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Abstract. Let K be a finite extension over Q2 and OK the ring of integers.
We prove the equivalence of categories between the category of Kisin modules

of height 1 and the category of Barsotti-Tate groups over OK .
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1. Introduction

Let k be a perfect field of characteristic p, with W (k) the ring of Witt vectors
of k and K0 = W (k)[ 1p ]. Let K/K0 be a finite totally ramified extension with a

fixed algebraic closure K of K and G := Gal(K/K). The aim of this paper is to
prove the equivalence between the category of Barsotti-Tate groups over OK and
the category of Kisin modules of height 1 when p = 2.

More precisely, let E(u) be an Eisenstein polynomial for a fixed uniformizer π
of K, K∞ =

∪
n≥1

K( pn
√
π), G∞ = Gal(K/K∞) and S = W (k)[[u]]. We equip S

with the semi-linear endomorphism φ which acts via Frobenius on W (k), and sends

u to up. Let Mod1,fr/S denote the category of finite free S-modules M equipped

with a φ-semi-linear map φM : M→M such that the cokernel of the S-linear map

1⊗φM : S⊗φ,SM→M is killed by E(u). Objects in Mod1,fr/S are called φ-modules
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of E(u)-height 1 or Kisin modules of height 11. The main result proved in this note
is the following:

Theorem 1.0.1. There exists an equivalence between the category of Barsotti-Tate
groups over OK and the category of Kisin modules of height 1.

The theorem was first conjectured by Breuil [Bre]. If p > 2 then the above
theorem was proved in [Kis06]. In [Kis09a], the equivalence between the category
of connected Barsotti-Tate groups over OK and a certain subcategory of Kisin
modules of height 1 was established when p = 2. So we focus on the case p = 2 in
this paper though our method works for all primes p.

Let us sketch the idea of the proof of the main theorem. Let Repcris,1Zp
denote

the category of G-stable Zp-lattices in crystalline representations with Hodge-Tate
weights in {0, 1}. By Fontaine [Fon79], Kisin [Kis06], Raynaud [Ray74] and Tate
[Tat67], it is known that the category of Barsotti-Tate groups over OK is equivalent

to the category Repcris,1Zp
(see Theorem 2.2.1). Therefore we need to establish the

equivalence between the category Mod1,fr/S and the category Repcris,1Zp
. For an object

M ∈ Mod1,fr/S , we can associate a Zp[G∞]-module TS(M) := Homφ,S(M,W (R))

(see Section 2.1 for more details). In [Kis06], Kisin proved that the G∞-action
on VS(M) := Qp ⊗Zp TS(M) can be extended to a G-action such that VS(M) is
crystalline with Hodge-Tate weights in {0, 1}. It is not hard to prove that if TS(M)
is G-stable in VS(M) then the functor M TS(M) establishes an anti-equivalence

from the category Mod1,fr/S to the category Repcris,1Zp
.

To prove that TS(M) is G-stable in VS(M), we use the idea developed in [CL11].
We embed TS(M) into J(M) := Homφ,S(M,W (R)/utW (R)) which is constructed
in Section 3.1 and has a natural G-action. It turns out that TS(M) is G-stable in
J(M) and the G-action obtained from J(M) is compatible with the G-action on
VS(M) via Kisin’s construction, from which we deduce the main theorem.

When this paper was nearly complete, we learned of the preprints [Kim12], [Lau]
in which W. Kim and E. Lau have independently proved Theorem 1.0.1. Here we
comment that we use totally different approaches and methods from those used by
Kim and Lau. More precisely, Lau extended Zink’s theory of windows and displays
which allows him to also obtain the classification of 2-divisible group over more
general base rings. However his theory does not provide the proof that TS(M) ≃
Tp(H) where Tp(H) is the Tate module of the 2-divisible group H corresponding
to M. Kim uses a similar idea to ours but our methods are different: Kim proves
that TS(M) is G-stable in VS(M) by some explicit calculations only for p = 2,
while we directly construct a natural G-action on TS(M) which is compatible with
that of VS(M), and this works for all primes p. Of course, Kim also proved that
S ⊗φ,S M ≃ D(H)(S) where S is the ring defined and discussed in §2.1 and D(H)
is the Dieudonné crystal attached to H. Unfortunately, we can not provide a new
proof for this fact in the present paper.

Acknowledgment: It is a pleasure to thank Christophe Breuil, Wansu Kim and
Mark Kisin for very useful correspondences during the preparation of this paper.

1One may define Kisin modules of height r, which are very useful in the study of semi-stable

representation with Hodge-Tate weights in {0, . . . , r}. But we are only concern with Kisin modules
of height 1 in this paper.
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We are grateful to the anonymous referee for lots of useful comments, which have
improved the exposition of this paper.

Notations 1.0.2. We define various Frobenius and monodromy (derivation) struc-
tures on different rings and modules. The symbols φ and N are reserved to denote
Frobenius and monodromy operators respectively. We sometimes add subscripts to
indicate on which object Frobenius or monodromy is defined. For example, φM is
the Frobenius defined on M. We always drop these subscripts if no confusion will

arise. We write γi(x) the standard divided power “xi

i! ” when it exists.

