Hilbert Polynomials for Finitary Matroids

Elliot Kaplan

Joint with Antongiulio Fornasiero

McMaster University
March 9, 2023

The Hilbert polynomial

Eventual polynomial growth is a common theme in combinatorics and commutative algebra. The first example is the Hilbert polynomial.
Let K be a field and let $R=K\left[x_{1}, \ldots, x_{m}\right]$ be the polynomial ring over K. Then R is a graded ring $R=\bigoplus_{t=0}^{\infty} R_{t}$, where R_{t} consists of homogeneous polynomials of degree t.

Theorem

Let $M=\bigoplus_{t=0}^{\infty} M_{t}$ be finitely generated graded R-module. Then there is a polynomial $P \in \mathbb{Q}[Y]$ such that $\operatorname{dim}_{K}\left(M_{t}\right)=P(t)$ for all $t \gg 0$.

This theorem can be applied when $M=R / I$ for some homogeneous ideal $I \subseteq R$ to compute the degree of the projective variety $V(I)$. This in turn can be used to prove Bézout's theorem on the number of intersections of plane curves.

The Kolchin polynomial

Let F be a field of characteristic zero. A derivation on F is a map $\delta: F \rightarrow F$ satisfying $\delta(a+b)=\delta a+\delta b$ and $\delta(a b)=a \delta b+b \delta a$.

Let $\delta_{1}, \ldots, \delta_{m}$ be commuting derivations on F. Given a tuple \bar{a} in a differential field extension of F and $t \in \mathbb{N}$, put

$$
F(\bar{a})_{\leqslant t}:=F\left(\left\{\delta_{1}^{r_{1}} \cdots \delta_{m}^{r_{m}}(\bar{a}): r_{1}+\cdots+r_{m} \leqslant t\right\}\right) .
$$

Theorem (Kolchin 1964)

There is a polynomial $P \in \mathbb{Q}[Y]$ such that $\operatorname{trdeg}\left(F(\bar{a})_{\leqslant t} \mid F\right)=P(t)$ for all $t \gg 0$.

Johnson showed in 1969 that the Kolchin polynomial can be derived from the Hilbert polynomial of a certain differential module.

Khovanskii's polynomial

Khovanskii later made use of the Hilbert polynomial to prove a very general result on sumsets in abelian semigroups.

Theorem (Khovanskii 1992)

Let S be an abelian semigroup and let A, B be finite subsets of S. Then there is a polynomial $P \in \mathbb{Q}[Y]$ such that $|A+t B|=P(t)$ for all $t \gg 0$, where

$$
A+t B:=\left\{a+b_{1}+\cdots+b_{t}: a \in A \text { and } b_{1}, \ldots, b_{t} \in B\right\}
$$

We provide a general framework from which one can easily derive the above theorems.

What do these examples have in common?

In each case, we start with a finite set A.
We then apply commuting maps $\phi_{1}, \ldots, \phi_{m}$ to A (multiplying by x_{i}, applying the derivation δ_{i}, adding $b_{i} \in B$).

After applying these maps t times in total, we calculate some rank of the resulting set (K-linear dimension, transcendence degree over F, cardinality).

Finitary matroids

A finitary matroid or pregeometry is a set X equipped with a closure operator $\mathrm{cl}: \mathcal{P}(X) \rightarrow \mathcal{P}(X)$ which satisfies:
(1) Monotonicity: if $A \subseteq B \subseteq X$, then $A \subseteq \operatorname{cl}(A) \subseteq \operatorname{cl}(B)$;
(2) Idempotence: $\operatorname{cl}(\operatorname{cl}(A))=\operatorname{cl}(A)$ for $A \subseteq X$;
(3) Finite character: if $A \subseteq X$ and $a \in \operatorname{cl}(A)$, then $a \in \operatorname{cl}\left(A_{0}\right)$ for some finite subset $A_{0} \subseteq A$;
(4) Steinitz exchange: For $a, b \in X$ and $A \subseteq X$, if
$a \in \operatorname{cl}(A \cup\{b\}) \backslash \operatorname{cl}(A)$, then $b \in \operatorname{cl}(A \cup\{a\})$.
A set $\left\{a_{1}, \ldots, a_{n}\right\}$ is independent if $a_{i} \notin \operatorname{cl}\left(a_{1}, \ldots, a_{i-1}\right)$ for all i. The rank of a finite set $A \subseteq X$, denoted $\operatorname{rk}(A)$, is the maximal size of an independent subset of A.

