Hilbert Polynomials for Finitary Matroids

Elliot Kaplan

Joint with Antongiulio Fornasiero

McMaster University

March 9, 2023

Kaplan (McMaster)

Hilbert Polynomials

Eventual polynomial growth is a common theme in combinatorics and commutative algebra. The first example is the Hilbert polynomial.

Let *K* be a field and let $R = K[x_1, ..., x_m]$ be the polynomial ring over *K*. Then *R* is a graded ring $R = \bigoplus_{t=0}^{\infty} R_t$, where R_t consists of homogeneous polynomials of degree *t*.

Theorem

Let $M = \bigoplus_{t=0}^{\infty} M_t$ be finitely generated graded *R*-module. Then there is a polynomial $P \in \mathbb{Q}[Y]$ such that $\dim_K(M_t) = P(t)$ for all $t \gg 0$.

This theorem can be applied when M = R/I for some homogeneous ideal $I \subseteq R$ to compute the degree of the projective variety V(I). This in turn can be used to prove Bézout's theorem on the number of intersections of plane curves.

Let *F* be a field of characteristic zero. A **derivation** on *F* is a map $\delta: F \to F$ satisfying $\delta(a+b) = \delta a + \delta b$ and $\delta(ab) = a\delta b + b\delta a$.

Let $\delta_1, \ldots, \delta_m$ be commuting derivations on *F*. Given a tuple \bar{a} in a differential field extension of *F* and $t \in \mathbb{N}$, put

$$F(\bar{a})_{\leqslant t} := F(\{\delta_1^{r_1} \cdots \delta_m^{r_m}(\bar{a}) : r_1 + \cdots + r_m \leqslant t\}).$$

Theorem (Kolchin 1964)

There is a polynomial $P \in \mathbb{Q}[Y]$ such that $\operatorname{trdeg}(F(\bar{a})_{\leq t}|F) = P(t)$ for all $t \gg 0$.

Johnson showed in 1969 that the Kolchin polynomial can be derived from the Hilbert polynomial of a certain differential module.

Khovanskii later made use of the Hilbert polynomial to prove a very general result on sumsets in abelian semigroups.

Theorem (Khovanskii 1992)

Let *S* be an abelian semigroup and let *A*, *B* be finite subsets of *S*. Then there is a polynomial $P \in \mathbb{Q}[Y]$ such that |A + tB| = P(t) for all $t \gg 0$, where

$$A + tB := \{a + b_1 + \dots + b_t : a \in A \text{ and } b_1, \dots, b_t \in B\}$$

We provide a general framework from which one can easily derive the above theorems.

In each case, we start with a finite set A.

We then apply commuting maps ϕ_1, \ldots, ϕ_m to A (multiplying by x_i , applying the derivation δ_i , adding $b_i \in B$).

After applying these maps t times in total, we calculate some rank of the resulting set (*K*-linear dimension, transcendence degree over *F*, cardinality).

A finitary matroid or *pregeometry* is a set *X* equipped with a closure operator cl: $\mathcal{P}(X) \rightarrow \mathcal{P}(X)$ which satisfies:

- **(**) Monotonicity: if $A \subseteq B \subseteq X$, then $A \subseteq cl(A) \subseteq cl(B)$;
- **2** Idempotence: cl(cl(A)) = cl(A) for $A \subseteq X$;
- Solution Finite character: if $A \subseteq X$ and $a \in cl(A)$, then $a \in cl(A_0)$ for some finite subset $A_0 \subseteq A$;
- Steinitz exchange: For $a, b \in X$ and $A \subseteq X$, if $a \in cl(A \cup \{b\}) \setminus cl(A)$, then $b \in cl(A \cup \{a\})$.

A set $\{a_1, \ldots, a_n\}$ is **independent** if $a_i \notin cl(a_1, \ldots, a_{i-1})$ for all *i*. The **rank** of a finite set $A \subseteq X$, denoted rk(A), is the maximal size of an independent subset of A.

