Chapter 2

Arguments, Valid and Invalid

In this chapter, we describe the important notion of a proof in the Sentential
Calculus, but first we define some related concepts.

! 2.1 TAUTOLOGIES

Bach formula in the Sentential Calculus has a truth table. If the last column of

the truth table has all “T’s,” then that formula is called a tautology. A formula

is a tautology if it is true for all possible truth values of its sentential variables.

The following formulas are examples of tautologies: 4 v 714, A A 14 - (B v

C->D),AAB< A A B and {4 A B) < 714 v TIB. If a formula is false for

all truth values of its sentential variables, it is called a contradiction. The negation

a of a tautology will always be a contradiction and vice versa. The formulas
A A T4 and A < 714 are contradictions that frequently occur in practice.

i If P and Q are formulas such that P — Q is a tautology, we say P tautolog-
ically implies Q, which is expressed symbolically as P = Q. If P <> Q is a tautology,
we say P is tautologically equivalent to Q, symbolically P < Q. For example,

§ A &S A A Abecause 4 <+ A A A is a tautology, and 4 = A v B because

“ A —> A v Bis a tautology.

Usually, if we have a disjunction of formulas or a conjunction of formulas,
we omit parentheses because the formulas are tautologically equivalent. So,
for example, we normally will not distinguish between the two tautologically
equivalent formulas A A (B A C) and (4 A B) A C, and we will write each

| asAABAC
: I P, P, Ps, ..., P,and Q are formulas, we say P, P,, Ps, ..., P, tauto-
logically imply Qit Py A P, A Py A+ + A P,— Qis atautology. As a consequence,
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we have the following theorem:

Py, Py, Ps, ..., P, tautologically imply Q if and only if whenever P, P, P5, ..., P,
are all true, Q is true also.

Proof: Suppose P,, P,, P;, ..., P, tautologically imply Q. Then P, A P, A P
A "+ A P, — Qis a tautology. If P;, P,, P, ... and P, are all true, to make
the conditional statement true, Q must be true.

Conversely, suppose Q is true whenever Py, P,, P;, . .., and P, are all true.
Then P, A P, A Py A +++ A P, — Q is a tautology because if all the P/s are
true, by hypothesis, Q is true, so the conditional is of the form T — T, which is
true. If some P is false, then the conditional statement is of the form F — T or
F — F, depending on whether Q is true or false. In both cases, the conditional
is true. Thus, the conditional statement is always true, therefore, it is a tautology.

Theorem 2.1 allows us to shorten the time it takes to determine whether
a conditional statement is a tautology. For example, to determine whether the
formulas A — B, 714 — C, and C — B tautologically imply B, we prepare a truth
table with eight lines. The only lines we have to look at, however, are those in
which the three formulas A — B, 14 — C, and C — B are all true.

A|B|C|A—»B | 14A4—>C | C—>B| B
T|T| T T T T T
T|T|F T T T T
T|F|T F

T|F|F F

FI T\ T T T T T
F|T|F T F

F|F | T T T F
FIlFIF T F

Lines 1, 2, and 5 are the only lines of the truth table where the three
formulas are all true; on these lines, B is also true. Therefore, the three formulas
A — B, 1A — C, and C — B tautologically imply B.

On the other hand, suppose we want to show that the three formulas
A — B, C = T4, and ¢ — B do not tautologically imply B. All we have to do
is find truth values for 4, B, and C so that the three formulas are true but B
is false. Starting with the conclusion, B, being false, we see that the first premise,
A —> B, has a false consequent. In order for that to be true, 4 must be false. The
second premise, C — 14, now has a true consequent, so that i$ true whether C
is true or false. The third premise, C — B, however, has a false consequent, so
C must be false to make it true. If we just construct the one line of the truth
table
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A|lB|c|la—>B|c>4|c—B]|B
rlrlel ¢ I ¢ T 1o Tk

we see that it is possible to assign truth values to A4, B, and C, so that the three
formulas are true, but B is false. Thus, the three formulas do not tautologically
imply B.

This discussion is leading up to the notion of a valid argument. An argument
is a set of premises, P, P,, P3, ..., P,, and a conclusion Q. An argument is valid
if and only if whenever the premises are true, the conclusion is also true. That
is,

PLAP,AP;A* AP, >>Qor

Py AP, APy A+ AP,— Qs atautology, or

Py, P,, Ps,. .., and P, tautologically imply Q.
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- Premises: B —>H,
 Conclusion: D "

“argument is invalid, w

Chapter 2 Arguments, valid and Invalid

hows that it is possible to assign truth values to the atomic sentences in such

a way that the premises are'trug’but the conclusion is false. Such an assign-
ment is sometimes called a_’\cauhter-ye)cample.' Conse,quenﬂy',‘,_the"argument is

~ potvalid. -

' Deter'miné‘thé vahdltyof the follovvmg argument I the dOng Barkihg,,}"thén
.. the dog is in tlie",house'.»If‘the_ddg‘,is in the hou

use, then someone is at the

the dog is barking. Therefore, :

front door unless the dog is not barking. Indeed,
someone is at the front door. o

