A NOTE ON POTENTIAL DIAGONALIZABILITY OF CRYSTALLINE REPRESENTATIONS

HUI GAO, TONG LIU

ABSTRACT. Let K_0/\mathbb{Q}_p be a finite unramified extension and G_{K_0} denote the Galois group $\operatorname{Gal}(\overline{\mathbb{Q}}_p/K_0)$. We show that all crystalline representations of G_{K_0} with Hodge-Tate weights $\subseteq \{0, \dots, p-1\}$ are potentially diagonalizable.

1

Contents

1. Introduction	1
Notations	2
2. Definitions and Preliminary	2
2.1. Potential Diagonalizability	2
2.2. Nilpotency and Fontaine-Laffaille Data	3
3. The Main Theorem and Its Proof	5
References	5

1. INTRODUCTION

Let p be a prime, K a finite extension over \mathbb{Q}_p and G_K denote the absolute Galois group $\operatorname{Gal}(\overline{\mathbb{Q}}_p/K)$. In [BLGGT10] §1.4, potential diagonalizability is defined for a potential crystalline representation of G_K . Since the potential diagonalizability is the local condition at p for a global Galois representation in the automorphic lifting theorems proved in [BLGGT10] (cf. Theorem **A**, **B**, **C**), it is quite interesting to investigate what kind of potential crystalline representations are indeed potentially diagonalizable. Let K_0 be a finite unramified extension of \mathbb{Q}_p . By using Fontaine-Laffaille's theory, Lemma 1.4.3 (2) in [BLGGT10] proved that any crystalline representation of G_{K_0} with Hodge-Tate weights in $\{0, \ldots, p-2\}$ is potentially diagonalizable.

In this short note, we show that the idea in [BLGGT10] can be extended to prove the potential diagonalizability of crystalline representations of G_{K_0} if Hodge-Tate weights are in $\{0, \ldots, p-1\}$. Let $\rho : G_{K_0} \to \operatorname{GL}_d(\overline{\mathbb{Q}}_p)$ be a crystalline representation with Hodge-Tate weights in $\{0, \ldots, p-1\}$. To prove the potential diagonalizability of ρ , we first reduce to the case that ρ is irreducible. Then ρ is *nilpotent* (see definition in §2.2). Note that Fontaine-Laffaille's theory can be

¹⁹⁹¹ Mathematics Subject Classification. Primary 14F30,14L05.

 $Key\ words\ and\ phrases.\ p-{\rm adic}\ Galois\ representations,\ Crystalline\ representations,\ nilpotency,\ Potential\ Diagonalizability,\ Fontaine-Laffaille\ Data\ .$

¹The second author is partially supported by NSF grant DMS-0901360.

extended to nilpotent representations. Hence we can follow the similar idea in [BLGGT10] to conclude the potential diagonalizability of ρ .

Acknowledgement: It is pleasure to thank David Geraghty and Toby Gee for very useful conversations and correspondence.

NOTATIONS

Throughout this note, K is always a finite extension of \mathbb{Q}_p with the absolute Galois group $G_K := \operatorname{Gal}(\overline{\mathbb{Q}}_p/K)$. Let K_0 be a finite unramified extension of \mathbb{Q}_p with the residue field k. We denote W(k) its ring of integers and $\operatorname{Frob}_{W(k)}$ the arithmetic Frobenius on W(k). If E is a finite extension of \mathbb{Q}_p then we write \mathcal{O}_E the ring of integers, ϖ its uniformizer and $\mathbb{F} = \mathcal{O}/\varpi\mathcal{O}$ its residue field. If A is a local ring, we denote \mathfrak{m}_A the maximal ideal of A. Let $\rho : G_K \to \operatorname{GL}_d(A)$ be a continuous representation with the ambient space $M = \bigoplus_{i=1}^d A$. We always denote ρ^* the dual representation induced by $\operatorname{Hom}_A(M, A)$. Let $\rho : G_K \to \operatorname{GL}_d(\overline{\mathbb{Q}}_p)$ be a de Rham representation of G_K . Then $D_{\mathrm{dR}}(\rho^*)$ is a graded $K \otimes_{\mathbb{Q}_p} \overline{\mathbb{Q}}_p$ -module. For any embedding $\tau : K \to \overline{\mathbb{Q}}_p$, we define the set of τ -Hodge-Tate weights