The Hilbert polynomial

Let (X, cl) be a finitary matroid, and let $\Phi = (\phi_1, \ldots, \phi_m)$ be a finite tuple of commuting maps $X \to X$. For $A \subseteq X$, put

$$\Phi^{(t)}(A) := \{ \phi_1^{r_1} \cdots \phi_m^{r_m}(a) : a \in A \text{ and } r_1 + \cdots + r_m = t \}.$$

The tuple Φ is said to be a **triangular system** if for each *i*:

$$a \in \operatorname{cl}(C) \implies \phi_i a \in \operatorname{cl}(\phi_1(C) \cup \cdots \cup \phi_i(C)).$$

Theorem (Fornasiero-K. 2023+)

Suppose that Φ is a triangular system and let $A \subseteq X$ be finite. Then there is a polynomial $P_A^{\Phi} \in \mathbb{Q}[Y]$ of degree $\leq m - 1$ such that

$$\operatorname{rk}(\Phi^{(t)}(A)) = P_A^{\Phi}(t)$$

for $t \gg 0$. We call P_A^{Φ} the Hilbert polynomial for A.

Theorem (Khovanskii 1992)

Let *S* be an abelian semigroup and let *A*, *B* be finite subsets of *S*. Then there is a polynomial $P \in \mathbb{Q}[Y]$ such that |A + tB| = P(t) for all $t \gg 0$.

Proof.

Let X = S and let cl be the trivial closure cl(C) = C, so rk(C) = |C|. Write $B = \{b_1, \dots, b_m\}$, and for each i, put $\phi_i(a) \coloneqq a + b_i$. Then Φ is triangular, since

$$a \in cl(C) \implies a \in C \implies \phi_i(a) = a + b_i \in C + b_i = \phi_i(C).$$

Note that $\Phi^{(t)}(A) = A + tB$, so $\operatorname{rk}(\Phi^{(t)}(A)) = |A + tB|$.

Theorem

Let $R = K[x_1, ..., x_m]$ and let $M = \bigoplus_{t=0}^{\infty} M_t$ be finitely generated graded *R*-module. Then there is a polynomial $P \in \mathbb{Q}[Y]$ such that $\dim_K(M_t) = P(t)$ for all $t \gg 0$.

Proof.

View M as a \mathbb{Z} -graded module $\bigoplus_{t \in \mathbb{Z}} M_t$. Re-index and adjust generators so that $\bigoplus_{t \in \mathbb{N}} M_t$ is generated by a finite set $A \subseteq M_0$. Let X = M, let cl be K-linear span, and put $\phi_i(a) \coloneqq x_i \cdot a$. Again, $a \in \operatorname{cl}(C) \Longrightarrow \phi_i(a) \in \operatorname{cl}(\phi_i(C))$, so Φ is triangular. If $t \ge 0$, then $\operatorname{cl}(\Phi^{(t)}(A)) = M_t$, so $\operatorname{rk}(\Phi^{(t)}(A)) = \dim_K(M_t)$.

In both this and the last example, each ϕ_i is an *endomorphism*: $a \in cl(C) \Longrightarrow \phi_i(a) \in cl(\phi_i(C)).$

Theorem (Kolchin 1964)

Let \bar{a} be a tuple in a differential field extension of F. Then there is a polynomial $P \in \mathbb{Q}[Y]$ such that $\operatorname{trdeg}(F(\bar{a})_{\leq t}|F) = P(t)$ for all $t \gg 0$.

Proof.

Let $X = \bigcup_t F(\bar{a})_{\leq t}$, and let cl be algebraic closure over F. Put $\phi_i := \delta_i$. Let $a \in cl(C)$ and take $\bar{b} \in F(C)$ and $Q \in \mathbb{Q}[X, \bar{Y}]$ with

$$Q(a, \bar{b}) = 0, \qquad \frac{\partial Q}{\partial X}(a, \bar{b}) \neq 0.$$

Then $\delta_i Q(a, \bar{b}) = \nabla Q(a, \bar{b}) \cdot (\delta_i a, \delta_i \bar{b}) = 0$, so $\delta_i a \in cl(C, \delta_i C)$. Thus, Φ may not be triangular, but $\Phi_* := (id, \phi_1, \dots, \phi_m)$ is. Apply our theorem to Φ_* , noting that $F(\bar{a})_{\leqslant t} = F(\Phi_*^{(t)}(\bar{a}))$.

