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The Hilbert polynomial

Eventual polynomial growth is a common theme in combinatorics and
commutative algebra. The first example is the Hilbert polynomial.

Let K be a field and let R = K|z, ..., z,,] be the polynomial ring over
K. Then Ris a graded ring R = @@,°, R, where R, consists of
homogeneous polynomials of degree t.

Theorem

Let M = ;2 M, be finitely generated graded R-module. Then there
is a polynomial P € Q[Y'] such that dimg (M,;) = P(t) for allt > 0.

This theorem can be applied when M = R/I for some homogeneous
ideal I C R to compute the degree of the projective variety V' (I). This
in turn can be used to prove Bézout’s theorem on the number of
intersections of plane curves.
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The Kolchin polynomial

Let F' be a field of characteristic zero. A derivation on F' is a map
0: F — F satisfying d(a + b) = da + 6b and §(ab) = adb + bia.

Let 04,...,d,, be commuting derivations on F'. Given a tuple a in a
differential field extension of F" and ¢ € N, put

F(a); = F({é’{l---(szqm(&) T+ T <t}).

Theorem (Kolchin 1964)

There is a polynomial P € Q[Y] such that trdeg(F'(a)<:|F) = P(t) for
allt > 0.

Johnson showed in 1969 that the Kolchin polynomial can be derived
from the Hilbert polynomial of a certain differential module.
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Khovanskii’s polynomial

Khovanskii later made use of the Hilbert polynomial to prove a very
general result on sumsets in abelian semigroups.

Theorem (Khovanskii 1992)

Let S be an abelian semigroup and let A, B be finite subsets of S.
Then there is a polynomial P € Q[Y] such that |A + tB| = P(t) for all
t > 0, where

A+tB = {a+bj+---+b:acAandby,... b € B}

We provide a general framework from which one can easily derive the
above theorems.
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What do these examples have in common?

In each case, we start with a finite set A.

We then apply commuting maps ¢1, . .., ¢, to A (multiplying by z;,
applying the derivation §;, adding b; € B).

After applying these maps ¢ times in total, we calculate some rank of
the resulting set (K -linear dimension, transcendence degree over F,
cardinality).
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Finitary matroids

A finitary matroid or pregeometry is a set X equipped with a closure
operator cl: P(X) — P(X) which satisfies:

@ Monotonicity: if A C B C X, then A C cl(A) C cl(B);
@ Idempotence: cl(cl(A)) = cl(A) for A C X;;

© Finite character: if A C X and a € cl(A), then a € cl(Ap) for some
finite subset Ay C A;

© Steinitz exchange: Fora,b € X and A C X, if
a € cl(AU{b})\ cl(A), thenb € cl(AU {a}).

A set {ay,...,a,} is independent if a; & cl(ay,...,a;—1) forall i. The
rank of a finite set A C X, denoted rk(A), is the maximal size of an
independent subset of A.
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The Hilbert polynomial

Let (X, cl) be a finitary matroid, and let ® = (¢, ..., ) be a finite
tuple of commuting maps X — X. For A C X, put

dW(A) == {¢7 ¢ (a):ac Aand ) + -+ 1y =t}
The tuple @ is said to be a triangular system if for each i:
a€cl(C) = g¢ia€cl(p(C)U---Ug(C)).

Theorem (Fornasiero-K. 2023+)

Suppose that ® is a triangular system and let A C X be finite. Then
there is a polynomial P} € Q[Y] of degree < m — 1 such that

tk(@1(4)) = PR(?)

fort > 0. We call P$ the Hilbert polynomial for A.
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Khovanskii’s polynomial, revisited

Theorem (Khovanskii 1992)

Let S be an abelian semigroup and let A, B be finite subsets of S.
Then there is a polynomial P € Q[Y] such that |A + tB| = P(t) for all
t> 0.

Proof.

Let X = S and let cl be the trivial closure cl(C) = C, so rk(C) = |C]|.
Write B = {b1,...,by}, and for each i, put ¢;(a) = a + b;.

Then & is triangular, since

a€cC) = a€C = ¢i(a) =a+b €C+b=¢(C).

Note that ®®)(A) = A + tB, so rk(®®)(A)) = |A + tB|. O
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The classical Hilbert polynomial, revisited

Theorem

LetR = K|x1,...,z,) and let M = @;°, M, be finitely generated
graded R-module. Then there is a polynomial P € Q[Y] such that
dimg (My) = P(t) for allt > 0.

Proof.