The Hilbert polynomial

Let (X, cl) be a finitary matroid, and let $\Phi=\left(\phi_{1}, \ldots, \phi_{m}\right)$ be a finite tuple of commuting maps $X \rightarrow X$. For $A \subseteq X$, put

$$
\Phi^{(t)}(A):=\left\{\phi_{1}^{r_{1}} \cdots \phi_{m}^{r_{m}}(a): a \in A \text { and } r_{1}+\cdots+r_{m}=t\right\} .
$$

The tuple Φ is said to be a triangular system if for each i :

$$
a \in \operatorname{cl}(C) \Longrightarrow \phi_{i} a \in \operatorname{cl}\left(\phi_{1}(C) \cup \cdots \cup \phi_{i}(C)\right)
$$

Theorem (Fornasiero-K. 2023+)

Suppose that Φ is a triangular system and let $A \subseteq X$ be finite. Then there is a polynomial $P_{A}^{\Phi} \in \mathbb{Q}[Y]$ of degree $\leqslant m-1$ such that

$$
\operatorname{rk}\left(\Phi^{(t)}(A)\right)=P_{A}^{\Phi}(t)
$$

for $t \gg 0$. We call P_{A}^{Φ} the Hilbert polynomial for A.

Khovanskil's polynomial, revisited

Theorem (Khovanskii 1992)

Let S be an abelian semigroup and let A, B be finite subsets of S.
Then there is a polynomial $P \in \mathbb{Q}[Y]$ such that $|A+t B|=P(t)$ for all $t \gg 0$.

Proof.

Let $X=S$ and let cl be the trivial closure $\operatorname{cl}(C)=C$, so $\operatorname{rk}(C)=|C|$. Write $B=\left\{b_{1}, \ldots, b_{m}\right\}$, and for each i, put $\phi_{i}(a):=a+b_{i}$.
Then Φ is triangular, since

$$
a \in \operatorname{cl}(C) \Longrightarrow a \in C \Longrightarrow \phi_{i}(a)=a+b_{i} \in C+b_{i}=\phi_{i}(C) .
$$

Note that $\Phi^{(t)}(A)=A+t B$, so $\operatorname{rk}\left(\Phi^{(t)}(A)\right)=|A+t B|$.

The classical Hilbert polynomial, revisited

Theorem

Let $R=K\left[x_{1}, \ldots, x_{m}\right]$ and let $M=\bigoplus_{t=0}^{\infty} M_{t}$ be finitely generated graded R-module. Then there is a polynomial $P \in \mathbb{Q}[Y]$ such that $\operatorname{dim}_{K}\left(M_{t}\right)=P(t)$ for all $t \gg 0$.

Proof.

View M as a \mathbb{Z}-graded module $\bigoplus_{t \in \mathbb{Z}} M_{t}$. Re-index and adjust generators so that $\bigoplus_{t \in \mathbb{N}} M_{t}$ is generated by a finite set $A \subseteq M_{0}$. Let $X=M$, let cl be K-linear span, and put $\phi_{i}(a):=x_{i} \cdot a$. Again, $a \in \mathrm{cl}(C) \Longrightarrow \phi_{i}(a) \in \mathrm{cl}\left(\phi_{i}(C)\right)$, so Φ is triangular. If $t \geqslant 0$, then $\operatorname{cl}\left(\Phi^{(t)}(A)\right)=M_{t}, \operatorname{sork}\left(\Phi^{(t)}(A)\right)=\operatorname{dim}_{K}\left(M_{t}\right)$.