Theorem (Fornasiero-K. 2023+)

Let (Φ_1, \ldots, Φ_k) be a partition of Φ and let $A, C \subseteq X$ with A finite. If each Φ_i is triangular, then there is $P^{\Phi}_{A|C} \in \mathbb{Q}[Y_1, \ldots, Y_k]$ with

$$\operatorname{rk}(\Phi^{(\bar{s})}(A)|\Phi^{(\bar{s})}(C)) = P^{\Phi}_{A|C}(\bar{s})$$

for $\bar{s} = (s_1, \ldots, s_k) \in \mathbb{N}^k$ with $\min\{s_1, \ldots, s_k\}$ sufficiently large.

Corollary (Nathanson 2000, Fornasiero-K. 2023+)

Let A, B_1, \ldots, B_k be finite subsets of an abelian semigroup S and let C be an arbitrary subset of S. Then there is $P \in \mathbb{Q}[Y_1, \ldots, Y_k]$ such that

$$|(A + s_1B_1 + \dots + s_kB_k) \setminus (C + s_1B_1 + \dots + s_kB_k)| = P(s_1, \dots, s_k)$$

when $\min\{s_1, \ldots, s_k\}$ is sufficiently large.

Let P_A^{Φ} be the Hilbert polynomial for $A \subseteq X$. Take $\mathrm{rk}^{\Phi}(A) \in \mathbb{N}$ with

$$P^{\Phi}_A(Y) = rac{\mathrm{rk}^{\Phi}(A)}{(m-1)!}Y^{m-1} + ext{ lower degree terms}$$

Define cl^{Φ} on X by

$$\mathrm{cl}^{\Phi}(B) := \{a \in X : \mathrm{rk}^{\Phi}(B_0 a) = \mathrm{rk}^{\Phi}(B_0) \text{ for some finite } B_0 \subseteq B\}.$$

Theorem (Fornasiero-K. 2023+)

 (X, cl^{Φ}) is a finitary matroid.

For the Kolchin polynomial, ${\rm cl}^\Phi$ coincides with differential algebraic closure.

Consider the simplicial chain complex $(C_{\bullet}, \partial_{\bullet})$ associated to \mathcal{K} :

$$\cdots \xrightarrow{\partial_{n+2}} C_{n+1} \xrightarrow{\partial_{n+1}} C_n \xrightarrow{\partial_n} C_{n-1} \xrightarrow{\partial_{n-1}} \cdots$$

We assign to a subgroup $B \subseteq C_n$ two ranks: rk(B) is the rank of the group B, and $rk^{\partial}(B)$ is the rank of $\partial_n(B)$.

A simplicial map $\phi \colon \mathcal{K} \to \mathcal{K}$ induces maps $\phi_n \colon C_n \to C_n$, each of which is an endomorphism of the corresponding closure operators cl and cl^{∂}.

It remains to note that for $A \subseteq \mathcal{K}$, we have

$$b_n(A) = \operatorname{rk}(C_n(A)) - \operatorname{rk}^{\partial}(C_n(A)) - \operatorname{rk}^{\partial}(C_{n+1}(A)).$$

The previous result is really about topological dynamics. Let *B* be a topological space, let $\phi_1, \ldots, \phi_m \colon B \to B$ be commuting continuous maps, and let *A* be a compact subspace of *B*.

The system (B, A, Φ) is **triangulable** if there is a triangulation $\tau : |\mathcal{K}| \to B$ which is compatible with A and with the maps ϕ_i .

$$b_1(A_{t+1}) - b_1(A_t) = b_0(A_t \cap \phi^{t+1}(A))$$

 $\approx t+1$
 $(0,0) \bullet$
 $A = A_0$

The previous result is really about topological dynamics. Let *B* be a topological space, let $\phi_1, \ldots, \phi_m \colon B \to B$ be commuting continuous maps, and let *A* be a compact subspace of *B*.

