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Outline

1. Model theory of differential fields

2. The Picard-Vessiot differential Galois theory

3. History of existence theorems for Picard-Vessiot extensions and an
extended Galois correspondence

4. History of model-theoretic differential Galois theory and an extended
Galois correspondence

5. Results classifying strictly transitive definable group actions

6. Contemporary model-theoretic approach to differential Galois theory

6. Contemporary existence theorems for differential Galois theory and
(differential) field arithmetic
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Differential field arithmetic

Definition

An ordinary differential field is a pair (K , δ) where K is a field and
δ : K → K is a function such that ∀x , y ∈ K

1 δ(x + y) = δ(x) + δ(y)

2 δ(xy) = δ(x)y + xδ(y)

Examples: (Q, d
dt ), (Q(t), d

dt ), (C(t),
d
dt ), (Q(ex), d

dx ), (C((t)),
d
dt )

Example of a partial differential field: (C(x , t, x t , ln(x)), d
dx ,

d
dt ).

We focus on the ordinary (one derivation) case and characteristic 0.

A differential field arithmetic property guarantees existence of solutions to
of certain families of differential equations (over said differential field). For
example, being differentially closed.
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Model theory of differential fields

The theory of differential fields of char 0 in the language Lδ = Lrings ∪ {δ}
has a model companion, DCF0, the theory of existentially closed
differential fields.

DCF0 has QE, EI, and naming countable sets of parameters it is ω-stable,
naming arbitrary sets of parameters it is totally transcendental.

Every (K , δ) has a subfield of constants CK = {a ∈ K : δ(a) = 0}.

E.g. CQ(t) = {f (t) ∈ Q(t) : d
dt (f (t)) = 0}) = Q.

Every (K , δ) is contained in (Kdiff, δ), a differential closure (a prime model
of DCF0) with CKdiff = (CK )

alg.

David Meretzky (Notre Dame) Differential Field Arithmetic 4/10/25 4 / 25



Model theory of differential fields

The theory of differential fields of char 0 in the language Lδ = Lrings ∪ {δ}
has a model companion, DCF0, the theory of existentially closed
differential fields.

DCF0 has QE, EI, and naming countable sets of parameters it is ω-stable,
naming arbitrary sets of parameters it is totally transcendental.

Every (K , δ) has a subfield of constants CK = {a ∈ K : δ(a) = 0}.

E.g. CQ(t) = {f (t) ∈ Q(t) : d
dt (f (t)) = 0}) = Q.

Every (K , δ) is contained in (Kdiff, δ), a differential closure (a prime model
of DCF0) with CKdiff = (CK )

alg.

David Meretzky (Notre Dame) Differential Field Arithmetic 4/10/25 4 / 25



Model theory of differential fields

The theory of differential fields of char 0 in the language Lδ = Lrings ∪ {δ}
has a model companion, DCF0, the theory of existentially closed
differential fields.

DCF0 has QE, EI, and naming countable sets of parameters it is ω-stable,
naming arbitrary sets of parameters it is totally transcendental.

Every (K , δ) has a subfield of constants CK = {a ∈ K : δ(a) = 0}.

E.g. CQ(t) = {f (t) ∈ Q(t) : d
dt (f (t)) = 0}) = Q.

Every (K , δ) is contained in (Kdiff, δ), a differential closure (a prime model
of DCF0) with CKdiff = (CK )

alg.

David Meretzky (Notre Dame) Differential Field Arithmetic 4/10/25 4 / 25



Model theory of differential fields

The theory of differential fields of char 0 in the language Lδ = Lrings ∪ {δ}
has a model companion, DCF0, the theory of existentially closed
differential fields.

DCF0 has QE, EI, and naming countable sets of parameters it is ω-stable,
naming arbitrary sets of parameters it is totally transcendental.

Every (K , δ) has a subfield of constants CK = {a ∈ K : δ(a) = 0}.

E.g. CQ(t) = {f (t) ∈ Q(t) : d
dt (f (t)) = 0}) = Q.