In both this and the last example, each ϕ_{i} is an endomorphism:
$a \in \operatorname{cl}(C) \Longrightarrow \phi_{i}(a) \in \operatorname{cl}\left(\phi_{i}(C)\right)$.

The Kolchin polynomial, revisited

Theorem (Kolchin 1964)

Let \bar{a} be a tuple in a differential field extension of F. Then there is a polynomial $P \in \mathbb{Q}[Y]$ such that $\operatorname{trdeg}(F(\bar{a}) \leqslant t \mid F)=P(t)$ for all $t \gg 0$.

Proof.

Let $X=\bigcup_{t} F(\bar{a})_{\leqslant t}$, and let cl be algebraic closure over F.
Put $\phi_{i}:=\delta_{i}$. Let $a \in \operatorname{cl}(C)$ and take $\bar{b} \in F(C)$ and $Q \in \mathbb{Q}[X, \bar{Y}]$ with

$$
Q(a, \bar{b})=0, \quad \frac{\partial Q}{\partial X}(a, \bar{b}) \neq 0
$$

Then $\delta_{i} Q(a, \bar{b})=\nabla Q(a, \bar{b}) \cdot\left(\delta_{i} a, \delta_{i} \bar{b}\right)=0$, so $\delta_{i} a \in \operatorname{cl}\left(C, \delta_{i} C\right)$.
Thus, Φ may not be triangular, but $\Phi_{*}:=\left(\mathrm{id}, \phi_{1}, \ldots, \phi_{m}\right)$ is.
Apply our theorem to Φ_{*}, noting that $F(\bar{a})_{\leqslant t}=F\left(\Phi_{*}^{(t)}(\bar{a})\right)$.

A stronger version

Theorem (Fornasiero-K. 2023+)

Let $\left(\Phi_{1}, \ldots, \Phi_{k}\right)$ be a partition of Φ and let $A, C \subseteq X$ with A finite. If each Φ_{i} is triangular, then there is $P_{A \mid C}^{\Phi} \in \mathbb{Q}\left[Y_{1}, \ldots, Y_{k}\right]$ with

$$
\operatorname{rk}\left(\Phi^{(\bar{s})}(A) \mid \Phi^{(\bar{s})}(C)\right)=P_{A \mid C}^{\Phi}(\bar{s})
$$

for $\bar{s}=\left(s_{1}, \ldots, s_{k}\right) \in \mathbb{N}^{k}$ with $\min \left\{s_{1}, \ldots, s_{k}\right\}$ sufficiently large.

Corollary (Nathanson 2000, Fornasiero-K. 2023+)

Let A, B_{1}, \ldots, B_{k} be finite subsets of an abelian semigroup S and let C be an arbitrary subset of S. Then there is $P \in \mathbb{Q}\left[Y_{1}, \ldots, Y_{k}\right]$ such that

$$
\left|\left(A+s_{1} B_{1}+\cdots+s_{k} B_{k}\right) \backslash\left(C+s_{1} B_{1}+\cdots+s_{k} B_{k}\right)\right|=P\left(s_{1}, \ldots, s_{k}\right)
$$

when $\min \left\{s_{1}, \ldots, s_{k}\right\}$ is sufficiently large.

The Φ-rank

Let P_{A}^{Φ} be the Hilbert polynomial for $A \subseteq X$. Take $\operatorname{rk}^{\Phi}(A) \in \mathbb{N}$ with

$$
P_{A}^{\Phi}(Y)=\frac{\mathrm{rk}^{\Phi}(A)}{(m-1)!} Y^{m-1}+\text { lower degree terms }
$$

Define cl ${ }^{\Phi}$ on X by

$$
\mathrm{cl}^{\Phi}(B):=\left\{a \in X: \operatorname{rk}^{\Phi}\left(B_{0} a\right)=\operatorname{rk}^{\Phi}\left(B_{0}\right) \text { for some finite } B_{0} \subseteq B\right\} .
$$

Theorem (Fornasiero-K. 2023+)

$\left(X, \mathrm{cl}^{\Phi}\right)$ is a finitary matroid.
For the Kolchin polynomial, cl^{Φ} coincides with differential algebraic closure.