Solution: First we tre s\/l‘ate‘,tfi'e‘ afguméntfinto‘,ilogical notation. ‘Using the

same letters for atomic sentences as in Example 2 1, we Obtajn,atheffollowmgz -

e, to try to show that the

Ifwé*sta’ryf,’fasgwe ; Q slony
passe. (Try itl) Thus, we

ve did m , V'V'e”précédin"ga exary
- would soon come to.

ruth tabler

construct the wh

h table in which all the premises are true is the fist
e conclusion i 0 tru Théxe'f()ré,'fth'e]a‘rgumént

It is important to note that the validity of an argument depends only on its
structure. The validity or nonvalidity of the arguments in Examples 2.1 and 2.2
did not depend on the interpretation or meaning of B, H, and D. It only depended
on the structure of the premises and the conclusion.

For more complicated arguments, the truth table method to prove validity
gets rather cumbersome. 1f there were ten atomic sentences, for example, the
truth table would have 510 — 1024 lines. Although the problem can be done
on a computer, it is still advantageous to have another method to show that an
argument is valid. (The counter-example method, as illustrated in Example 2.1,
is usually the best method to show that an argument is not valid.)
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The method we shall describe to show that an argument is valid is called
a proof, a deduction, or an inference. We shall give a few general rules, called rules
of inference, that are sufficient to construct a “‘proof” of any valid argument in
the Sentential Calculus. A rule of inference is a procedure for deducing a con-
sequence from premises. The rules must be valid or preserve truth; that is, when-
ever the premises are true, the consequence must be true. Otherwise, there is
no guarantee that the argument is valid.

2.2 RULE FOR TAUTOLOGIES

The first such rule we shall discuss is called the Rule for Tautologies, or Rule T.

Rule T
(Rule for
Tautologies)

A formula Q is deducible from formulas Py, Py, . .., Pyif PL AP, A+ AP,
Q. (Thatis, P, A P, A =+ A P, — Q is a tautology.) In particular, if Q itself is a
tautology, then Q is deducible from the empty set of premises.

It follows from Theorem 2.1 that Rule T is valid. Rules 1 through 4 listed
below are four examples of Rule T:
Rule 1. From P and P — Q deduce Q.
Rule 2. From 71Q and P — Q deduce 71P.
Rule 3. From 1P and P v Q deduce Q.
Rule 4. From ~1("1P) deduce P and from P deduce 71(T1P).

Our preliminary definition of a proof is as follows:

By a (formal) proof of Q from the premises Py, P,, ..., P,, we mean a finite
sequence of formulas, Ry, Ry, . . ., R,, where R, is Q, and each R; is either one
of the premises P, or is deducible from preceding Ry’s in the sequence using a
valid rule of inference.

We use the notation ‘P, P, ..., P, + Q" if there is a proof of Q from Py,
P,, ..., P, The symbol “I"’ is sometimes called a “turnstile.”

As an illustration of a formal proof, we shall prove that the following
argument is valid.

Premises: A — 7B, Cv B, D—"1C, D
Conclusion: 714

First, we shall describe informally how to deduce 714 from the premises:

Step 1: From D and D — ~1C deduce 71C using Rule 1.
Step 2: From 7IC and C v B deduce B using Rule 3.

Step 3: From B deduce 71(71B) using Rule 4.

Step 4: From “(71B) and A — 7B deduce 714 using Rule 2.
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Somewhat more formally, the proof could be written as follows:

Proof Reason

1.4 — "B Premise
2.Cv B Premise
3.D—->"1C Premise
4. D Premise
5.71C T (Rule 1)
6. B T (Rule 3)
7. {T1B) T (Rule 4)
8.714 T (Rule 2)

The proof is the finite sequence of formulas given on lines 1 through 8
above. Bach formula in the proof is either a premise (1 through 4) or is derivable
from preceding formulas in the sequence using a valid rule of inference
(5 through 8). That is, line 5 is derived from lines 3 and 4 using Rule 1, line 6
is derived from lines 2 and 5 using Rule 3, and so forth. Normally, in a proof,
we write the given premises at the beginning of the proof, but this is not re-
quired, because a premise can be written on any line of a proof.

2.3 RULE FOR PREMISES

Formally, our rule for premises, or Rule P, is as follows:

Rule P (Rule
for Premises)

A premise may occur on any line of a proof.