Every (K , δ) is contained in (Kdiff, δ), a differential closure (a prime model
of DCF0) with CKdiff = (CK )

alg.

David Meretzky (Notre Dame) Differential Field Arithmetic 4/10/25 4 / 25



Model theory of differential fields

The theory of differential fields of char 0 in the language Lδ = Lrings ∪ {δ}
has a model companion, DCF0, the theory of existentially closed
differential fields.

DCF0 has QE, EI, and naming countable sets of parameters it is ω-stable,
naming arbitrary sets of parameters it is totally transcendental.

Every (K , δ) has a subfield of constants CK = {a ∈ K : δ(a) = 0}.

E.g. CQ(t) = {f (t) ∈ Q(t) : d
dt (f (t)) = 0}) = Q.

Every (K , δ) is contained in (Kdiff, δ), a differential closure (a prime model
of DCF0) with CKdiff = (CK )

alg.

David Meretzky (Notre Dame) Differential Field Arithmetic 4/10/25 4 / 25



Picard-Vessiot Theory

Let (K , δ) be a differential field. An ordinary linear homogeneous
differential equation (OHDLE) over K is an equation of the form

δ(n)(y) + an−1δ
(n−1)(y) + ...+ a1δ(y) + a0y = 0 ai ∈ K .

For any K ⊂ L and OHLDE Y over K , the solution set Y (L) is a
CL-vector space of dimension at most n.

A fundamental system of solutions to Y is a CL-basis of Y (L) of length n
for some extension L of K .

A Picard-Vessiot (PV) extension L of K is a differential extension
generated by a fundamental system of solutions to an OHDLE over K and
such that CL = CK . In which case Y (L) is a CK -vector space of dim n.

Ex. Let K = (Q, d
dt ) ⊂ (Q(et), d

dt ) = L. Then et is a Q-basis of
V (L) = {cet : c ∈ CL = CK = Q} for δ(y)− y = 0.
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Picard-Vessiot Theory II

Let (K , δ) be and Y be an OHLDE over K .

Fact

If CK = (CK )
alg, then there exists a Picard-Vessiot extension L

intermediate in K ⊆ L ⊆ Kdiff.

Proof.

By the existential closure of Kdiff, one can find n-independent solutions b̄
to Y in Kdiff.

Let L = K ⟨b̄⟩.

Since CKdiff = (CK )
alg, then CL = CK for any intermediate L:

CK ⊆ CL ⊆ CKdiff = (CK )
alg = CK

Existence and uniqueness/multiplicity of Picard-Vessiot extensions is
sensitive to field-arithmetic, model-theoretic, and Galois-cohomological
properties of CK .
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The Picard-Vessiot differential Galois correspondence

Theorem (1.-3. from Kolchin 1948)

Let K ⊂ L = K ⟨b̄⟩ ⊂ Kdiff be a PV extension (not assuming
CK = (CK )

alg. Then there is a linear algebraic group G ⊂ GLn defined
over CK . Such that

1. Aut(L/K ) ∼= G (CK )

2. Aut(L(CKdiff)/K (CKdiff)) ∼= G (CKdiff)

σ 7→ cσ ∈ GLn(CKdiff) s.t. σ(b̄) = b̄cσ

3. (“indirect” correspondence) There is a Galois correspondence between
CK -definable algebraic subgroups {e} ⊆ G1 ⊆ G and intermediate
differential fields K ⊆ L1 ⊆ L.

4. (Torsor theorem) The realizations of tp(b̄/K (CKdiff)) = tp(b̄/K ) in
Kdiff, Qb̄(K

diff), is a right K -definable torsor for G (CKdiff).
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2. Aut(L(CKdiff)/K (CKdiff)) ∼= G (CKdiff)

σ 7→ cσ ∈ GLn(CKdiff) s.t. σ(b̄) = b̄cσ

3. (“indirect” correspondence) There is a Galois correspondence between
CK -definable algebraic subgroups {e} ⊆ G1 ⊆ G and intermediate
differential fields K ⊆ L1 ⊆ L.