View M as a Z-graded module @, ., M;. Re-index and adjust
generators so that P,y M; is generated by a finite set A C M.

Let X = M, let cl be K-linear span, and put ¢;(a) := z; - a.
Again, a € cl(C) = ¢i(a) € cl(¢;(C)), so ® is triangular.
If t > 0, then cl(®®)(A)) = My, so rk(®®)(A)) = dimg (M;). O

In both this and the last example, each ¢; is an endomorphism:
a € cl(C) = ¢i(a) € cl(¢:(C)).
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The Kolchin polynomial, revisited

Theorem (Kolchin 1964)

Leta be a tuple in a differential field extension of F'. Then there is a
polynomial P € Q[Y'] such that trdeg(F'(a)<|F') = P(t) for allt > 0.

Proof.

Let X = |J, F(a)<:, and let cl be algebraic closure over F.

Put ¢; == 6;. Leta € cl(C) and take b € F(C) and Q € Q[X, Y] with
oQ
0X
Then 6;Q(a,b) = VQ(a,b) - (§a,d;b) = 0, s0 §;a € cl(C, 5;0).

Thus, ® may not be triangular, but @, := (id, ¢1, ..., ¢n) is.

Apply our theorem to @, noting that F(a)<; = F(3'(a)). O

Qa,B)=0,  52(a,b) £0.

y
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A stronger version

Theorem (Fornasiero-K. 2023+)

Let (®q,...,P;) be a partition of & and letA, C C X with A finite.
If each @, is triangular, then there is P A|C € Q[Y1,...,Y:] with

k(29 (4)|2)(0)) = Pic(9)

fors = (s1,...,s;) € N¥ withmin{sy, ..., s} sufficiently large.

Corollary (Nathanson 2000, Fornasiero-K. 2023+)

Let A, By, ..., By be finite subsets of an abelian semigroup S and let C
be an arbitrary subset of S. Then there is P € Q[Y1, ..., Y] such that

|(A+51B1+ -+ skBi) \ (C+s1B1+ -+ s;By)| = P(s1,...,5k)

when min{sy, ..., s} is sufficiently large. )
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Let P$ be the Hilbert polynomial for A C X. Take rk®(A4) € N with

®
PR(Y) = &—%Ym‘hr lower degree terms.

Define c1® on X by
cd®(B) = {a € X : 1k*(Bya) = rk®(By) for some finite By C B}.

Theorem (Fornasiero-K. 2023+)
(X, cl®) is a finitary matroid. J

For the Kolchin polynomial, c1® coincides with differential algebraic
closure.

Kaplan (McMaster) Hilbert Polynomials March 9 12/18



Simplicial maps

Let K be a simplicial complex, and let ¢4, ..., ¢,, be simplicial maps.
Let A be a subcomplex of K. Then for each n, the nth Betti number
b (@M (A)) is eventually a polynomial in .

o = (id, ¢) ‘«“ bi(@(A)) =
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Simplicial maps

Let K be a simplicial complex, and let ¢4, ..., ¢,, be simplicial maps.
Let A be a subcomplex of K. Then for each n, the nth Betti number
b (@M (A)) is eventually a polynomial in .

o = (id, ¢) by (B (A)) =
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Simplicial maps

Let K be a simplicial complex, and let ¢4, ..., ¢,, be simplicial maps.
Let A be a subcomplex of K. Then for each n, the nth Betti number
b (@M (A)) is eventually a polynomial in .
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Simplicial maps

Let K be a simplicial complex, and let ¢4, ..., ¢,, be simplicial maps.
Let A be a subcomplex of K. Then for each n, the nth Betti number
b (@M (A)) is eventually a polynomial in .

bo(@(4)) = 6
@ = (id, 9) b (@)(4)) = 8
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Simplicial maps

Let K be a simplicial complex, and let ¢4, ..., ¢,, be simplicial maps.
Let A be a subcomplex of K. Then for each n, the nth Betti number
b (@M (A)) is eventually a polynomial in .

bo(®W(A)) =7
P = (id, ¢) b (®W(A)) =10
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Simplicial maps

Let K be a simplicial complex, and let ¢4, ..., ¢,, be simplicial maps.
Let A be a subcomplex of K. Then for each n, the nth Betti number
b (@M (A)) is eventually a polynomial in .

bo(PW(A)) =t +3
P = (id, ¢) b (®W(A)) =2t +2
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Simplicial maps

Consider the simplicial chain complex (C,, d.) associated to K:

On+2 On+1 On On—1
“ Cn+1"—>0 s O —

We assign to a subgroup B C C,, two ranks: rk(B) is the rank of the
group B, and rk?(B) is the rank of 9,(B).