Moreover, in each proof, we shall indicate which premises each line de-
pends upon. To do this, we shall associate with each premise a number. We
shall use the number of the line where the premise first occurs. (Any other
consistent numbering system would be just as good.) Thus, our formal proof of
the preceding argument will look like this:

Premise Line
Numbers Numbers Proof Reasons
{1} 1. A—"IB P
{2} 2. CvB P
{3} 3. D—-C P
{4} 4, D P
{3, 4} 5. ¢ 3,4T
{2, 3, 4} 6. B 2,5T
{2, 3, 4} 7. “1(T1B) 6T
{1,2,3, 4} 8. 714 1,7T
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2.3 Rule for Premises 19

Lines 1 through 4 are self-evident. To derive line 5, we used lines 3 and
4 and Rule T (Rule 1); thus, line 5 depends upon premises 3 and 4. To derive
line 6, we used lines 2 and 5 and Rule T (Rule 3). Thus, line 6 depends upon
premises 2, 3, and 4. Similarly, for the remaining part of the proof. In general,
numbers preceding the line number in a proof are the numbers of the premises
on which that line depends.

To construct proofs when the arguments are more complicated, we shall
have to become more proficient in the use of Rule T, which means familiarizing
ourselves with some more tautologies. For that purpose, we have made a list of
some useful tautologies at the end of this chapter (see Section 2.7). In fact, this
list of tautologies is complete; that is, any valid argument can be proved using
tautologies from this list. Actually a much smaller list would be adequate. We
shall delay the discussion of this type of completeness to Chapter 16 (see Section
16.3). In this list of tautologies, we have included a name for each tautology
for historical reasons or, in some cases, as a mnemonic device. In most cases,
there is no good reason for memorizing these names.

Clearly, every valid argument has a very simple proof. If P, P,, ..., P,
are the premises and Q is the conclusion of the valid argument, then

PyAPy,A: "+ AP,~—>Q

is a tautology. Therefore, the first # lines of a proof are the » premises and the
n + 1st line is Q. That is not the point, however. The point is to proceed with
small, obvious steps. We illustrate this in the next example.
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Step 9: A — 14 v 71D, '1Av’lD—>(A—>'1D)I—A—>(A—>"ID) (7)
Step 10: A —> (A— D) FA A A— D (21). e
Step1l: FA—A4 A A(19). :

Step 12:A—>AA’A,AAA—>—|DFA—>—ID(7).

{(Later we shall introduce another rule, and give an ea31er proof of thlS ar- L
gument ) The formal proof is as follows v L

{1} 1. A——>B v C Ghap
{2y 2. A->TB P
{3} 3. C—=>TD TPl
{2} 4, B—>TIA ‘ 2T
. 5. TIA—>TIAV D T
6. ID=>TIAVTID T
{2} 7. B—>TIAvVTD ds T
By 8 Cco>TAvTID 3,6T
42,3y 090 BV CTA Y TID 7,87
{1,2,3}. .10, A->TAvTID 1,9T
11 TAvD-o @A) T
{1,2,3} 12 A—>(A—>TD) {10’,,‘ 11T
{1'23} IR AR A S D e T
, ClAS A ANAS L T
'{1 2, 3} 5. ASTID 13 14T’~ e

Notlce that the formulas or lines 5, 6 11, and 14 are tautologles so no

We are implicitly using a rule of substitution when we use the list of
tautologies given at the end of the chapter. Each of the letters “P,” “‘Q,”” and
R’ represent a formula. So, for example, the valid rule

A AB),(AAB)v (B—C)FB—C

is obtained from Modus Tollendo Ponens (3) by substituting “A A B for each
occurrence of “P” and “B — ¢ for each occurrence of “/Q.” Similarly, the
following formula is a tautology:

(AATIB—>C) v I(AATIB—C).

It is a form of the Rule of the Excluded Middle (10) with “4 A 1B — C”
substituted for “P.”

In the next example, we shall omit the numbers of the tautologies. (The
reader should fill in the numbers for himself or herself.)
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Example Show that the following argument is valid by giving a formal proof:

2.4 Premises: A—> B, 14— 1Cv D, C A D

Conclusion: B

Solution: The informal proof is as follows:

Step 1: Py F 1{71C v D).
Step 2: TI("IC v D); P, F A:

(To obtain step 2, we used two rules. What are they?)
Step 3: 4, P, B. E '

The forrnalp‘roof is as fdllowsﬁ

{1} o A—B o g
{2} P20 TA—-TCv Do
{3} SO TID e
{3} 4. WICvD - 3T
2,3 5. A . 24

WARNING! Beginning logic students frequently make two common errors:

1. The fallacy of asserting the consequent: From Q and P — Q, deduce P.
2. The fallacy of denying the antecedent: From 71P and P — Q, deduce 71Q.

Neither of these rules is valid, as is easily seen from truth tables. There are
‘ disastrous consequences from using invalid rules. A contradiction is deducible
e list of from an invalid rule and, by the Rule of Absurdity (9), every formula is deducible
Q' and from a contradiction.

We shall show that we can derive a contradiction, 4 A 714, using the
fallacy of asserting the consequent, FAC:

1. AATIA—=A VA T
for each 2. Av4 T ‘
arly, the 3. AATA 1, 2 FAC
In FAC, we substituted “A A 714" for “P” and “A v 714" for “Q.” In general,
if the rule
B — C” from P, P,, ..., P, deduce Q
ies. (The is invalid, then there is an assignment, s, of truth values for the sentential var-

jables in the rule so that P,, P,, ..., P, are each true and Q is false. For each
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sentential variable 4 that occurs in the rule

if s(4) = T, replace A by B v 7B,
if s(4) = F, replace A by B A7IB,

where B is a sentential variable that does not occur in the rule. Then, each of
P,, P, ..., P, becomes a tautology, and Q becomes a contradiction. Thus, a
contradiction is deducible using the invalid rule.