4. (Torsor theorem) The realizations of tp(b̄/K (CKdiff)) = tp(b̄/K ) in
Kdiff, Qb̄(K

diff), is a right K -definable torsor for G (CKdiff).
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History

In 1948, Ellis Kolchin publishes the first fully algebraic account of a
differential Galois theory for OHLDEs,

fulfilling a program of Sophus Lie,
outlined by Lie after hearing about Galois’ algebraic work. Differential
Galois theory was done analytically by Liouville, Picard, Vessiot, Drach
during the late 19th century. Kolchin’s treatment was enabled by Weil,
Chevalley, Kolchin, Lang, Rosenlicht, working out the theory of algebraic
geometry and algebraic groups in the middle 20th Century.
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Early existence theorems for PV extensions

Let Y be an OHDLE over a differential field K .

One can always find a fundamental system b̄ in Kdiff, in which case,
generating L = K ⟨b̄⟩, the associated extension CL/CK is finite.

(Kolchin 1948): If CK = (CK )
alg, then a PV extension exists for Y .

(Seidenberg 1956) Negative Example: Let K = R(α) where α is a
transcendental solution to (2α)2 + (δ(α))2 = −1. Let Y be δ2(y) + y = 0.
For any fundamental system b̄ for Y , L = K ⟨b̄⟩ has CL = C ̸= CK = R.
i.e. K has no PV extension for Y .

(Epstein 1955): One can always find a fundamental system b̄ for Y , an
OHLDE, such that CL/CK is a Galois extension.
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PV extensions with new algebraic constants (Ch 4.)

Theorem 4.3.4, Generalizes Epstein ’55 Theorem 1.

Let L/K be generated by a fundamental system with CL/CK a finite
algebraic extension. Then Aut(L/K ) ∼= G (CK ) for G a linear algebraic
group defined over CK .

Let L = K ⟨b̄⟩. We have K ⊆ K (CL) ⊆ L. Note K (CL) ⊆ L is PV.

Theorem 4.6.1, Model theoretic proof of E. ’55 Theorem 9.

If CL/CK is Galois then F is fixed iff F ′ (smallest intermediate field of
L/K (CL) containing F ) is fixed under the direct Galois correspondence and
is Galois over F .

Proposition 4.5.10.

Moreover F ′ is fixed under the direct correspondence if and only if
HF ′(CL) is Zariski dense in HF ′ .
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Totally Transcendental Theories (Ch. 1.)

A first order theory T is totally transcendental if Morley Rank is ordinal
valued on all formulas. E.g. ACF0, DCF0. In totally transcendental
theories, prime models M exist over any set of parameters A and are
unique but are potentially nonminimal.

In (1978) Poizat studies mcl(A) :=
⋂

γ γ(M) where γ : M → M is an A-elt
embedding and shows it has very strong homogeneity properties (any elt
perm of a subset of mcl(A) lifts to an automorphism of M over A).

In (1983) Poizat sets up the model theoretic treatment of Picard-Vessiot
theory using Zilber’s binding group.Treats algebraic Galois theory:

{closed H ⊆ Aut(acleq(A)/A)} ↔ {dcl-closed B : A ⊆ B ⊆ acleq(A)}

Poizat remarks in 1978 that because for T = DCF0, A = K , M = Kdiff,
K ⊆ KPV ⊆ mcleq(K ) ⊂ Kdiff, it is worthwhile to study Aut(mcleq(A)/A).
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Galois correspondence for the minimal closure (Ch. 1.)

Theorem 1.4.20, joint with Anand Pillay.

Let T be a totally transcendental theory, A a set of parameters and M a
prime model over A. There is a Galois correspondence

{definable H ⊆ Aut(mcleq(A)/A)} ↔ {B : A ⊆ B ⊆ mcleq(A)}

with definable meaning H = {σ ∈ Aut(mcleq(A)/A) : φ(b̄, σ(b̄))} for some
A-definable φ(x̄ , ȳ) and tuple b̄ from mcleq(A) and with B finitely
dcl-generated and dcl-closed.

Motivations: 1) Kdiff does not have good enough homogeneity properties.
2) Make explicit/treat model theoretically more recent work Magid (2022).

