorem, '82)

Let L be a relational language. Then every sentence is equivalent to a Boolean combination of sentences of the form

$$
\exists v_{1}, \cdots, v_{s}\left(\bigwedge_{i} \alpha_{i}^{(r)}\left(v_{i}\right) \wedge \bigwedge_{i<j} d\left(v_{i}, v_{j}\right)>2 r\right)
$$

Gaifman's Locality Theorem

Theorem (Gaifman Locality Theorem, '82)

Let L be a relational language. Then every sentence is equivalent to a Boolean combination of sentences of the form

$$
\exists v_{1}, \cdots, v_{s}\left(\bigwedge_{i} \alpha_{i}^{(r)}\left(v_{i}\right) \wedge \bigwedge_{i<j} d\left(v_{i}, v_{j}\right)>2 r\right)
$$

For a language with only unary functions, think of the structures as directed graphs.

Gaifman's Locality Theorem

Theorem (Gaifman Locality Theorem, '82)

Let L be a relational language. Then every sentence is equivalent to a Boolean combination of sentences of the form

$$
\exists v_{1}, \cdots, v_{s}\left(\bigwedge_{i} \alpha_{i}^{(r)}\left(v_{i}\right) \wedge \bigwedge_{i<j} d\left(v_{i}, v_{j}\right)>2 r\right)
$$

For a language with only unary functions, think of the structures as directed graphs.
$\alpha_{i}^{(r)}\left(v_{i}\right)$: formulas where every quantifier is bounded, i.e., $\forall x\left(d\left(x, v_{i}\right)<r \Longrightarrow \cdots\right)$ or $\exists x\left(d\left(x, v_{i}\right)<r \wedge \cdots\right)$

Gaifman's Locality Theorem

Theorem (Gaifman Locality Theorem, '82)

Let L be a relational language. Then every sentence is equivalent to a Boolean combination of sentences of the form

$$
\exists v_{1}, \cdots, v_{s}\left(\bigwedge_{i} \alpha_{i}^{(r)}\left(v_{i}\right) \wedge \bigwedge_{i<j} d\left(v_{i}, v_{j}\right)>2 r\right)
$$

For a language with only unary functions, think of the structures as directed graphs.
$\alpha_{i}^{(r)}\left(v_{i}\right)$: formulas where every quantifier is bounded, i.e.,
$\forall x\left(d\left(x, v_{i}\right)<r \Longrightarrow \cdots\right)$ or $\exists x\left(d\left(x, v_{i}\right)<r \wedge \cdots\right)$
$d(x, y)$: the distance function of the graph

Bijective varieties

We consider structures in the language $\left\{f_{1}, f_{1}^{-1}, \cdots, f_{n}, f_{n}^{-1}\right\}$.

Bijective varieties

We consider structures in the language $\left\{f_{1}, f_{1}^{-1}, \cdots, f_{n}, f_{n}^{-1}\right\}$.

Example

$T=$ " f_{i}, f_{j} commute" and " f_{i}^{-1} is the inverse of f_{i} ".

Bijective varieties

We consider structures in the language $\left\{f_{1}, f_{1}^{-1}, \cdots, f_{n}, f_{n}^{-1}\right\}$.

Example

$T=$ " f_{i}, f_{j} commute" and " f_{i}^{-1} is the inverse of f_{i} ".
This variety satisfies the strong 0-1 law.

Bijective varieties

We consider structures in the language $\left\{f_{1}, f_{1}^{-1}, \cdots, f_{n}, f_{n}^{-1}\right\}$.

Example

$T=$ " f_{i}, f_{j} commute" and " f_{i}^{-1} is the inverse of f_{i} ".
This variety satisfies the strong 0-1 law.
This corresponds to the variety of n-generated abelian groups, which does not satisfy the 0-1 law.

Bjective varieties

We consider structures in the language $\left\{f_{1}, f_{1}^{-1}, \cdots, f_{n}, f_{n}^{-1}\right\}$.