If a contradiction is deducible in a system, the system is called inconsistent.
Inconsistent systems are trivial and uninteresting because, in such a system,
every formula is provable. It is, however, of no small interest to identify which
systems are inconsistent, and a good deal of effort is spent on just such activity
in more complicated settings.

2.4 RULE OF CONDITIONAL PROOF

Although the two rules of inference that we have, Rules P and 7, are sufficient
to prove any valid argument, it is convenient to introduce two additional rules
in order to simplify proofs (see Theorems 16.3 and 16.4). The first is called the
Rule of Conditional Proof, or Rule CP.

Rule CP
(Rule of
Conditional
Proof)

If Q is deducible from P and a set of premises I then P — Q is deducible from T alone.
In symbols, if I', P + Q, then I'+P—Q.

We shall first illustrate how Rule CP can be used to shorten the proof of
the argument given in Example 2.3. We use Rule CP when yve want to prove
a conditional, P — Q. The method is to take P as an additional premise, then
deduce Q.

{1} 1. A—BvC P

{2} 2. A—"IB 2

3} 3. C—D j2

{4} 4. A P(for CP)
{1, 4} 5. BvC 1,4T

2, 4} 6. B 2,4T

{1,2, 4 7. c 56T
{1,2,3,4 8. 1D 3,7T
{1,2,3} 9, A—D 4,8 CP

On line 4, we take 4 as an additional premise for the Rule CP. On lines 5
through 8, we deduce 71D. At this point, we apply the Rule CP, so on line 9, we
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say that the conditional A — 1D is deducible from our original set of premises.
The numerals 4 and 8 on line 9 are the numbers of the line on which the
temporary premise appeared, 4, and on which the conclusion appeared, 8. Un-
der certain conditions, then, the Rule CP allows us to drop a premise. This is an
important aspect of the rule. The last line of a proof cannot depend upon any premises

"ach of that were not in the original set of premises. Otherwise, we're changing the ques-
hus, a tion. It is trivial to prove any formula P if P is taken as an additional premise.

) Let us examine the preceding derivation a little more closely. According
isistent. to our preliminary definition of a proof, this is not a proof because, on line 4,
Lyste{m, we used a premise that was not in the original set of premises. On the last line,
1‘;:{:]1;1; however, we do have the conclusion, and it only depends upon premises from

the original set. We shall now give the “real”” definition of a proof, to validate
this type of phenomenon. It should be all right to introduce premises on any
line of a proof as long as the last line only depends upon premises from the
original set.

Definition 2.1 A formal proof of Q from the premises Py, P,, . . ., P, is a finite sequence of ordered
pairs (o, R)), (o, Ry), « . ., (o, R, Where each o is a set of formulas and each

fficient R; is a formula such that
ificien

al rules i 1. o, C{P, P, ..., P}tand R, = Q.

lled the 2. Bach R; is either a premise or is deducible from preceding R/’s in the sequence
: ' using a valid rule of inference. ’

F——Z‘— 3. If R; is a premise then o; = {R}.

aone. 4. If R; is deducible from preceding R/s in the sequence using a valid rule of

inference then o, is defined by the rule.

In Chapter 12 (see Section 12.2), we state each rule in such a way that its
; effect on the a;’s is clear. In this section, we shall explain the effect less formally.
proof of | In our proofs we abbreviate the a;'s by replacing each premise by the line
:0 prove number where the premise occurs. The symbol “P;, P, ..., P, F Q" is an
se, then abbreviation for “there is a proof of Q from P, P,, ..., P,.”” Similarly, if 'is a
set of formulas and Q is a formula, T + Q"' is an abbreviation for “there is a
proof of Q from I'.” '

Part 1 of Definition 2.1 states that the conclusion depends only on premises
from the original set of premises; part 2 contains our preliminary definition of
a proof; and parts 3 and 4 explain how to construct the set of premise numbers
for each line of a proof. Part 3 says that if the formula on line 7 is a premise,
! then the set of premise numbers for line i is {i}. Thus, each o, is the set of all
| formulas on which formula R; depends. Auxiliary premises may be used in the
course of a proof, but the conclusion must only depend on premises from the
original set.

\ ‘To illustrate part 4 of Definition 2.1, if the rule is Rule T and the tautology
m lines 5 ! is R A Ry = R;, then a; = a; U oy See lines 5, 6, and 7 of the preceding proof,
ine 9, we for example. Line 7 is obtained from lines 5 and 6 by using a tautology. Thus,
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the set of premise numbers for line 7 is {1, 2, 4} and {1, 2, 4} = {1, 4} U {2, 4},
which is the union of the sets of premise numbers for lines 5 and 6.