2. Preliminaries and Preparations

In first 2 subsections, we recall some facts and notations involved in the main
theorem. The last subsection reduces the proof of the main theorem to Proposition
2.3.1, which will be proved in the next section.

2.1. Kisin modules and (φ, Ĝ)-modules. In this subsection, we recall some stan-
dard notations, definitions and results from [Kis06] and [Liu10]. The reader may
consult these papers for more details.

Recall that k is a perfect field of characteristic p with ring of Witt vectors W (k),
K0 = W (k)[ 1p ] and K/K0 is a finite totally ramified extension. Throughout this

paper we fix a uniformiser π ∈ K with Eisenstein polynomial E(u). Recall that
S = W (k)JuK is equipped with a Frobenius endomorphism φ via u 7→ up and the
natural Frobenius on W (k). A φ-module (over S) is an S-module M equipped
with a φS-semi-linear map φM : M → M. A morphism between two φ-modules

(M1, φ1), (M2, φ2) is an S-linear map compatible with the φi. Recall that Mod1,fr/S

denotes the category of φ-modules of E(u)-height 1 in the sense that M is finite
free over S and the cokernel of φ∗ is killed by E(u), where φ∗ is the S-linear map

1⊗φ : S⊗φ,S M→M. Objects of Mod1,fr/S are also called Kisin modules of height

1.

We denote by S the p-adic completion of the divided power envelope of W (k)[u]
with respect to the ideal generated by E(u). Write SK0 := S[ 1p ]. There is a unique

continuous (for the p-adic topology) map (Frobenius) φ : S → S which extends
the Frobenius on S. We write NS for the K0-linear derivation on SK0 such that
NS(u) = −u.

Let R = lim←−OK/p where the transition maps are given by Frobenius. There

exists a unique surjective projection map θ : W (R)→ ÔK to the p-adic completion
of OK , which lifts the projection R → OK/p onto the first factor in the inverse
limit. We denote by Acris the p-adic completion of the divided power envelope
of W (R) with respect to Ker(θ). Let πn ∈ K be a pn-th root of π, such that
(πn+1)

p = πn. Write π = (πn)n≥0 ∈ R and let [π] ∈ W (R) be the Techmüller
representative. We embed the W (k)-algebra W (k)[u] into W (R) ⊂ Acris by the
map u 7→ [π]. This embedding extends to embeddings S ↪→ S ↪→ Acris which are
compatible with Frobenius endomorphisms. We denote by B+

dR the Ker(θ)-adic

completion of W (R)[1/p]. For any subring A ⊂ B+
dR, we define a filtration on A by

FiliA = A∩ (Ker(θ))iB+
dR = A∩ (E(u)i)B+

dR. As usual, we denote Acris[
1
p ] by B+

cris.

We fix a choice of primitive pi-root of unity ζpi for i ≥ 0 and set ϵ := (ζpi)i≥0 ∈ R

and t := log([ϵ]) ∈ Acris. For any g ∈ G, write ϵ(g) := g(π)
π , which is a cocycle from
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G to R∗. We see that g(t) = χ(g)t with χ the p-adic cyclotomic character, and

there exists an α(g) ∈ Zp such that log([ϵ(g)]) = α(g)t. Recall K∞ :=
∞∪

n=0
K(πn)

and G∞ := Gal(K/K∞). We set K̂ =
∞∪

n=1
K∞(ζpn) and Ĝ := Gal(K̂/K).

As a subring of Acris, S is not stable under the action of G, though S is fixed by
G∞. Define

RK0 :=

{
x =

∞∑
i=0

fit
{i}, fi ∈ SK0 and fi → 0 p-adically as i→ +∞

}
,

where t{i} = ti

pq̃(i)q̃(i)!
and q̃(i) satisfies i = q̃(i)(p−1)+r(i) with 0 ≤ r(i) < p−1. Set

R̂ := W (R)∩RK0 . One can show that RK0 and R̂ are stable under the G-action as

subrings of B+
cris and the G-action factors through Ĝ (see [Liu10] §2.2). Moreover, R

is a valuation ring. Write vR(·) for the valuation and let I+R = {x ∈ R|vR(x) > 0}
be the maximal ideal of R. Set I+ := R̂ ∩W (I+R). By Lemma 2.2.1 in [Liu10],

one has R̂/I+ ≃W (k).

Following [Liu10], a (φ, Ĝ)-module of height 1 is a triple (M, φ, Ĝ) where

(1) (M, φM) is a Kisin module of height 1;

(2) Ĝ is a R̂-semi-linear Ĝ-action on M̂ := R̂ ⊗φ,S M;

(3) Ĝ commutes with φM̂ on M̂, i.e., for any g ∈ Ĝ, gφM̂ = φM̂g;

(4) regard M as a φ(S)-submodule in M̂, then M ⊂ M̂HK , where HK :=

Gal(K̂/K∞);

(5) Ĝ acts on the W (k)-module M := M̂/I+M̂ ≃M/uM trivially.