$$\operatorname{HT}_{\tau}(\rho) := \{ i \in \mathbb{Z} | \operatorname{gr}^{i}(D_{\operatorname{dR}}(\rho^{*})) \otimes_{K \otimes_{\mathbb{O}_{p}} \overline{\mathbb{O}}_{p}} (K \otimes_{K,\tau} \overline{\mathbb{Q}}_{p}) \neq 0 \}.$$

In particular, if ϵ denotes the *p*-adic cyclotomic character then $HT_{\tau}(\epsilon) = \{1\}$ (here our convention is slightly different from that in [BLGGT10]).

2. Definitions and Preliminary

2.1. **Potential Diagonalizability.** We recall the definition of potential diagonalizability from [BLGGT10]. Given two continuous representations $\rho_1, \rho_2 : G_K \to$ $\operatorname{GL}_d(\mathcal{O}_{\overline{\mathbb{Q}}_n})$, we say that ρ_1 connects to ρ_2 , denoted by $\rho_1 \sim \rho_2$, if:

- the two reductions $\bar{\rho}_i := \rho_i \mod \mathfrak{m}_{\mathcal{O}_{\overline{\mathbb{Q}}_p}}$ are equivalent to each other;
- both ρ_1 and ρ_2 are potentially crystalline;
- for each embedding $\tau: K \hookrightarrow \overline{\mathbb{Q}}_p$, we have $\operatorname{HT}_{\tau}(\rho_1) = \operatorname{HT}_{\tau}(\rho_2)$;
- ρ₁ and ρ₂ define points on the same irreducible component of the scheme Spec(R[□]<sub>ρ˜1,{HT_τ(ρ₁)},K'-cris[¹/_p]) for some sufficiently large field extension K'/K. Here R[□]_{ρ˜1,{HT_τ(ρ₁)},K'-cris} is the quotient of the framed universal deformation ring R[□]_{ρ˜1} corresponding to liftings ρ with HT_τ(ρ) = HT_τ(ρ₁) for all τ and with ρ |_{G_{K'}} crystalline. The existence of R[□]_{ρ˜1,{HT_τ(ρ₁)},K'-cris} is the main result of [Kis08].
 </sub>

A representation $\rho: G_K \to \operatorname{GL}_d(\mathcal{O}_{\overline{\mathbb{Q}}_p})$ is called *diagonalizable* if it is crystalline and connects to a sum of crystalline characters $\chi_1 \oplus \cdots \oplus \chi_d$. It is called *potentially diagonalizable* if $\rho \mid_{G_K}$, is diagonalizable for some finite extension K'/K.

Remark 2.1.1. By Lemma 1.4.1 of [BLGGT10], the potential diagonalizability is well defined for a representation $\rho: G_K \to \operatorname{GL}_d(\overline{\mathbb{Q}}_p)$ because for any two G_K -stable $\mathcal{O}_{\overline{\mathbb{Q}}_p}$ -lattices L and L', L is potentially diagonalizable if and only if L' is potentially diagonalizable.

Lemma 2.1.2. Suppose $\rho : G_K \to \operatorname{GL}_d(\overline{\mathbb{Q}}_p)$ is potentially crystalline. Let Fil^{*i*} be a G_K -invariant filtration on ρ . Then ρ is potentially diagonalizable if and only if $\oplus_i \operatorname{gr}^i \rho$ is potentially diagonalizable.

Proof. We can always choose a G_K -stable $\mathcal{O}_{\overline{\mathbb{Q}}_p}$ -lattice M inside the ambient space of ρ such that $\operatorname{Fil}^i \rho \cap M$ is the $\mathcal{O}_{\overline{\mathbb{Q}}_p}$ -summand of M and the reduction \overline{M} is semi-simple. Then the lemma follows (7) on page 20 of [BLGGT10].