A simplicial map ¢: K — K induces maps ¢,,: C,, — C,,, each of which
is an endomorphism of the corresponding closure operators cl and cl®.

8n+2 8n+1 On On_1
-—>C’n+1—>C —>Cn1—>

l({b'rﬂ»l lqﬁn l(ﬁn 1
8n+2

-—>Cn+1—>C’ —>Cn1
It remains to note that for A C K, we have
bn(A) = 1k(Ch(A)) — 1k?(C(A)) — 1k (Cry1(A)).
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Topological dynamics

The previous result is really about topological dynamics. Let B be a
topological space, let ¢4, ..., ¢,,: B — B be commuting continuous
maps, and let A be a compact subspace of B.

The system (B, A, ®) is triangulable if there is a triangulation
7: |K| — B which is compatible with A and with the maps ¢;.

If (B, A, ®) is triangulable, then b, (®(*)(A)) is eventually polynomial in ¢
for each n. This is not true for arbitrary systems. Which other systems
enjoy this phenomenon?

b1(Atr1) — bi(Ar) = bo(Ar N @t H1(A))
~t+1

(070)°
A= A
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Topological dynamics

The previous result is really about topological dynamics. Let B be a
topological space, let ¢4, ..., ¢,,: B — B be commuting continuous
maps, and let A be a compact subspace of B.

The system (B, A, ®) is triangulable if there is a triangulation
7: |K| — B which is compatible with A and with the maps ¢;.

If (B, A, ®) is triangulable, then b, (®(*)(A)) is eventually polynomial in ¢
for each n. This is not true for arbitrary systems. Which other systems
enjoy this phenomenon?

b1(Atr1) — bi(Ar) = bo(Ar N @t H1(A)) )
~t+1 ¢

(07 0) ®
Ao
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Topological dynamics

The previous result is really about topological dynamics. Let B be a
topological space, let ¢4, ..., ¢,,: B — B be commuting continuous
maps, and let A be a compact subspace of B.

The system (B, A, ®) is triangulable if there is a triangulation
7: |K| — B which is compatible with A and with the maps ¢;.

If (B, A, ®) is triangulable, then b, (®(*)(A)) is eventually polynomial in ¢
for each n. This is not true for arbitrary systems. Which other systems
enjoy this phenomenon?
bi( A1) = bi(Ar) = bo(Ar N ¢ (A)) ¢°
~t+1

As
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Other applications

@ A Hilbert polynomial for homogeneous tropical ideals (originally
due to Maclagan and Rincén).
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Other applications

@ A Hilbert polynomial for homogeneous tropical ideals (originally
due to Maclagan and Rincén).

@ A Kolchin polynomial for difference-differential fields (various
results due to Levin).
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Other applications

@ A Hilbert polynomial for homogeneous tropical ideals (originally
due to Maclagan and Rincén).

@ A Kolchin polynomial for difference-differential fields (various
results due to Levin).

@ A Kolchin polynomial for difference-differential exponential fields
and o-minimal fields with compatible derivations.
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Bounding ranks

The Kolchin polynomial for differential fields can be used to bound
U-rank in the model completion DCF ,,, (differentially closed fields
with m commuting derivations). This is because the Kolchin polynomial
can detect whether one type is a forking extension of another.

Explicitly, McGrail showed that for a differential field £ and a tuple a in
a differentially closed extension of F' with Kolchin polynomial

P,r(t) = dt*/k! + lower degree terms,

the type tp(a/F) has U-rank at most (d + 1)w*.

In previous work, Fornasiero and | showed that for a fixed o-minimal
theory T, the theory T> of models of T with finitely many commuting
compatible derivations has a model completion.

Our analog of the Kolchin polynomial can be similarly used to bound
thorn-rank in this model completion.
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A sketch of the proof of the main theorem

For 7 € N™, put ¢" := ¢|' - -- ¢!, and define f: N™ — N by
f(7) = 1k (6"(A){e"(A) : [a] = |7| and @ <y, 7}).
Then f is decreasing in each variable and rk(®()(A4)) = 37, _, f(7).

One can show that the generating function

S @Oyt = 3 for = 3 oy

t t|F|=t
is a rational function with denominator (1 — Y")™.

It follows that rk(®(*)(A)) is polynomial for ¢ large enough. Exactly how
large can be described in terms of the level sets (f~!(n)),en-

Thank you!
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