Simplicial maps

Let \mathcal{K} be a simplicial complex, and let $\phi_{1}, \ldots, \phi_{m}$ be simplicial maps. Let A be a subcomplex of \mathcal{K}. Then for each n, the nth Betti number $b_{n}\left(\Phi^{(t)}(A)\right)$ is eventually a polynomial in t.

$$
\Phi=(\mathrm{id}, \phi)
$$

$$
\begin{aligned}
& b_{0}\left(\Phi^{(0)}(A)\right)=3 \\
& b_{1}\left(\Phi^{(0)}(A)\right)=1
\end{aligned}
$$

Simplicial maps

Let \mathcal{K} be a simplicial complex, and let $\phi_{1}, \ldots, \phi_{m}$ be simplicial maps. Let A be a subcomplex of \mathcal{K}. Then for each n, the nth Betti number $b_{n}\left(\Phi^{(t)}(A)\right)$ is eventually a polynomial in t.

$$
\Phi=(\mathrm{id}, \phi)
$$

$$
\begin{aligned}
& b_{0}\left(\Phi^{(1)}(A)\right)=4 \\
& b_{1}\left(\Phi^{(1)}(A)\right)=3
\end{aligned}
$$

Simplicial maps

Let \mathcal{K} be a simplicial complex, and let $\phi_{1}, \ldots, \phi_{m}$ be simplicial maps. Let A be a subcomplex of \mathcal{K}. Then for each n, the nth Betti number $b_{n}\left(\Phi^{(t)}(A)\right)$ is eventually a polynomial in t.

$$
\Phi=(\mathrm{id}, \phi)
$$

$$
\begin{aligned}
& b_{0}\left(\Phi^{(2)}(A)\right)=5 \\
& b_{1}\left(\Phi^{(2)}(A)\right)=6
\end{aligned}
$$

Simplicial maps

Let \mathcal{K} be a simplicial complex, and let $\phi_{1}, \ldots, \phi_{m}$ be simplicial maps. Let A be a subcomplex of \mathcal{K}. Then for each n, the nth Betti number $b_{n}\left(\Phi^{(t)}(A)\right)$ is eventually a polynomial in t.

$$
\Phi=(\mathrm{id}, \phi)
$$

$$
\begin{aligned}
& b_{0}\left(\Phi^{(3)}(A)\right)=6 \\
& b_{1}\left(\Phi^{(3)}(A)\right)=8
\end{aligned}
$$

Simplicial maps

Let \mathcal{K} be a simplicial complex, and let $\phi_{1}, \ldots, \phi_{m}$ be simplicial maps. Let A be a subcomplex of \mathcal{K}. Then for each n, the nth Betti number $b_{n}\left(\Phi^{(t)}(A)\right)$ is eventually a polynomial in t.

$$
\Phi=(\mathrm{id}, \phi)
$$

$$
\begin{aligned}
& b_{0}\left(\Phi^{(4)}(A)\right)=7 \\
& b_{1}\left(\Phi^{(4)}(A)\right)=10
\end{aligned}
$$

Simplicial maps

Let \mathcal{K} be a simplicial complex, and let $\phi_{1}, \ldots, \phi_{m}$ be simplicial maps. Let A be a subcomplex of \mathcal{K}. Then for each n, the nth Betti number $b_{n}\left(\Phi^{(t)}(A)\right)$ is eventually a polynomial in t.

$$
\Phi=(\mathrm{id}, \phi)
$$

$$
\begin{aligned}
& b_{0}\left(\Phi^{(t)}(A)\right)=t+3 \\
& b_{1}\left(\Phi^{(t)}(A)\right)=2 t+2
\end{aligned}
$$

Simplicial maps

Consider the simplicial chain complex $\left(C_{\bullet}, \partial_{\bullet}\right)$ associated to \mathcal{K} :

$$
\cdots \xrightarrow{\partial_{n+2}} C_{n+1} \xrightarrow{\partial_{n+1}} C_{n} \xrightarrow{\partial_{n}} C_{n-1} \xrightarrow{\partial_{n-1}} \cdots
$$