On the other hand, if the rule is CP and R; is the premise for CP, then
oy = {j}. i we then deduce Ry (o = =T U ) and if we use CP to get the next
hne then Ry, is R; — Ry and oy = 0 — {j}. On line 9 of the preceding
proof, for example, we used Rule CP. The premise for Rule CP, 4, was on line
4. We derived 71D on line 8. The set of premise numbers on line 8 is {1, 2, 3,
4}; thus, the formula on line 9 is A — 71D, and the set of premise numbers is
{1,2,3,4} — {4} =11, 2, 3}

Next, we shall show Rule CP is a valid rule. (Otherwise, we could derive
a contradiction.)

Rule CP is valid.

Proof: Suppose P, P,, . . ., P, are the premises in I'. To show Rule CP is valid,
we must show the following: If

(1) LAP,A AP, AP2Q

then

2) PLAP, A AP,D (P Q).

Suppose that (1) is true; that is,

3B PLAP,A- " AP, AP—Q

is a tautology. Then we must show (2) is true; that is,

(4) PLAP,A AP, —>(P—>Q)

is a tautology. However, (3) <> (4) is a tautology (the Rule of Exportation-
Importation, (21), with “P; A P, A+ A P,/ substituted for ““P,” “P"* substi-
tuted for “Q,” and “’Q” substituted for “’R’”’). Thus, if (3) is a tautology, so is
(4), so (1) implies (2).

n

2.5 RULE OF INDIRECT PROOF

The last rule we shall consider for the Sentential Calculus is the Rule of Indirect
Proof, or Rule IP.

Rule IP (Rule
of Indirect
Proof)

If any contradiction, Q A T1Q, where Q is any formula, is deducible from TP and a
set of premises T, then P is deducible from T alone. In symbols, it 7P, I' - Q A TIQ,
then I'  P.
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Rule IP is valid.

Proof: If P, P,, ..., P, are the premises in I, we must show that
(1) PbAP,A AP ATIPQ ATIQ

implies

(2) PLAP, A+ AP P

Suppose (1) is true. Then

B PELAP,A AP, ATIP>Q ATIQ

is a tautology. The consequent, Q A 71Q, of (3) is always false. Thus, for (3) to
be a tautology, one of the conjuncts in the antecedent must be false. If any of
the P/s are false, then

(4) Py AP,A AP, —P

is true (because the antecedent is false). If 7P is false, then P is true. This also
implies that (4) is true (because the consequent is true). Therefore, (4) is a
tautology, so (2) is true.

|

""IE P3!-D
Dle-“"IC
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(for IP) ’

, ontradlctxon using the four original premises -
1B Thus; n,f"EoIlovvs from the Rule of Indirect
ori "nal four pren ‘

o the Rule CP

In the following section, we give some guidelines for proofs in the Sen-
tential Calculus and then give some more examples. The guidelines are possible
strategies to try in a proof. Proofs are not always straightforward procedures.

2.6 GUIDELINES

1. To prove a conjunction, P A Q, prove each of the conjuncts, and then use
the valid rule, P, Q- P A Q.

2. To prove a conditional, P —> Q, take P as a premise, derive Q, and then use
the Rule CP.

% 3. To prove a disjunction, P v Q,

(a) Prove either P or Q, then use the rule PP v QorQF P v Q.
or

(b) Take 1P as a premise, derive Q, then use Rule CP to deduce 7P — Q.
Then use therule 1P—->Q FP v Q.

4. To prove a biconditional, P <> Q, prove P — Q and Q — P. Then use the rule

P>Q Q—PFEP+Q
If none of the preceding methods work, try

5. An indirect proof: To prove P, take 7IP as a premise and derive a contradic-
tion.

6. An alternative proof:
(a) To prove P, find some sentence Q such that Q — P and 71Q — P. Then

use the rule Q — P, 1Q —> P I P. (See 8 on the list of tautologies.)
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(b) To prove R from the premise P v @, prove P —> R and Q — R, and then
use tautology 8 to obtain P v Q — R.

First, we'll give examples of alternative proofs.

Example

Concluslox}: fIC ;

 Solution:

:’ We obtamed line.
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There are other ways of proving parts (a) and (b) in Example 2.6, but an
alternative proof is nonetheless often useful.

o For each of the followmg arguments, gwe a formal proof it 1t is vahd ifnot,
- ,‘,;g1ve a counter—example——that is, assign truth Values to the aton:nc sent 1¢
”: 50 that the prermses are true and the conclusmn 1s false

’Cbnclusmn' A <—-> B

Solutlon' o . -
. (a) We shall take A as a prexmse and

"'j‘followmg is an mformal proof -

Step'lfA Pll-Bv c :




but an

not,
aces

- discussion,: C has to be true. Now we have to ﬁnd truth a551gm 1

2.6 Guidelines 2%

conjuncts. One of the conjuncts is a premise, B, so that is easy to deduce It
rermains to deduce C. For this, we shall use an indirect proof.,
Informally, take 7IC as a premise:

Step 1: 1IC, P, F A v T1B.