A morphism between two (φ, Ĝ)-modules is a morphism in Mod1,fr/S that com-

mutes with the Ĝ-action on M̂’s. For a (φ, Ĝ)-module M̂ = (M, φ, Ĝ), we can
associate a Zp[G]-module:

(2.1.1) T̂ (M̂) := HomR̂,φ(R̂ ⊗φ,S M,W (R)),

where G acts on T̂ (M̂) via g(f)(x) = g(f(g−1(x))) for any g ∈ G and f ∈ T̂ (M̂).

For any M ∈ Mod1,fr/S , we can associate a Zp[G∞]-module by

TS(M) := Homφ,S(M,W (R)).

One can show that TS(M) is finite Zp-free and of rankZpTS(M) = rankSM (see for
example Corollary (2.1.4) in [Kis06]). Let RepZp

[G∞] denote the category of contin-

uous G∞-representations on finite free Zp-modules. The functor TS from Mod1,fr/S

to RepZp
[G∞] is fully faithful (see Proposition (2.1.12) in [Kis06] or Corollary 4.2.6

in [Liu07]).

Remark 2.1.1. Usually, TS(M) is defined as Homφ,S(M,Sur) in [Kis06] or [Liu10],
where Sur is a subring of W (R). But Lemma 2.2.1 in [CL11] shows that these two
definitions are equivalent.

We refer readers to [Fon94b] for definitions and basic facts on semi-stable rep-
resentations and crystalline representations. The following summarizes the main
result of [Liu10] on G-stable Zp-lattices in semi-stable representations.
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Theorem 2.1.2. (1) Let M̂ := (M, φ, Ĝ) be a (φ, Ĝ)-module. There is a nat-

ural isomorphism of Zp[G∞]-modules θ : TS(M)
∼−→ T̂ (M̂).

(2) T̂ induces an anti-equivalence between the category of (φ, Ĝ)-modules of
height 1 and the category of G-stable Zp-lattices in semi-stable representa-
tions with Hodge-Tate weights in {0, 1}.

The isomorphism θ in Theorem 2.1.2 (1) is defined as the following:

(2.1.2) θ(f)(a⊗ x) := aφ(f(x)), ∀f ∈ TS(M), ∀a ∈ R̂, ∀x ∈M.

Remark 2.1.3. Here we only care about crystalline representations with Hodge-Tate
weights in {0, 1} while the main result in [Liu10] deals with (φ, Ĝ)-module of height
r and lattices in semi-stable representations with Hodge-Tate weights in {0, . . . , r}.

2.2. Barsotti-Tate groups and lattices in crystalline representations. For
the generalities of Barsotti-Tate groups over OK , we refer [Tat67] and the appendix

of [Kis06] for details. Let Repcris,1Qp
denote the category of crystalline representations

of G with Hodge-Tate weights in {0, 1} and Repcris,1Zp
denote the category of G-stable

Zp-lattices in objects in Repcris,1Qp
. Morphisms in Repcris,1Zp

are morphisms of Zp[G]-

modules. Let H be a Barsotti-Tate group over OK . We denote by Tp(H) the
p-adic Tate module of H and by Vp(H) := Qp ⊗Zp Tp(H). We summarize several
important results on Barsotti-Tate groups and crystalline representations into the
following theorem.

Theorem 2.2.1 (Fontaine, Kisin, Raynaud, Tate). The functor H  Tp(H) in-
duce an equivalence between the category of Barsotti-Tate groups over OK and the
category Repcris,1Zp

.

Proof. Fontaine ([Fon79]) proved that Vp(H) is crystalline with Hodge-Tate weights
in {0, 1}. Hence we have a functor H  Tp(H) from the category of Barsotti-Tate

groups over OK to the category Repcris,1Zp
. The functor is fully faithful by Tate’s

isogeny theorem in [Tat67]. The proof for essentially surjectiveness of the functor
needs two ingredients. First, Corollary (2.2.6) in [Kis09a] shows that for each
crystalline representation V of G with Hodge-Tate weights in {0, 1} there exists
a Barsotti-Tate group H such that Vp(H) ≃ V . Then any G-stable Zp-lattice T
inside V can be seen as a lattice in Vp(H) and then there must exist a Barsotti-Tate
group H ′ such that Tp(H

′) ≃ T by the trick of scheme-theoretic closure of finite
flat group schemes and Proposition 2.3.1 in [Ray74].

�
Proposition 2.2.2. There exists an functor ι from the category Mod1,fr/S to the

category Repcris,1Qp
and ι induces an anti-equivalence on the corresponding isogeny

category.

The above proposition was proved in [Kis06] (see Proposition (2.2.2) in [Kis06]).
Here we use a slightly different approach which will be useful later. Let Fil1S

denote the ideal in S generated by E(u)i

i! for i ≥ 1. Note that φ(Fil1S) ⊂ pS and

write φ1 = φ/p : Fil1S → S. A Breuil module is a quadruple (M,Fil1M, φ1, N)
where

(1) M is a finite free S-module.
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(2) Fil1M is a submodule ofM such that Fil1SM⊂ Fil1M andM/Fil1M is
finite free over OK .