We assign to a subgroup $B \subseteq C_{n}$ two ranks: $\operatorname{rk}(B)$ is the rank of the group B, and $\mathrm{rk}^{\partial}(B)$ is the rank of $\partial_{n}(B)$.
A simplicial map $\phi: \mathcal{K} \rightarrow \mathcal{K}$ induces maps $\phi_{n}: C_{n} \rightarrow C_{n}$, each of which is an endomorphism of the corresponding closure operators cl and cl^{∂}.

$$
\begin{aligned}
& \cdots \xrightarrow{\partial_{n+2}} C_{n+1} \xrightarrow{\partial_{n+1}} C_{n} \xrightarrow{\partial_{n}} C_{n-1} \xrightarrow{\partial_{n-1}} \cdots \\
& \cdots \xrightarrow{\partial_{n+2}} C_{n+1} \xrightarrow{\downarrow_{n+1}} \stackrel{\downarrow_{n+1}}{\phi_{n}} C_{n} \xrightarrow{\downarrow_{n}}{ }^{\phi_{n-1}} C_{n-1} \xrightarrow{\partial_{n-1}} \cdots
\end{aligned}
$$

It remains to note that for $A \subseteq \mathcal{K}$, we have

$$
b_{n}(A)=\operatorname{rk}\left(C_{n}(A)\right)-\operatorname{rk}^{\partial}\left(C_{n}(A)\right)-\operatorname{rk}^{\partial}\left(C_{n+1}(A)\right)
$$

Topological dynamics

The previous result is really about topological dynamics. Let B be a topological space, let $\phi_{1}, \ldots, \phi_{m}: B \rightarrow B$ be commuting continuous maps, and let A be a compact subspace of B.
The system (B, A, Φ) is triangulable if there is a triangulation $\tau:|\mathcal{K}| \rightarrow B$ which is compatible with A and with the maps ϕ_{i}.
If (B, A, Φ) is triangulable, then $b_{n}\left(\Phi^{(t)}(A)\right)$ is eventually polynomial in t for each n. This is not true for arbitrary systems. Which other systems enjoy this phenomenon?

$$
\begin{aligned}
b_{1}\left(A_{t+1}\right)-b_{1}\left(A_{t}\right) & =b_{0}\left(A_{t} \cap \phi^{t+1}(A)\right) \\
& \approx t+1
\end{aligned}
$$

Topological dynamics

The previous result is really about topological dynamics. Let B be a topological space, let $\phi_{1}, \ldots, \phi_{m}: B \rightarrow B$ be commuting continuous maps, and let A be a compact subspace of B.
The system (B, A, Φ) is triangulable if there is a triangulation $\tau:|\mathcal{K}| \rightarrow B$ which is compatible with A and with the maps ϕ_{i}.
If (B, A, Φ) is triangulable, then $b_{n}\left(\Phi^{(t)}(A)\right)$ is eventually polynomial in t for each n. This is not true for arbitrary systems. Which other systems enjoy this phenomenon?

$$
\begin{aligned}
b_{1}\left(A_{t+1}\right)-b_{1}\left(A_{t}\right) & =b_{0}\left(A_{t} \cap \phi^{t+1}(A)\right) \\
& \approx t+1
\end{aligned}
$$

Topological dynamics

The previous result is really about topological dynamics. Let B be a topological space, let $\phi_{1}, \ldots, \phi_{m}: B \rightarrow B$ be commuting continuous maps, and let A be a compact subspace of B.
The system (B, A, Φ) is triangulable if there is a triangulation $\tau:|\mathcal{K}| \rightarrow B$ which is compatible with A and with the maps ϕ_{i}.
If (B, A, Φ) is triangulable, then $b_{n}\left(\Phi^{(t)}(A)\right)$ is eventually polynomial in t for each n. This is not true for arbitrary systems. Which other systems enjoy this phenomenon?