Example

$T=$ " f_{i}, f_{j} commute" and " f_{i}^{-1} is the inverse of f_{i} ".
This variety satisfies the strong 0-1 law.
This corresponds to the variety of n-generated abelian groups, which does not satisfy the 0-1 law.

Example

$T=$ " f_{i}^{-1} is the inverse of f_{i} ".

Bjective varieties

We consider structures in the language $\left\{f_{1}, f_{1}^{-1}, \cdots, f_{n}, f_{n}^{-1}\right\}$.

Example

$T=$ " f_{i}, f_{j} commute" and " f_{i}^{-1} is the inverse of f_{i} ".
This variety satisfies the strong 0-1 law.
This corresponds to the variety of n-generated abelian groups, which does not satisfy the 0-1 law.

Example

$T=$ " f_{i}^{-1} is the inverse of f_{i} ".
This variety satisfies the strong 0-1 law.

Bjective varieties

We consider structures in the language $\left\{f_{1}, f_{1}^{-1}, \cdots, f_{n}, f_{n}^{-1}\right\}$.

Example

$T=$ " f_{i}, f_{j} commute" and " f_{i}^{-1} is the inverse of f_{i} ".
This variety satisfies the strong 0-1 law.
This corresponds to the variety of n-generated abelian groups, which does not satisfy the 0-1 law.

Example

$T=$ " f_{i}^{-1} is the inverse of f_{i} ".
This variety satisfies the strong 0-1 law.
This corresponds to the variety of n-generated groups.

Bijective varieties

In general, the 1-generated free structure of a bijective variety is a Cayley graph, and they seem to satisfy the strong 0-1 law.

Bjective varieties

In general, the 1-generated free structure of a bijective variety is a Cayley graph, and they seem to satisfy the strong 0-1 law.

Conjecture/Theorem

If $T \supseteq$ " f_{i}, f_{j} commute" and " f_{i}^{-1} is the inverse of f_{i} ", then the variety satisfies the strong 0-1 law.

Bjective varieties

In general, the 1-generated free structure of a bijective variety is a Cayley graph, and they seem to satisfy the strong 0-1 law.

Conjecture/Theorem

If $T \supseteq$ "f f_{i}, f_{j} commute" and " f_{i}^{-1} is the inverse of f_{i} ", then the variety satisfies the strong 0-1 law.

Question

What if we drop commutivity?

non-bjjective structures

Conjecture/Theorem

If there are two elements x_{1} and x_{2} in the free structure such that a random term equals x_{i} with a positive probability, then the variety does not satisfy the 0-1 law.

non-bijective structures

Conjecture/Theorem

If there are two elements x_{1} and x_{2} in the free structure such that a random term equals x_{i} with a positive probability, then the variety does not satisfy the 0-1 law.

Example

Let $T=\left\{\forall x f^{n}(x)=x\right\}$.

non-bijective structures

Conjecture/Theorem

If there are two elements x_{1} and x_{2} in the free structure such that a random term equals x_{i} with a positive probability, then the variety does not satisfy the 0-1 law.

Example

Let $T=\left\{\forall x f^{n}(x)=x\right\}$.
A random structure in this variety is trivial with probability $\phi(n) / n$.

Further questions

Question

What happens if there are more generators or identities?

Further questions

Question

What happens if there are more generators or identities? What if we allow constants?

Further questions

Question

What happens if there are more generators or identities?

What if we allow constants?

Question

The analogue of Tarski's problem in varieties:

Further questions

Question

What happens if there are more generators or identities?
What if we allow constants?

Question

The analogue of Tarski's problem in varieties:
When are the free structures in a variety elementarily equivalent?

Further questions

Question

What happens if there are more generators or identities?
What if we allow constants?

Question

The analogue of Tarski's problem in varieties:
When are the free structures in a variety elementarily equivalent?
When are the standard embeddings elementary?