(3) φ1 : Fil1M→M is a φS-semi-linear map such that φ1(Fil
1M) generates

M and φ1(sm) = (c1)
−1φ1(s)φ1(E(u)m) for s ∈ Fil1S and m ∈ M with

c1 = φ1(E(u)) ∈ S∗.
(4) N :M→M is a W (k)-linear map such that N(sm) = NS(s)m + sN(m)

for s ∈ S and m ∈M and φ1(E(u)N(x)) = c1N(φ1(x)) for x ∈ Fil1M.

The operator N is always called the monodromy operator. A morphism between
two Breuil modules is just an S-linear map that preserves Fil1 and commutes with

φ1 and N . There is a functor from Mod1,fr/S to the category of Breuil modules

defined below. Let M ∈ Mod1,fr/S . Define M := S ⊗φ,S M and note that we have

an S-linear map 1⊗ φ :M→ S ⊗S M. Set

Fil1M := {x ∈M|(1⊗ φ)(x) ∈ Fil1S ⊗S M ⊂ S ⊗S M}
and

φ1 : Fil1M
1⊗φ // Fil1S ⊗S M

φ1⊗1 // S ⊗φ,S M =M.

One can easily check that Fil1M and φ1 so constructed satisfy the axioms (1) (2)
(3) in the definition of a Breuil module (see §(1.1.8) in [Kis09b]). The construction
of the monodromy operator N is slightly more complicated. Let I+S := S∩uK0[[u]]
if we regard S as a subring of K0[[u]]. We regard M as an φ(S)-submodule of M
and let M̃ denote the φ(S)-submodule ofM generated by M.

Lemma 2.2.3. (1) There exists a unique monodromy operator N on M such
that N(M) ⊂ I+SM.

(2) N i(M) ⊂ upM̃ for each i ≥ 1.

Proof. (1) is Proposition 5.1.3 of [Bre00]. Note that proof of the proposition does
not need the running assumptions of the paper: p > 2 and k is finite. We repeat
the proof here so that we can prove (2).

Let L : M → M be a W (k)-linear map, we call L a derivation if L(sm) =
NS(s)m + sL(m) for s ∈ S and m ∈ M. Obviously, a derivation depends on its
values on a basis of M. Let x1, . . . , xd ∈ Fil1M be such that {ei := φ1(xi)|i =
1, . . . , d} is a basis of M. Define a sequence of derivations Nn on M inductively
via N0(ei) = 0 and Nn(ei) = (c1)

−1φ1(E(u)Nn−1(xi)). Now we prove by induction
that (Nn − Nn−1)(M) ∈ upnM. First note that Nn − Nn−1 is an S-linear map,
so it suffices to show that (Nn −Nn−1)(ei) ∈ upnM for each i. For n = 1, (N1 −
N0)(ei) = (c1)

−1φ1(E(u)N0(xi)). As N0(ei) = 0, it suffices to show that NS(s) ∈
uS for each s ∈ S. This easily follows from the fact that NS(u) = −u and that

s =
∞∑
i=0

ai(u)γi(E(u)) with ai(u) ∈ W (k)[u]. If n = m then we have (Nm −

Nm−1)(ei) = (c1)
−1φ1(E(u)(Nm−1−Nm−2)(xi)). By induction, we have (Nm−1−

Nm−2)(xi) ∈ upm−1M and then (Nm −Nm−1)(ei) ∈ upmM. Hence Nn converges
to a derivation N satisfying that φ1(E(u)N(x)) = c1N(φ1(x)) for x ∈ Fil1M, as
Fil1M is generated by xi and Fil1SM. To see the uniqueness of N , assume that
there exist two such derivations N and N ′. Then N −N ′ is an S-linear map. By
φ1(E(u)(N −N ′)(xi)) = c1(N −N ′)(φ1(xi)), we can easily show that

((N −N ′)(e1), . . . , (N −N ′)(ed)) = ((N −N ′)(e1), . . . , (N −N ′)(ed))A
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with A a matrix having coefficients in φ(I+S). So N −N ′ must be zero map and
thus N = N ′.

To prove (2), it suffices to prove the case i = 1 as the general case easily follows
by induction on i. Let f1, . . . , fd be an S-basis of M. We easily see that there
exists x1, . . . , xd ∈ (S⊗φ,S M) ∩ Fil1M such that ei = φ1(xi) = c1fi is a basis of

M̃. From the above construction of N on ei, we easily see that N(ei) ∈ upM̃ for

each i. Then N(fi) = N(c−1
1 )ei + c−1

1 N(ei) ∈ upM̃ (note that c−1
1 ∈ K0[[u

p]], so

N(c−1
1 ) ∈ upK0[[u

p]]). Hence N(M) ⊂ upM̃ as M is an φ(S)-submodule of M̃.