2.2. Nilpotency and Fontaine-Laffaille Data. Let $\mathcal{O} := \mathcal{O}_E$ for a finite extension E over \mathbb{Q}_p and $W(k)_{\mathcal{O}} := W(k) \otimes_{\mathbb{Z}_p} \mathcal{O}$. Following [FL82], let $\mathcal{MF}_{\mathcal{O}}$ denote the category of finite $W(k)_{\mathcal{O}}$ -modules M with

- a decreasing filtration $\operatorname{Fil}^{i} M$ by $W(k)_{\mathcal{O}}$ -submodules which are W(k)-direct summands with $\operatorname{Fil}^{0} M = M$ and $\operatorname{Fil}^{p} M = \{0\};$
- Frob_{*W(k)*} \otimes 1-semi-linear maps φ_i : Fil^{*i*} $M \to M$ with $\varphi_i \mid_{\text{Fil}^{i+1}M} = p\varphi_{i+1}$ and $\sum_i \varphi_i(\text{Fil}^iM) = M$.

The morphisms in $\mathcal{MF}_{\mathcal{O}}$ are $W(k)_{\mathcal{O}}$ -linear morphisms that compatible with φ_i and Fil^{*i*} structures. We denote $\mathcal{MF}_{\mathcal{O},\text{tor}}$ the full sub-category of $\mathcal{MF}_{\mathcal{O}}$ consisting objects which are killed by some *p*-power, and denote $\mathcal{MF}_{\mathcal{O},\text{fr}}$ the full category of $\mathcal{MF}_{\mathcal{O}}$ whose objects are finite $W(k)_{\mathcal{O}}$ -free. Obviously, if $M \in \mathcal{MF}_{\mathcal{O},\text{fr}}$ then $M/\varpi^m M$ is in $\mathcal{MF}_{\mathcal{O},\text{tor}}$ for all m.

It turns out that the category $\mathcal{MF}_{\mathcal{O},\text{tor}}$ is abelian (see §1.10 in [FL82]). An object M in $\mathcal{MF}_{\mathcal{O},\text{tor}}$ is called *nilpotent* if there is no nontrivial subobject $M' \subset M$ such that $\operatorname{Fil}^1 M' = \{0\}$. Denote the full subcategory of nilpotent objects by $\mathcal{MF}_{\mathcal{O},\text{tor}}^n$. An object $M \in \mathcal{MF}_{\mathcal{O},\text{fr}}$ is called *nilpotent* if $M/\varpi^m M$ is nilpotent for all m. Denote by $\mathcal{MF}_{\mathcal{O},\text{fr}}^n$ the full subcategory of $\mathcal{MF}_{\mathcal{O},\text{fr}}$ whose objects are nilpotent.

Let $\operatorname{Rep}_{\mathcal{O}}(G_{K_0})$ be the category of finite \mathcal{O} -modules with continuous \mathcal{O} -linear G_{K_0} -actions. We define a functor $T^*_{\operatorname{cris}}$ from the category $\mathcal{MF}^n_{\mathcal{O},\operatorname{tor}}$ (resp. $\mathcal{MF}^n_{\mathcal{O},\operatorname{fr}}$) to $\operatorname{Rep}_{\mathcal{O}}(G_{K_0})$:

$$T^*_{\mathrm{cris}}(M) := \mathrm{Hom}_{W(k),\varphi_i,\mathrm{Fil}^i}(M, A_{\mathrm{cris}} \otimes_{\mathbb{Z}_p} (\mathbb{Q}_p/\mathbb{Z}_p)) \text{ if } M \in \mathcal{MF}_{\mathcal{O},\mathrm{tor}},$$

and

$$T^*_{\operatorname{cris}}(M) := \operatorname{Hom}_{W(k),\varphi_i,\operatorname{Fil}^i}(M, A_{\operatorname{cris}}) \text{ if } M \in \mathcal{MF}_{\mathcal{O},\operatorname{fr}}.$$

