Neural Networks, NIP and Definable Valuations

Lothar Sebastian Krapp

Universität Konstanz

Abstract

In 1971, the related notions VC dimension and "not the indepence property" (NIP) were established independently of each other. The former was introduced by Vapnik and Chervonenkis [6] in the context of linear learning theory, the latter by Shelah [5] in the study of stable theories – a highly abstract concept from model theory. It took 21 years until a connection between VC dimensions and NIP was noticed in [4], describing how the two notions give different descriptions of the same idea. This connection resulted in an interesting application of a purely model theoretical and combinatorial concept to neural network learning.

In my talk, I will firstly outline the mathematical idea behind artificial neural networks and in this regard describe the formal learning process for such a network. I will then highlight the theorem which links neural network learning to the model theoretic concept of NIP theories. Finally, I will present our recent progress in the study of NIP ordered fields and definable valuations motivated by the Shelah–Hasson Conjecture (cf. [1, 2, 3]).

The talk should be accessible to anyone with a background in mathematics, and all relevant notions will be introduced.

References

- L. S. KRAPP, 'Algebraic and Model Theoretic Properties of O-Minimal Exponential Fields', doctoral thesis, Universität Konstanz, 2019.
- [2] L. S. KRAPP, S. KUHLMANN and G. LEHÉRICY, 'Strongly NIP Almost Real Closed Fields', to appear in *Math. Log. Q.*, arXiv:2010.14770.
- [3] L. S. KRAPP, S. KUHLMANN and G. LEHÉRICY, 'Ordered Fields Dense in Their Real Closure and Definable Convex Valuations', accepted, arXiv:2010.11832.
- M. C. LASKOWSKI, 'Vapnik–Chervonenkis classes of definable sets', J. London Math. Soc. (2) 45 (1992) 377–384.
- [5] S. SHELAH, 'Stability, the f.c.p., and superstability; model theoretic properties of formulas in first order theory', Ann. Math. Logic 3 (1971) 271–362.
- [6] V. N. VAPNIK and A. YA. CHERVONENKIS, 'The uniform convergence of frequencies of the appearance of events to their probabilities', *Teor. Verojatnost. i Primenen.* 16 (1971) 264–279 (Russian), *Theor. Probability Appl.* 16 (1971) 264–280 (English).