�

For each Breuil moduleM, one defines a φS-semi-linear morphism φM :M→
M via φ(x) = (c1)

−1φ1(E(u)x) for x ∈ M. If M comes from a Kisin module
M as above then φM is just the natural extension of φM, namely φM(s ⊗ x) =
φS(s)⊗ φM(x) for s ∈ S and x ∈M. Similarly, one can extend the φ-structure to
Acris ⊗SM ≃ Acris ⊗φ,S M. Using the monodromy operator N , we can define an
Acris-semi-linear G-action on Acris ⊗SM via

(2.2.1) g(a⊗ x) =

∞∑
i=0

g(a)γi(− log([ϵ(g)]))⊗N i(x) for a ∈ Acris, x ∈M.

As in Lemma 5.1.1 of [Liu08], we can show that the G-action preserves the φ-
structure and Fil1(Acris⊗SM) := Fil1Acris⊗SM+Acris⊗S Fil

1M. Therefore, one
can associate a Zp[G]-module via

T̃cris(M) := HomAcris,φ,Fil1(Acris ⊗SM, Acris),

where G acts on T̃cris(M) via g(f)(x) = g(f(g−1(x))) for any g ∈ G and f ∈
T̃cris(M).

We need to show that Qp ⊗Zp T̃cris(M) is crystalline with Hodge-Tate weights
in {0, 1}. Write D := Qp⊗ZpM. First by Lemma 5.2.1 in [Liu08], we have a natural

Qp[G]-isomorphism betweenQp⊗Zp T̃cris(M) and Vst(D) := HomS,φ,Fil1,N (D, Âst[
1
p ]),

where Âst is the period ring constructed in [Bre97]. Proposition 2.2.5 in [Bre02]
shows that Vst(D) is semi-stable with Hodge-Tate weights with {0, 1}. Let D be
the filtered (φ,N)-module associated to the semi-stable representation Vst(D) via
Fontaine’s theory. Breuil’s theory in [Bre97] show that one can recover N on D via
ND mod I+SD. Since N(M) ⊂ upM by Lemma 2.2.3, we have ND = 0 and then
Vst(D) must be crystalline.

Let us construct a Zp-linear map λ : TS(M)→ T̃cris(M). Note that Acris⊗SM =
Acris ⊗φ,S M. For each f ∈ TS(M), set λ(f)(a ⊗ m) = aφ(f(m)) for a ∈ Acris

and m ∈ M. It is routine to check that λ is injective and compatible with G∞-
actions. Since dimQp(Qp ⊗Zp T̃cris(M)) = dimQp Vst(D) = dimK0 D = rankSM =

rankSM = rankZp(TS(M)), we see that λ[ 1p ] : Qp ⊗Zp TS(M) → Qp ⊗Zp T̃cris(M)

is an isomorphism of Qp[G∞]-modules.

Remark 2.2.4. If p > 2 then λ is indeed an isomorphism of Zp[G∞]-modules. First,

one can easily show that T̃cris(M) ≃ Tcris(M) := HomS,φ,Fil1(M, Acris) as Zp[G∞]-
modules and this fact is also valid if p = 2. Second, by Lemma 3.3.4 in [Liu08], the
map λ′ : TS(M) → Tcris(M) given by λ′(f)(s ⊗m) = sφ(f(m)) for f ∈ TS(M),
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s ∈ S and m ∈M is an isomorphism of Zp[G∞]-modules. But when p = 2 then λ′

is not necessarily an isomorphism. See Example 5.3.3 in [Liu07].

To summarize the above discussion, we have a functor ι from the category Mod1,fr/S

to the category Repcris,1Qp
via

ι : M Qp ⊗Zp λ(TS(M)).

Now suppose that (M, φ, Ĝ) is a (φ, Ĝ)-module such that T̂ (M̂) is an object in

Repcris,1Zp
. Note that M̂ = R̂ ⊗φ,S M ⊂ Acris ⊗φ,S M. It is routine to check that

the natural map

λ̂ : HomR̂(M̂,W (R))→ HomAcris(Acris ⊗φ,S M, Acris)

induces a Zp-linear map from T̂ (M̂) to T̃cris(M) which we still denote by λ̂. One
easily checks that the following diagram commutes

TS(M) �
� λ //

θ

≃ $$JJ
JJ

JJ
JJ

J
T̃cris(M)

T̂ (M̂).

λ̂

OO

(2.2.2)

Furthermore λ̂ is compatible withG-actions on the both sides. This is a consequence

of the construction of the Ĝ-action on M̂, and the G-action on Acris ⊗R̂ M̂ =
Acris ⊗φ,S M given by formula (2.2.1). The reader is referred to Section 3.2 of
[Liu10] for details. Finally, the full faithfulness and essential surjectivity of ι can

be proved by the full faithfulness and essential surjectivity of T̂ in Theorem 2.1.2.
Here we actually do not need the the full faithfulness and essential surjectivity of ι.

Remark 2.2.5. Note that ι is a contravariant functor. To obtain a covariant functor,
we can just define ι′(M) = (ι(M))∗(1), where ∗ means taking dual and (1) means
twisting by the cyclotomic character. Indeed, ι′(M) ≃ ι(M∨) where M∨ denotes
the Cartier dual of M (for details of Cartier dual, see for example §3.1 of [Liu07]).