Let $\operatorname{Rep}_{E,\operatorname{cris}}^{[0,p-1]}(G_{K_0})$ denote the category of continuous *E*-linear G_{K_0} -representations on finite dimensional *E*-vector spaces *V* such that *V* are crystalline with Hodge-Tate weights in $\{0, \ldots, p-1\}$. An object $V \in \operatorname{Rep}_{E,\operatorname{cris}}^{[0,p-1]}(G_{K_0})$ is called *nilpotent* if *V* does not admit nontrivial unramified quotient ². We denote by $\operatorname{Rep}_{\mathcal{O},\operatorname{cris}}^{[0,p-1],n}(G_{K_0})$ the category of G_{K_0} -stable \mathcal{O} -lattices in nilpotent representations in $\operatorname{Rep}_{E,\operatorname{cris}}^{[0,p-1]}(G_{K_0})$.

We gather the following useful results from [FL82] and [Laf80].

- **Theorem 2.2.1.** (1) The contravariant functor T^*_{cris} from $\mathcal{MF}^n_{\mathcal{O},tor}$ to $\operatorname{Rep}_{\mathcal{O}}(G_{K_0})$ is exact and fully faithful.
 - (2) An object $M \in \mathcal{MF}_{\mathcal{O},\mathrm{fr}}$ is nilpotent if and only if $M/\varpi M$ is nilpotent.
 - (3) The essential image of T^*_{cris} from $\mathcal{MF}^n_{\mathcal{O},tor}$ is closed under taking sub-objects and quotients.
 - (4) Let V be a crystalline representation of G_{K_0} . V is nilpotent if and only if $V|_{G_{K'}}$ is nilpotent for any unramified extension K'/K_0 .
 - (5) T^*_{cris} induces an anti-equivalence between the category $\mathcal{MF}^n_{\mathcal{O},\text{fr}}$ and the category $\operatorname{Rep}^{[0,p-1],n}_{\mathcal{O},\text{cris}}(G_{K_0})$.

²It is easy to check that V admits a nontrivial unramified quotient as \mathbb{Q}_p -representations if and only if V admits a nontrivial unramified quotient as E-representations. See the proof of Theorem 2.2.1 (4).