Timing: Poizat was missing this notion of definable subgroup. It was
adapted by Pillay in (2024) from Hrushovski Krupinski Pillay (2021).
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Definable Galois cohomology (Ch 2.)
Let T be a totally transcendental theory with EI. An intermediate set
A ⊆ B ⊆ M is normal if Aut(M/B) is normal in Aut(M/A). Again assume
M is prime over A. Let G be an A-definable group and P a free and
transitive A-definable right G -set (PHS). The following definitions are
adapted from Pillay (1997).

Definition 2.2.4, M. (2025)

A map φ : Aut(B/A) → G (B) is a definable cocycle if ∀σ, τ ∈ Aut(B/A),

φ(στ) = φ(σ)σ(φ(τ))

and there exists an A-definable function h(x̄ , ȳ) and b̄ ∈ Bn such that

φ(σ) = h(b̄, σ(b̄)).

Two definable cocycles φ and ψ are cohomologous if ∃g ∈ G (B) with

φ(σ) = g−1ψ(σ)σ(g).
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Definable Galois cohomology (Ch 2.)

Definition 2.2.7, Proposition 2.2.12, M. (2025)

The set of cocycles is denoted Z1
def(B/A,G (B)) and is in bijection with

Pdef,∗(M/A,G (B)) the A-definable isomorphism classes of PHSs for G
with a specified B-point.

Moreover, H1
def(B/A,G (B)) ∼= Pdef(M/A,G (B)).

Theorem 2.3.4, M. (2025)

The short exact sequence of automorphism groups

1 → Aut(M/B) → Aut(M/A) → Aut(B/A) → 1

induces a short exact sequence in definable Galois cohomology

1 → H1
def(B/A,G (B)) → H1

def(M/A,G (M)) → H1
def(M/B,G (M))Aut(B/A)

where the last term denotes the fixed points of an adaptation of Serre’s
transform action of Aut(B/A) on H1

def(M/B,G (M)).
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LES in definable Galois cohomology (Ch. 2)

Theorem 2.4.1, Corollary 2.4.20, León Sánchez, M., Pillay (2024)

A short exact sequence of A-definable groups, 1 → N
ι−→ G

π−→ Q → 1,

induces a long exact sequence in cohomology:

1 → N(A)
ι0−→ G (A)

π0

−→ Q(A)
δ−→

H1
def(M/A,N(M))

ι1−→H1
def(M/A,G (M))

π1

−→ H1
def(M/A,Q(M)).

Moreover, the cardinality of H1
def(M/A,G (M)) is bounded by the

cardinality of the union of H1
def(M/A,Q(M)) and all H1

def(M/A, PαN(M))
as PαN(M) ranges over a set of PHSs {Pα} representing the fibers of π1.

These sequences are the main tools for computing with definable Galois
cohomology.
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Internality in DCF0 (Ch. 3)

Let T = DCF0. Let U be a monster model of DCF0 with constant field C.

Let K be a differential field. Let Y and X be K -definable sets.

We say Y is internal to X if Y ⊆ dcl(K ,X ,B) for some small set of
parameters B. By compactness and a standard coding trick there is a
K -definable function and a tuple b̄ from Bn such that f (b̄, x̄) : X n → Y is
surjective.

By t.t. of DCF0 we can replace b̄ with a tuple of elements of Y n which we
call a fundamental system for Y .

The set of such fundamental systems Z is K -definable. Following some
replacements in notation f (b, x̄) : X1 → Z is a bijection for any b ∈ Z .
X1 ⊆ (X n)eq.

We can define a definable groupoid action living on Z and X1 as follows.
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Hrushovski (2004): Binding groupoid (Ch. 3)

For any b ∈ Z , tp(b/K ,X ) is isolated and definable over a finite tuple d̄
from X .

Let Qd̄ be the set of realizations of the type. There is a
dcl(K , d̄)-definable group Hd̄ ⊂ X1 acting on Qd̄ on the right freely and
transitively.