Step 2: Py, A v 7B A.

Step 3: A, P, FT1B.

Step 4: 7B, P, + B A TIB.

Thus, from Rule IP, we can deduce C.
Step 5: C, P; F B A C.

The following is a formal prdof:

{1} 1. A—=TB P
{2} 2. (AvBvec P
{3} 3. B i g

{4} 4. 7C = . P{for1pP
{2, 4} 5. Av B SLEAT
{2, 3, 4} 6. A 35T
{1, 2,3, 4} 7. 7B o LerT

{1, 2,3, 4} 8. BATB 37T

{1, 2,3} 9, C A 8 TP
{1, 2, 3} 10. B A c e 3’,‘!‘9‘, T

(c) To try to prove (c), we shall try an 1nd1rect proof take” ;
premise, and try to derive a contradlctlon .
Step 1: 71B, P, F 714 A D. :
Step 2: TTA A D F 4.

Step 3: T4, P FB Vv C.

Step 4: 1A A D+ D,

Step 5: D, P, BV C.

Stepé 7B,Bv CHC s

I C were false, we would have a contradmtwn, but We'do n ,have ,any -

information to tell us that C IS false. Let’s try mstead to. ﬁnd a c unter

example, ,
Because B is the conclusmn, ‘B has to be false an, fro

FlFiTlT' ST ‘
1 @sn |
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v Thus, 1f A and B are false, and C
. 'and the: condusxon is false, (so the argu

2.7 USEFUL TAUTOLOGIES

(“P,” Q" and “R” denote arbitrary formulas.)

P A (P — Q) — Q (Rule of Detachment, Modus Ponens)
71Q A (P — Q) — TP (Modus Tollendo Tollens)

=P A (P v Q) — Q (Modus Tollendo Ponens)

P A Q —> P (Rule of Simplification)

P — P v Q (Rule of Addition)

P> (Q—=PAQ
(P—>Q A(P—>R)—(P—>QAR)

oMW N

} (Rule of Adjunction)




Exercises 2

7.
8.

9.

10.
11.
12.

13.
14.
15.

16.
17.

18.

19.

20.

21.
22.

P - Q) A (Q— R) — (P — R) (Rule of Hypothetical Syllogism)

(
EI; 7 (622)_: R()ﬂi —(; Q_)) —R>) QA Q= R)} (Rules of Alternative Proof)

(P—=>Q ATIQ)—>"IP
PATIP—>Q

P v 1P (Rule of the Excluded Middle)
“1(P A T1P) (Rule of Contradiction)

PvQ@eQveP
PAQ< QAP

} (Rule of Absurdity)

(Commutative Rules)

;; Z Eg ‘/: ﬁ; z g I g; I 1;} (Associative Rules)
i ‘/: Eg \': g : g ;’\ g; C g I 113} (Distributive Rules)

(P v Q)< P ATIQ
P AQ<«<TTPVQ

71(71P) <> P (Rule of Double Negation)
(P—=>Q <PV
HP— Q)< P ATIQ

(PeQ o (P—>Q A(QR—DP)
(P Q) < (PAQ) Vv (TP ATIQ) ¢ (Rules for the Biconditional)
) <

} (De Morgan’s Rules)

} (Rules for the Conditional)

(PeQ (P v Q) A (P Vv Q)
PvPseP
P I P P (Idempotency Rules)

(P—Q < (Q—"P)

(P — T1Q) <> (Q — 71P) ¢ (Rules of Contraposition)

(P = Q) < (7Q = P)

(P — (Q = R)) < (P A"Q — R) (Rule of Exportation-Importation)

Pv (PAQ <P

PA(PV Q< P} (Rules of Absorption)
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EXERCISES 2

A. For each of the following pairs of sentences, use truth tables to determine

whether

(1) (a) = (b),
(i) () = (a),
(i) (a) & (D),
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3
=
"n'\
3
3
Al
4
i

(iv) none of these.

(Answers for 1, 7, 9, and 10.)
(1) (a) A — (B—>"710), (b) A — (B — ()

(2) (@) A A B—>71G, (b) A — (C—T1B)
(3) (@ (4 A B) A7IC, (b) ¢ — (B — A)
4) (@) 4, (D)4 v (BAC)
(5) (a) 4, (b) (A AB)vC
(6) @ Av BV bYAV (TAAB) vV (IBAC)VTIC
(7) @) (4 v B) AC, b)Y ((AAB)V(TAAB vV (AATIB) AC
8) () (AABAC)YV (b) C ATIC
(A A B ATIC), |
(9) @QAABAC, (b) (A v TIB) A (B Vv TIC) A (CV T14) |
(10) (@) (A—>B) v C, (b) (A< B) A C |
(11) (a) (4 = B) —>C, (b) A — (B—C) E
(12) (a) (A< B) < C, (b) A < (B < () |

B. Fach of the following formulas is a tautology that is obtained by a substi-
tution in one of the tautologies given in the list of useful tautologies. In each
case, state which tautology it is and what the substitution is. (Answers for
1,5, and 9.)