Proof. (1) and (2) follow from Theorem 6.1 in [FL82]. Note that \underline{U}_S in [FL82] is just T^*_{cris} here. To prove (3), we may assume that $\mathcal{O} = \mathbb{Z}_p$ and it suffices to check that T^*_{cris} sends simple objects in $\mathcal{MF}^n_{\mathcal{O},\text{tor}}$ to simple objects in $\operatorname{Rep}_{\mathcal{O}}(G_{K_0})$ (see Property 6.4.2 in [Car06]). And this is proved in [FL82], §6.13 (a). (4) is clear because V is nilpotent if and only if $(V^*)^{I_{K_0}} = \{0\}$ where I_{K_0} is the inertia subgroup of G_{K_0} . (5) has been essentially proved in [FL82] and [Laf80] but has not been recorded in literature. So we sketch the proof here. First, by (1), it is clear that $T^*_{cris}(M)$ is a continuous \mathcal{O} -linear G_{K_0} -representation on a finite free \mathcal{O} -module T. Using the totally same proof for the case when $\operatorname{Fil}^{p-1}M = \{0\}$ in [FL82] (using Theorem in [FL82] §0.6 and (1)), we has $\operatorname{rank}_{\mathcal{O}}(T) = \operatorname{rank}_{W(k)_{\mathcal{O}}} M = d$. It is easy to see that M is a W(k)-lattice in $D_{cris}(V^*)$ where $V = \mathbb{Q}_p \otimes_{\mathbb{Z}_p} T$. Hence V is crystalline with Hodge-Tate weights in $\{0, \ldots, p-1\}$. To see V is nilpotent, note that V has a unramified quotient \tilde{V} is equivalent to that there exists an $M' \subset M$ such that $M' \cap \operatorname{Fil}^1 M = \{0\}$ and M/M' has no torsion (just let $M' := D_{\operatorname{cris}}(\tilde{V}^*) \cap M$). So M is nilpotent implies that V is nilpotent. Hence by (1), T^*_{cris} is an exact, fully faithful functor from $\mathcal{MF}^{n}_{\mathcal{O},\mathrm{fr}}$ to $\operatorname{Rep}^{[0,p-1],n}_{\mathcal{O},\mathrm{cris}}(G_{K_0})$. To prove the essential surjectiveness of T^*_{cris} , it suffices to assume that $\mathcal{O} = \mathbb{Z}_p$ (indeed, suppose that T is an object in $\operatorname{Rep}_{\mathcal{O},\operatorname{cris}}^{[0,p-1],n}(G_{K_0})$ with $d = \operatorname{rank}_{\mathcal{O}}T$. Let $V = \mathbb{Q}_p \otimes_{\mathbb{Z}_p} T$ and $D = D_{\operatorname{cris}}(V^*)$. It is well-known that D is a finite free $E \otimes_{\mathbb{Q}_p} K_0$ -module with rank d. If there exists an $M \in \mathcal{MF}^{n}_{\mathbb{Z}_{p}, \mathrm{fr}}$ such that $T^{*}_{\mathrm{cris}}(M) \simeq T$ as $\mathbb{Z}_{p}[G]$ -modules. By the full faithfulness of T^*_{cris} , M is naturally a $W(k)_{\mathcal{O}}$ -module. Since D is $E \otimes_{\mathbb{Q}_p} K_0$ -free, it is standard to show that M is finite $W(k)_{\mathcal{O}}$ -free by computing \mathcal{O}_i -rank of M_i , where $M_i := M \otimes_{W(k)_{\mathcal{O}}} \mathcal{O}_i$ and $W(k)_{\mathcal{O}} \simeq \prod_i \mathcal{O}_i$. Now suppose that T is an object in $\operatorname{Rep}_{\mathbb{Z}_p,\operatorname{cris}}^{[0,p-1],n}$. Let $V = \mathbb{Q}_p \otimes_{\mathbb{Z}_p} T$ and $D = D_{\operatorname{cris}}(V^*)$. By [Laf80] §3.2, there always exists a W(k)-lattice $M \in \mathcal{MF}_{\mathbb{Z}_p, \mathrm{fr}}$ inside D. We has to show that M is nilpotent. Suppose that $\overline{M} := M/pM$ is not nilpotent. Then there exists $N \subset \overline{M}$ such that Fil¹ $N = \{0\}$. Consequently $\varphi_0(\text{Fil}^0 N) = \varphi_0(N) = N$. By Fitting lemma, $\bigcap_m (\varphi_0)^m (\bar{M}) \neq \{0\}$. So $\bigcap_m (\varphi_0)^m (M) \neq \{0\}$ which means that $V = \mathbb{Q}_p \otimes_{\mathbb{Z}_p} T^*_{\operatorname{cris}}(M)$ must has a unramified quotient. This contradicts that V is nilpotent and hence M has to be nilpotent by (2). It remains to show that other G_{K_0} -stable \mathbb{Z}_p -lattices $L' \subset V$ is also given by an object $M' \in \mathcal{MF}^n_{\mathbb{Z}_p, \mathrm{fr}}$. Let L := $T^*_{\rm cris}(M)$. Without loss of generality, we can assume that $L' \subset L$. So for sufficient large m, we have the exact sequence $0 \to f_m(L') \to L/p^m L \to L/L' \to 0$ where f_m is the map $L' \hookrightarrow L \twoheadrightarrow L/p^m L$. It easy to check that $L/p^m L \simeq T^*_{\rm cris}(M/p^m M)$. By (3), there exists an object $M'_m \in \mathcal{MF}^n_{\mathcal{O}, \text{tor}}$ such that $T^*_{\text{cris}}(M'_m) \simeq f_m(L')$. Finally $M' = \underline{\lim}_{m} M'_{m}$ is the required object in $\mathcal{MF}^{n}_{\mathcal{O},\mathrm{fr}}$.