The system (B, A, Φ) is **triangulable** if there is a triangulation $\tau : |\mathcal{K}| \to B$ which is compatible with A and with the maps ϕ_i .

The previous result is really about topological dynamics. Let *B* be a topological space, let $\phi_1, \ldots, \phi_m \colon B \to B$ be commuting continuous maps, and let *A* be a compact subspace of *B*.

The system (B, A, Φ) is **triangulable** if there is a triangulation $\tau : |\mathcal{K}| \to B$ which is compatible with A and with the maps ϕ_i .

$$b_1(A_{t+1}) - b_1(A_t) = b_0(A_t \cap \phi^{t+1}(A))$$

 $\approx t+1$

The previous result is really about topological dynamics. Let *B* be a topological space, let $\phi_1, \ldots, \phi_m \colon B \to B$ be commuting continuous maps, and let *A* be a compact subspace of *B*.

The system (B, A, Φ) is **triangulable** if there is a triangulation $\tau : |\mathcal{K}| \to B$ which is compatible with A and with the maps ϕ_i .

$$b_1(A_{t+1}) - b_1(A_t) = b_0(A_t \cap \phi^{t+1}(A))$$

 $\approx t+1$

• A Hilbert polynomial for homogeneous tropical ideals (originally due to Maclagan and Rincón).

- A Hilbert polynomial for homogeneous tropical ideals (originally due to Maclagan and Rincón).
- A Kolchin polynomial for difference-differential fields (various results due to Levin).

- A Hilbert polynomial for homogeneous tropical ideals (originally due to Maclagan and Rincón).
- A Kolchin polynomial for difference-differential fields (various results due to Levin).
- A Kolchin polynomial for difference-differential exponential fields and o-minimal fields with compatible derivations.

Bounding ranks

The Kolchin polynomial for differential fields can be used to bound U-rank in the model completion $\text{DCF}_{0,m}$ (differentially closed fields with m commuting derivations). This is because the Kolchin polynomial can detect whether one type is a forking extension of another.

Explicitly, McGrail showed that for a differential field F and a tuple \bar{a} in a differentially closed extension of F with Kolchin polynomial

 $P_{a|F}(t) = dt^k/k! + lower degree terms,$

the type $\operatorname{tp}(\bar{a}/F)$ has *U*-rank at most $(d+1)\omega^k$.

In previous work, Fornasiero and I showed that for a fixed o-minimal theory T, the theory T^{Δ} of models of T with finitely many commuting compatible derivations has a model completion.

Our analog of the Kolchin polynomial can be similarly used to bound thorn-rank in this model completion.

A sketch of the proof of the main theorem

For
$$\bar{r} \in \mathbb{N}^m$$
, put $\phi^{\bar{r}} \coloneqq \phi_1^{r_1} \cdots \phi_m^{r_m}$, and define $f \colon \mathbb{N}^m \to \mathbb{N}$ by
 $f(\bar{r}) \coloneqq \operatorname{rk} \left(\phi^{\bar{r}}(A) \middle| \{ \phi^{\bar{u}}(A) : |\bar{u}| = |\bar{r}| \text{ and } \bar{u} <_{lex} \bar{r} \} \right).$

Then *f* is decreasing in each variable and $\operatorname{rk}(\Phi^{(t)}(A)) = \sum_{|\bar{r}|=t} f(\bar{r})$. One can show that the generating function

$$\sum_{t} \operatorname{rk}(\Phi^{(t)}(A)) Y^{t} = \sum_{t} \sum_{|\bar{r}|=t} f(\bar{r}) Y^{t} = \sum_{\bar{r}} f(\bar{r}) Y^{|\bar{r}|}$$

is a rational function with denominator $(1 - Y)^m$.

It follows that $rk(\Phi^{(t)}(A))$ is polynomial for t large enough. Exactly how large can be described in terms of the level sets $(f^{-1}(n))_{n \in \mathbb{N}}$.

Thank you!

Kap	lan (McMaster