2.3. The proof of the main theorem.

Proposition 2.3.1. λ(TS(M)) is G-stable in T̃cris(M).

The next section is devoted to proving the above Proposition. Let us assume
this Proposition for the moment. Now we have a functor M  λ(TS(M)) from

the category Mod1,fr/S to the category Repcris,1Zp
. The full faithfulness of the functor

follows from the full faithfulness of the functor TS and the injectivity of λ. The
essential surjectivity follows from Theorem 2.1.2 and diagram (2.2.2). So the functor

induces an equivalence between the category Mod1,fr/S and the category Repcris,1Zp
.

Then Theorem 1.0.1 follows from Theorem 2.2.1.

3. The proof of Proposition 2.3.1

3.1. A natural G-action on TS(M). Define an ideal in B+
cris

I [1]B+
cris = {a ∈ B+

cris|φ
m(a) ∈ Fil1B+

cris, ∀m ≥ 1.}
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We write I [1] := W (R)∩ I [1]B+
cris as an ideal of W (R). Since φ(t) = pt, we see that

t ∈ I [1]B+
cris. By Proposition 5.1.3 in [Fon94a], I [1] is a principal ideal and [ϵ] − 1

is a generator of I [1]. Write pc0 for the constant term of E(u) with c0 ∈ W (k)×.
Select a t ∈ W (R) such that φ(t) = c−1

0 E(u)t and t ̸≡ 0 mod p in W (R). Such t
exists and is unique up to units of Zp. See Example 2.3.5 in [Liu07] for details. In
the proof of Lemma 3.2.2 in [Liu10], it has been shown that φ(t) is a generator of
I [1]. Since uI [1] and utW (R) are obviously φ-stable inside W (R), there are natural
Frobenius endomorphisms on W (R)/uI [1] and on W (R)/utW (R). Define

J ′(M) = HomS,φ(M,W (R)/uI [1])(3.1.1)

and

J(M) = HomS,φ(M,W (R)/utW (R)).(3.1.2)

The natural projections W (R) → W (R)/uI [1] → W (R)/utW (R) induce the
following commutative diagram of natural maps

TS(M)
η′

//

η

$$I
II

II
II

II
J ′(M)

µ

��
J(M).

Proposition 3.1.1. (1) η and η′ are injective.
(2) µ and η have the same images inside J(M), i.e., µ(J ′(M)) = η(TS(M)).

Proof. (1) It suffices to show that η is injective. Let e1, . . . , ed be a basis of M
and A the matrix such that φ(e1, . . . , ed) = (e1, . . . , ed)A. Assume that h is in the
kernel of η. Then the vector X := (h(e1), . . . , h(ed)) has coordinates in utW (R)
and satisfies the relation φ(X) = XA. Write X = utY with Y ’s coordinates in
W (R). We have

utY A = XA = φ(X) = φ(utY ).

So upφ(t)φ(Y ) = utY A. Since the cokernel of 1⊗φM is killed by E(u), there exists
a matrix B such that AB = BA = E(u)Id. Here Id is the d × d-identity matrix.
Note that φ(t) = c−1

0 E(u)t. We obtain Y = up−1c−1
0 φ(Y )B. Then

Y = c−1
0 up−1φ(up−1c−1

0 φ(Y )B)B = c−1
0 φ(c−1

0 )u(p−1)+p(p−1)φ2(Y )φ(B)B.

Continuing in this way, we see that the entries of Y are in
∞∩

n=0
unW (R) = {0}.

Now let us prove (2). Suppose that h ∈ J ′(M) and let X be a vector with coor-
dinates in W (R) such that X lifts (h(e1), . . . , h(ed)). Then we obtain an equation
φ(X) = XA + uφ(t)Y with the coordinates of Y in W (R) and A the matrix of φ
in the basis e1, . . . , ed as the above. To show that µ(h) ∈ η(TS(M)), it suffices to
show there exists a matrix Z with coefficients in W (R) such that

φ(X + utZ) = (X + utZ)A.

Recall that there exists a matrix B such that AB = BA = E(u)Id. Then the above
equation is equivalent to φ(X+utZ)B = E(u)(X+utZ). Note that φ(t) = c−1

0 E(u)t
and φ(X) = XA+ uφ(t)Y . So it suffices to solve the following equation for Z:

(uφ(t)Y + upφ(t)φ(Z))B = utZE(u),
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which is equivalent to

(3.1.3) c−1
0 Y B + c−1

0 up−1φ(Z)B = Z.

Now we define Z0 = 0 and Zl = c−1
0 Y B + c−1

0 up−1φ(Zl−1)B. We claim that the
coordinates of Zl converge in W (R). In fact, we see that Zl+1−Zl = c−1

0 up−1φ(Zl−
Zl−1)B. Thus

Zl+1 − Zl = (
l−1∏
i=0

φi(c−1
0 up−1))(Z1 − Z0)(φ

l−1(B) . . . φ(B)B)

This shows that Zl+1 − Zl ∈ un(l)W (R) with n(l) → ∞ as l → ∞. Hence Zl

converges and Z exists.