For any distinct types p1 and p2 of fund. sys. over dcl(K ,X ), and
associated tuples d̄1, d̄2, we define

Hd̄1,d̄2
= {c ∈ X1 : f (b1, c) = b2, b1 |= p1, b2 |= p2}

Additionally, there is a K -definable group H+ acting on the left on each
Qd̄ isomorphically to the action of Aut(Qd̄/dcl(K ,X )). Giving each triple
(H+,Qd̄ ,Hd̄) the structure of a definable biPHS.

Elements b ∈ Qd̄(K
diff), by the definitions, generate generalized strongly

normal extensions exactly when d̄ ∈ X (K ). Then both H+ and Hd̄ are
K -definable and are the intrinsic and extrinsic differential Galois groups of
the extension L/K where L = dcl(K , b) = K ⟨b⟩.
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Cohomology and extensions (Ch. 3)

Proposition 3.2.20, Well known via Tannakian formalism

Let K be a differential field, and let Y be an OHLDE defined over K .
Assume that at least one nontrivial Picard-Vessiot extension L = K ⟨b̄0⟩
exists for this equation in Kdiff. Let Hd̄0

(CKdiff) be the extrinsic differential
Galois group of L/K . Then the set of Picard-Vessiot extensions for Y in
Kdiff is in bijection with H1

alg(CKdiff/CK ,Hd̄0
(CKdiff)).

Proof.

For any other b1 ∈ Z (Kdiff), with d̄1 ∈ X (CK ), then Hd̄1,d̄0
(CKdiff) is a

right CK -definable PHS.

This gives an injective map from the set of PV
extensions for Y in Kdiff to H1

alg(CKdiff/CK ,Hd̄0
(CKdiff)).
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Cohomology and extensions (Ch. 3)

proof.

Now let P(CKdiff) be a right CK -definable PHS for Hd̄0
(CKdiff).

As Hd̄0
(CKdiff) is linear, we apply the LES

1 →Hd̄0
(CK ) → GLn(CK ) → (GLn/Hd̄0

)(CK )
δ1−→

H1
alg(CKdiff/CK ,Hd̄0

(CKdiff)) → 1 (= H1
alg(CKdiff/CK ,GLn(CKdiff)))

So P(CKdiff) is a CK -definable right coset of Hd̄0
(CKdiff) in GLn(CKdiff).

But Z (Kdiff) is a right K -definable PHS for GLn(CKdiff).
Then P(CKdiff) = Hd1d0(CKdiff) for some d̄1 ∈ (CK )

n:Take an element C in
this coset. Apply the inverse C−1 to b0 to get a new solution b1
associated to d̄1 ∈ (CK )

n. So the map is surjective.
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Existence theorems and countability results (Ch. 3)

Ovchinnikov, Gorchinsky, Gillet, (2013), Kamensky, Pillay (2015): If CK is
existentially closed in K as a field then PV extensions exist for any
OHLDE Y over K in Kdiff.

Serre: A field F is bounded iff H1(F alg/F ,G (F alg)) is finite for all linear
algebraic groups G over F .

Kamensky, Pillay (2015): If CK is existentially closed in K as a field, and
CK is bounded and large as a field then PV extensions L exist for any
OHLDE Y over K in Kdiff so that CK is e.c. in L

.

Theorem 3.2.17, Kamensky, Pillay (2015), León Sánchez, M., Pillay
(2024)

Suppose the field F is bounded and G is any algebraic group over F . Then
H1
alg(F

alg/F ,G (F alg)) is at most countable.
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Countability and Boundedness (Ch. 3)

Theorem 3.4.13. León Sánchez, M., Pillay (2024)

Let (K , δ) be a differentially large field. Furthermore, suppose that K is
bounded as a field. Then H1

δ(K
diff/K ,G (Kdiff)) is countable for any

differential algebraic group G defined over K .

Pillay (2017) Minchenko, Ovchinnikov (2019): A differential field K is
algebraically closed and is closed under PV extensions if and only if
H1
def(K

diff/K ,G (Kdiff)) = 1 for all linear differential algebraic groups G
defined over K .
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Thank you!
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