(1) (AvB) v (CAD)<(AVBVC A(AVBvVD) |
2) 1TAA(MA—=Bv(C) —»BvC |

(B AAB)VAATBAC ©AA(BYV (IBAC)

i (4 (AAB)V(AABAC)<>AAB

i | (5 AABAC—>DATD)—= A ABAC)

(6) AATTA— AV TA

T (7) (A A74) v (A A T4)

‘ (8) (AATBAC) YV (AATIBATIC)< (AATIB) A(CVTIC)

(9) WA v B v C) < 4 ATI(TB v C)

(10) (AAB—>Cv D)< (4A—>(B—>CVD)

C. Translate each of the following arguments into logical notation using the
given letters for atomic sentences. Also determine the validity of the argu-
ment using truth tables. (Answers for 2, 4, and 7.)

(1) If Oscar attends class, then either Miriam or Virginia attend class. Miriam
is not attending class. Therefore, Virginia attends class if Oscar does. (O,
M, V)

(2) If Oscar attends class, then so does Miriam, and if Miriam attends class,
so does George. Oscar attends class unless George attends. Therefore,
Miriam does not attend class. (0, M, G)

(3) If Oscar attends class, then Virginia attends class only if George attends.
George does attend class. Therefore, if Oscar attends class, so does Vir-
ginia. (0, V, G)

(4) I both Oscar and George attend class, so does Virginia. George does
attend class. Therefore, either Virginia attends class or Oscar does not.
(0, G, V)
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(5) If Oscar and George attend class, then either Miriam or Virginia attends.
It is not the case that either George or Miriam attends class. Therefore,
either Oscar or Virginia attends class. (0, G, M, V)

(6) If Oscar and George attend class, then so do Miriam and Virginia. It is
not the case that George attends class only if Virginia attends class.
Therefore, Oscar does not attend class. (0, G, M, V)

(7) A necessary condition for Oscar to attend class is that Miriam or Virginia
attend. A sufficient condition for Virginia to attend class is that George
attends. However, George does not attend unless Miriam attends, and
Virginia attends only if Oscar attends. Therefore, Virginia attends class
if and only if Oscar attends. (0, M, V, G)

(8) If Oscar attends class, then neither Miriam nor Virginia attend. If Virginia
doesn’t attend then neither does George, but if Miriam doesn’t attend,
then George does attend. Therefore, Oscar does not attend class. (0, M,
v, G)

Construct a formal proof for each valid argument in part C. If the argument
is not valid construct a counter-example. (Answers for 4 and 8.)

Determine the validity of each of the following arguments using truth tables.
(Answers for 1, 4, and 8.)
(1) Premises: O—>M v V, M, V—0

Conclusion: O

(2) Premises: 0 — (V< G), M — (V A 7IG)
Conclusion: 110 v M

(3) Premises: 0O > M, G—V,"IMv 71V, G v IM
Conclusion: 0 < 11G

(4) Premises: 0 >V, G—>M, G—>0v M, GV IMMv TV
Conclusion: 0 < G

(5) Premises: O A G—=>V, V—>"IM, J—>M M—>"1J
Conclusion: G — (0 —J)

(6) Premises: 710 =71V, 0 —=>"1G v M, "IM
Conclusion: 711G v 71V

(7) Premises: (M — O) A (G—>V), MV G, 0
Conclusion: 0 A V

(8) Premises: M vV —>G G-V, 0—=>"1Jv IV
Conclusion: 0 = (M — ")

Construct a formal proof for each valid argument in part E. If the argument
is not valid, construct a counter-example. (Answer for 4.)

Assign letters to the atomic sentences and translate each of the following
arguments into logical notation. If the argument is valid, give a formal proof;
otherwise give a counter-example. (Answers for 1, 5, 8(b), and 11.)
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Ha<band b < ¢ then a < c. It is true that a < b, but it is not the
case that a < c. Therefore, it is not the case that b < c.

If 4 > 0, then a necessary and sufficient condition for & > ¢ is that
a-b>a-c Itistruethata » b > a - ¢. Therefore, b > c.

In the remaining problems, we shall use the following abbreviations:

G)
4

v (5)

(6)

x3y for it is not the case that x>y
x <y for it is not the case that x <y
x#y for it is not the case that x =y

Ha>0andb >c thena-b>a-candifa# 0, but b > ¢ then
a'b}a-c.Therefore,a>Oifandonlyifa-b>a-c.
Ha<0and 0<b thena < b . H0<canda <b thena c¢<
b c It is true that @ < 0 and 0 < c. Therefore, 0 < bonly if g - ¢ <
b-c

A necessary and sufficient condition that b < cis that —¢ < — b. More-
over,ifa + (—¢) £ a + (—b), then b £ c. Therefore, b < cif and only
ifa+ (—¢)<a+ (—b).
Ifa<Oandb7tO,thena-bso.lfa-bso,thenifb<0,a7£0.
Ifa-b$0,theneithera<0andb<0,ora%Oandbsﬁo.lfa-b
< 0and b £ 0, then a < 0. Therefore, a necessary and sufficient
condition for a + b = 0 is that @ < 0 if and only if & £ 0.