�

Proposition 3.1.2. (1) J(M) and J ′(M) have natural G-actions.
(2) TS(M) has a natural G-action.
(3) All G-actions here are compatible the natural G∞-action on TS(M).

Proof. Obviously, (2) is a consequence of (1) by Proposition 3.1.1. So it suffices
to show (1). Let us first treat J ′(M). We first check that uI [1] is G-stable in
W (R) so that W (R)/uI [1] has a natural G-action. Since Fil1W (R) is G-stable in
W (R), it is easy to check that I [1] is G-stable. Given g ∈ G and m ∈ M, we

g(um) = u[ϵ(g)]g(m) with ϵ(g) = g(π)
π a unit in R. So [ϵ(g)]g(m) is in I [1] and uI [1]

is G-stable.

Let h ∈ J ′(M), g ∈ G. To show that J ′(M) has a natural G-action induced from
that on W (R)/uI [1], we have to show that g(h) ∈ J ′(M). It is obvious that h is
still φ-equivariant. To see that h is S-linear, note that g(h(um)) = g(u)g(h(m)).
Since g(u) − u = u([ϵ(g)] − 1) ∈ uI [1], we see that g(h) is S-linear. The proof
for J(M) is almost the same except we need to check that utW (R) is G-stable
in W (R). To see this, for each x = uty ∈ utW (R) with y ∈ W (R), we have
φ(x) = upφ(t)φ(y) ∈ upI [1]. It is easy to check that upI [1] is G-stable in W (R).
Namely, for each g ∈ G, g(φ(x)) = upφ(t)z with z ∈W (R) as φ(t) is a generator of
I [1]. Hence there exists a w ∈ W (R) such that g(x) = utw with φ(w) = z because
φ : W (R) → W (R) is a bijection. Finally, (3) is obvious from (1) (2) and the
constructions of J(M), J ′(M) and TS(M). �

Corollary 3.1.3. If f : TS(M)→ TS(N) is a morphism of Zp[G∞]-modules then
it is a morphism of Zp[G]-modules.

Proof. Since TS is fully faithful, there exists a morphism f : N→M in Mod1,fr/S such

that TS(f) = f . Note that f induces natural maps between J ′(M), J(M) and J ′(N),
J(N) respectively, so by Proposition 3.1.2, f is a morphism of Zp[G]-modules. �

3.2. Compatibility of G-actions. To prove Proposition 2.3.1, one has to show
that the G-action on Qp ⊗Zp TS(M) obtained via J(M) is compatible with that

induced from ι(M) = Qp ⊗Zp T̃cris(M) constructed in §2.2. Choose a G-stable
Zp-lattice L inside ι(M) such that L contains λ(TS(M)). Then L corresponds to a

(φ, Ĝ)-module (L, φL, ĜL) by Theorem 2.1.2. By Corollary 3.1.3, it is easy to check
that if two G-actions are compatible on Qp⊗Zp TS(L) then they are compatible on
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Qp ⊗Zp TS(M). So to prove such compatibility, it remains to prove the following

statement: Given a (φ, Ĝ)-module M̂ = (M, φ, Ĝ) such that T̂ (M̂) is an object in

Repcris,1Zp
, the G-action on TS(M) obtained from J(M) agrees with that induced

from T̂ (M̂) via isomorphism θ in Theorem 2.1.2 (1).

Recall from Theorem 2.1.2 (1) that the natural Zp[G∞]-isomorphism θ : TS(M)→
T̂ (M) is given by

θ(α)(a⊗ x) = aφ(α(x)) for α ∈ TS(M), a ∈ R̂, x ∈M.

Now define

Ĵ(M̂) := HomR̂,φ(R̂ ⊗φ,S M,W (R)/upφ(t)W (R)),

and a map θ̃ : J(M)→ Ĵ(M̂) via

θ̃(α)(a⊗ x) = aφ(α(x)) for α ∈ J(M), a ∈ R̂, x ∈M.

It is easy to check that θ̃ is a well-defined map. Since M is finite S-free and φ
induces a ring isomorphism between W (R)/utW (R) and W (R)/upφ(t)W (R), we

easily check that θ̃ is an isomorphism of Zp-modules. Now we have the following
commutative diagram of Zp-modules:

TS(M)
� _

η

��

θ
∼

// T̂ (M̂)

η̂

��
J(M)

θ̃
∼

// Ĵ(M̂)

where η̂ is defined by the projection W (R)→W (R)/upφ(t)W (R). Note that both

T̂ (M̂) and J(M) are Zp[G]-modules, and θ, η are morphisms of Zp[G∞]-modules.

We equip Ĵ(M̂) with an action ofG via the isomorphism θ̃. The proof of Proposition
2.3.1 is now reduced to the following Proposition.

Proposition 3.2.1. Notations as above, η̂ is a morphism of Zp[G]-modules.

Proof. Select a basis e1, . . . , ed of M and α ∈ TS(M). Write β = θ(α) and β′ =

θ̃(η(α)). For each g in G and ai ∈ R̂, we have to show that

(g ◦ β)(
∑
i

ai ⊗ ei) ≡ (g ◦ β′)(
∑
i

ai ⊗ ei) mod upφ(t)W (R).