$$
\begin{aligned}
b_{1}\left(A_{t+1}\right)-b_{1}\left(A_{t}\right) & =b_{0}\left(A_{t} \cap \phi^{t+1}(A)\right) \\
& \approx t+1
\end{aligned}
$$

Topological dynamics

The previous result is really about topological dynamics. Let B be a topological space, let $\phi_{1}, \ldots, \phi_{m}: B \rightarrow B$ be commuting continuous maps, and let A be a compact subspace of B.
The system (B, A, Φ) is triangulable if there is a triangulation $\tau:|\mathcal{K}| \rightarrow B$ which is compatible with A and with the maps ϕ_{i}.
If (B, A, Φ) is triangulable, then $b_{n}\left(\Phi^{(t)}(A)\right)$ is eventually polynomial in t for each n. This is not true for arbitrary systems. Which other systems enjoy this phenomenon?

$$
\begin{aligned}
b_{1}\left(A_{t+1}\right)-b_{1}\left(A_{t}\right) & =b_{0}\left(A_{t} \cap \phi^{t+1}(A)\right) \\
& \approx t+1
\end{aligned}
$$

Other applications

- A Hilbert polynomial for homogeneous tropical ideals (originally due to Maclagan and Rincón).

Other applications

- A Hilbert polynomial for homogeneous tropical ideals (originally due to Maclagan and Rincón).
- A Kolchin polynomial for difference-differential fields (various results due to Levin).

Other applications

- A Hilbert polynomial for homogeneous tropical ideals (originally due to Maclagan and Rincón).
- A Kolchin polynomial for difference-differential fields (various results due to Levin).
- A Kolchin polynomial for difference-differential exponential fields and o-minimal fields with compatible derivations.

Bounding ranks

The Kolchin polynomial for differential fields can be used to bound U-rank in the model completion $\mathrm{DCF}_{0, m}$ (differentially closed fields with m commuting derivations). This is because the Kolchin polynomial can detect whether one type is a forking extension of another.

Explicitly, McGrail showed that for a differential field F and a tuple \bar{a} in a differentially closed extension of F with Kolchin polynomial

$$
P_{a \mid F}(t)=d t^{k} / k!+\text { lower degree terms },
$$

the type $\operatorname{tp}(\bar{a} / F)$ has U-rank at most $(d+1) \omega^{k}$.
In previous work, Fornasiero and I showed that for a fixed o-minimal theory T, the theory T^{Δ} of models of T with finitely many commuting compatible derivations has a model completion.

Our analog of the Kolchin polynomial can be similarly used to bound thorn-rank in this model completion.

A sketch of the proof of the main theorem

For $\bar{r} \in \mathbb{N}^{m}$, put $\phi^{\bar{r}}:=\phi_{1}^{r_{1}} \cdots \phi_{m}^{r_{m}}$, and define $f: \mathbb{N}^{m} \rightarrow \mathbb{N}$ by

$$
f(\bar{r}):=\operatorname{rk}\left(\phi^{\bar{r}}(A) \mid\left\{\phi^{\bar{u}}(A):|\bar{u}|=|\bar{r}| \text { and } \bar{u}<_{l e x} \bar{r}\right\}\right) .
$$

Then f is decreasing in each variable and $\operatorname{rk}\left(\Phi^{(t)}(A)\right)=\sum_{|\bar{r}|=t} f(\bar{r})$.
One can show that the generating function

$$
\sum_{t} \operatorname{rk}\left(\Phi^{(t)}(A)\right) Y^{t}=\sum_{t} \sum_{|\bar{r}|=t} f(\bar{r}) Y^{t}=\sum_{\bar{r}} f(\bar{r}) Y^{|\bar{r}|}
$$

is a rational function with denominator $(1-Y)^{m}$.
It follows that $\operatorname{rk}\left(\Phi^{(t)}(A)\right)$ is polynomial for t large enough. Exactly how large can be described in terms of the level sets $\left(f^{-1}(n)\right)_{n \in \mathbb{N}}$.

Thank you!