(7) Hithera < O or b < 0. Also, a - b = 0 if either a < O and b £ 0, or if

b < 0 and a ¢ 0. Therefore, if not both @ < 0 and b < 0, then
a-b=0,

(8) (a). Define a function f so that

&)

_Jx ifx<O

fx) = {5, if x£ 0.

Therefore, f(x) = x or f(x) = 5. (Hint: Let Z: x <0, X: f(x) = x,
F:fx) =5)

(b). Define a function g so that

) fe, ifx<2
gix) = {6, it x£2,

where f(x) is defined in part (a). Assume x < 0 or x < 2. Therefore,
g(x) = xorg(x) = 6. (Hint: £Z:x<0and T:x <2, then0=x<
2isTZ A T. Let X: g(x) = x; F1g(x) = 5; 5:49(x) = 6.)

(c). Let g be the function defined in part (b). Assume that neither does
g(x) = 5 nor does g(x) = 6. Therefore, g(x) = x.

I f is continuous on (4, b], then f has a maximum on [a, b] if f is
defined at a. If f is not defined at 4, then there is a point ¢ between 4
and b such that f(c) = f(x) for all x € [a, b]. If there is such a point ¢
between a and b such that f(c) = f(x) for all x € [a, b], then f has a
maximum on [a, b)].
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10t the (a) Therefore, f has a maximum on {a, b].
? (b) Therefore, if f is continuous on (4, #], then f has a maximum on
is that [a, b].
(Use the letters C, M, D, and B for the atomic sentences.)

(10) A necessary condition for f to have a maximum on [a, 5] is that f is
continuous on (a, b] and f is defined at a. A necessary and sufficient
condition for f to have a maximum on [a, 4] is that there is a point ¢
between a4 and b such that f(c) = f(x) for all x € [a, b]. In fact, there
is a point ¢ between a and b such that f(c) = f(x) for all x € [a, b].
Therefore, f is continuous on (4, b] and f is defined at a. (Use the

¢, then same letters for atomic sentences as in problem 9.)

v (11) If one and two are substituted for x in the inequality x> + 1 > x + 1,
1< we obtain 2 > 2 and 5 > 3, respectively. However, 2 % 2, but
a-c< 5 > 3. Therefore, one is not substituted for x in the inequality

X+ 1>x+ 1, buttwois. (UseA, B, C:2>2,andD:5 >3 as
. More- - the letters for the atomic sentences.)
1d only (12) If one and two are substituted for x in the inequality x* + 1 > x + 1,
. we obtain 2 > 2 and 5 > 3, respectively. However, it is not the case
a 0. . that 2 > 2, but 5 > 3, Therefore, not both one and two are substituted
i a: b ? for x in the inequality x* + 1 > x + 1. (Use the same letters for atormic
ifficient sentences as in problem 11.)
. H. Give a formal proof for each of the following valid arguments. (Answers for
0, or if
1, 4, 8, and 10.)

0. then (1) Premises: A— (B—C),C— "D, 1E—=D

Conclusion: B — (A — E)
(2) Premises: A v B, C—"14, B~ D, C—"1D
Conclusion: 71C

| (3) Premises: (A v B) v C, A— (D < 7E), B—"1(1D v E),
X) = x, E—-"NWCvD,ME—>CAD

Conclusion: D < TE
(4) Premises: (A—B) v (A A"IC), A, C—"1B,7IC—~>B
Conclusion: 1C

(5) Premises: (4 — B) A (C—"1D), (E—>"1B) A (IF—> D),
MEVF—G T B—=D AvC

ierefore, .
Y= x < | Conclusion: B A G
L (6) Premises: A A C—D,BAC—>D,1AAB—>EV F, G-I,
aer does - F—H CA™ID
’ Conclusion: 71G v H
it f is . (7) Premises: 4 A (Bv C),AAB—D A TF,A— (C—T(D v TIF)
tween a )
1 point ¢ Conclusion: D < 7F

.fhasa | (8) Premises: AAB—>C AV E G—(ICATD),A< B A-C,
. C—"D,B—D
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Conclusion: 7A A (G — E)
(9) Premises: 14 - C Vv D,B—EAFE—D D
Conclusion: (4 — B) = C
(10) Premises: A — B, C— 1B, 1C—=D, A ATID
Conclusion: E — F

(11) Premises: B —> 4, 1A vV C,C—-DVED—>FATBE—>TAAF
F—A 1BvG—HAILH—B

Conclusion: H A 71H

(12) Premises: A——)(B-—)C),"IA——>DA"lE,AAB——)‘IC,D—>FV G,
-B— (G — H), E Vv (H v G)

Conclusion: G —> H