By definition,

(g ◦ β)(
∑
i

ai ⊗ ei) = g(β(g−1(
∑
i

ai ⊗ ei))) =
∑
i

aig(β(g
−1(1⊗ ei))).

Since Ĵ(M̂) uses the G-action from that on J(M), we have

(g ◦ β′)(
∑
i

ai ⊗ ei) =
∑
i

aig(β
′(1⊗ ei)) ≡

∑
i

aig(φ(α(ei))) mod upφ(t)W (R).

We claim that g−1(1 ⊗ ei) ≡ 1 ⊗ ei mod ĨM̂ where Ĩ = (upφ(t)W (R)) ∩ R̂.2 Let
us assume this claim for a moment. Then we have

2It is not clear that Ĩ = upφ(t)R̂ as I+S ̸= uS. Fortunately, we do not need this fact.
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(g ◦ β)(
∑
i

ai ⊗ ei) =
∑
i

aig(β(g
−1(1⊗ ei)))

≡
∑
i

aig(β(1⊗ ei)) mod upφ(t)W (R)

≡
∑
i

aig(φ(α(ei))) mod upφ(t)W (R)

≡ (g ◦ β′)(
∑
i

ai ⊗ ei) mod upφ(t)W (R).

This proves the proposition and it suffices to prove the claim. By formula (2.2.1),
we see the G-action on B+

cris ⊗φ,S M = B+
cris ⊗SM is given by

g(1⊗ ei) =
∞∑
j=0

γj(− log([ϵ(g)]))⊗N j(1⊗ ei),

where N is the monodromy operator onM constructed above Lemma 2.2.3. Note
that γi(− log([ϵ(g)])) ∈ I [1]B+

cris, so by Lemma 2.2.3, we have that

g(1⊗ ei) ≡ 1⊗ ei mod up(I [1]B+
cris)M̂.

Therefore, we have a matrix A with coefficients in upI [1]B+
cris such that

g(1⊗ e1, . . . , 1⊗ ed) = (1⊗ e1, . . . , 1⊗ ed)(Id +A),

where Id denotes the identity matrix. On the other hand, since M̂ = R̂ ⊗S,φ M is

G-stable in B+
cris ⊗S,φ M, the entries of A are in R̂ ⊂W (R). Now the entries of A

must be in upI [1]B+
cris ∩W (R). By Lemma 3.2.2 below, the entries of A must be in

up(I [1]B+
cris ∩W (R)) = upI [1] = upφ(t)W (R). This proves the claim. �

Lemma 3.2.2. Let x ∈ B+
cris. If ux ∈W (R) then x ∈W (R).

Proof. We first check a useful fact: suppose that w ∈ W (R) and ps|uw in W (R)
then ps|w in W (R). It suffices to check this when s = 1. Note that u mod p =
π ̸= 0 inside R, so uw mod p = 0 in R implies that w mod p = 0 because R is an
integral domain. This checks the fact.

Write y = ux. It suffices to prove that for each integer m > 0 there exists
xm, zm ∈ W (R) such that y = uxm + pmzm. Let us first assume that x ∈ Acris.

Then x can be written as x =
∞∑
i=0

ai
E(u)i

i! with ai ∈W (R). Denote ni := vp(i!). We

have

pniy = pniux = u
i∑

j=0

pniaj
E(u)j

j!
+ pni

∞∑
j=i+1

uaj
E(u)j

j!
.

Put x̃i =
i∑

j=0

pniaj
E(u)j

j! and z̃i = pni

∞∑
j=i+1

uaj
E(u)j

j! . We observe that x̃i is in

W (R) and z̃i is in Fili+1Acris∩W (R), which is E(u)i+1W (R). Hence we may write
z̃i = E(u)i+1βi with βi ∈ W (R). We easily compute that E(u)i+1 = pi+1bi + uwi

with bi ∈W (k) and wi ∈W (k)[u]. Now we get

pniy = ux̃i + pi+1biβi + uwiβi = ux′
i + pi+1z′i
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where x′
i = x̃i + wiβi and z′i = biβi. Since ni < i + 1, pni |ux′

i in W (R). So pni |x′
i

in W (R) by the fact proved above. Now we may write y = ux(i) + pi+1−niz(i) with
x(i) = x′

i/p
ni ∈W (R) and z(i) = z′i ∈W (R). To prove the lemma, we have to show

that we can select a sequence im such that im + 1 − nim → +∞ as m → ∞. If
p > 2 then we can just choose im = m as ni = vp(i!) ≤ i

p−1 . It remains to deal

with the case p = 2. In this case, we select im = 2m − 1. One computes that
v2((2

m − 1)!) = 2m −m− 1 and thus im + 1− nim = m+ 1→ +∞.

Now suppose that x ∈ B+
cris and psx ∈ Acris. Then we have shown that psx ∈

W (R). Since psy is in psW (R), we see that ps|u(psx) in W (R). Then ps|psx in
W (R) by the above fact. That is x ∈W (R). �

References
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