Contravariant functors like T^*_{cris} are not convenient for deformation theory. So we define a covariant variant for T^*_{cris} . Define $T_{\text{cris}}(M) := (T^*_{\text{cris}}(M))^*(p-1)$, more precisely,

$$T_{\operatorname{cris}}(M) := \operatorname{Hom}_{\mathcal{O}}(T^*_{\operatorname{cris}}(M), E/\mathcal{O})(p-1) \text{ if } M \in \mathcal{MF}^n_{\mathcal{O}, \operatorname{tor}},$$

and

$$T_{\operatorname{cris}}(M) := \operatorname{Hom}_{\mathcal{O}}(T^*_{\operatorname{cris}}(M), \mathcal{O})(p-1) \text{ if } M \in \mathcal{MF}^n_{\mathcal{O}, \operatorname{fr}}.$$

Let $\rho : G_{K_0} \to \operatorname{GL}_d(\mathcal{O})$ be a continuous representation such that there exists an $M \in \mathcal{MF}^n_{\mathcal{O},\mathrm{fr}}$ satisfying $T_{\mathrm{cris}}(M) = \rho$. Then $T_{\mathrm{cris}}(\bar{M}) = \bar{\rho} := \rho \mod \varpi \mathcal{O}$ where $\bar{M} := M/\varpi M$. Let $\mathcal{C}^f_{\mathcal{O}}$ denote the category of Artinian local \mathcal{O} -algebras for which the structure map $\mathcal{O} \to R$ induces an isomorphism on residue fields. Define a deformation functor $D^{\mathbf{n}}_{\mathrm{cris}}(R) := \{ \text{lifts } \tilde{\rho} : G_{K_0} \to \mathrm{GL}_d(R) \text{ of } \bar{\rho} \text{ such that there}$ exists an $M \in \mathcal{MF}^{\mathbf{n}}_{\mathcal{O},\mathrm{tor}}$ satisfying $T_{\mathrm{cris}}(M) \simeq \tilde{\rho} \}.$

Proposition 2.2.2. Assume that $W(k) \subset \mathcal{O}$. Then D_{cris}^n is pro-represented by a formally smooth \mathcal{O} -algebra $R_{\bar{\rho},\text{cris}}^n$.

Proof. By (1) and (3) in Theorem 2.2.1, D_{cris}^n is a sub-functor of the framed Galois deformation functor of $\bar{\rho}$ and pro-represented by an \mathcal{O} -algebra $R_{\bar{\rho},\text{cris}}^n$. The formal smoothness of $R_{\bar{\rho},\text{cris}}^n$ is totally the same as that in Lemma 2.4.1 in [CHT08]. Indeed, suppose that R is an object of $\mathcal{C}_{\mathcal{O}}^f$ and I is an ideal of R with $\mathfrak{m}_R I = (0)$. To prove the formal smoothness of $R_{\bar{\rho},\text{cris}}^n$, we have to show that any lift in $D_{\text{cris}}^n(R/I)$ admits a lift in $D_{\text{cris}}^n(R)$. Then this is equivalent to lift the corresponding $N \in \mathcal{MF}_{\mathcal{O},\text{tor}}$ (note that any lift N of \overline{M} will be automatically in $\mathcal{MF}_{\mathcal{O},\text{tor}}^n$ by Theorem 2.2.1 (3)). And this is just the same proof in Lemma 2.4.1 in [CHT08]. Note that the proof did not use the restrictions (assumed for §2.4.1 loc. cit.) that $\operatorname{Fil}^{p-1}M = \{0\}$ and $\dim_k(\operatorname{gr}^i \mathbf{G}_{\tilde{v}}^{-1}(\bar{r}|_{G_{F_{\tilde{v}}}})) \otimes_{\mathcal{O}_{F_{\tilde{v}}}, \tilde{\tau}} \mathcal{O} \leq 1.$

3. The Main Theorem and Its Proof

Theorem 3.0.3 (Main Theorem). Suppose $\rho : G_{K_0} \to \operatorname{GL}_d(\overline{\mathbb{Q}}_p)$ is a crystalline representation, and for each $\tau : K_0 \hookrightarrow \overline{\mathbb{Q}}_p$, the Hodge-Tate numbers $\operatorname{HT}_{\tau}(\rho) \subseteq \{a_{\tau}, \ldots, a_{\tau} + p - 1\}$, then ρ is potentially diagonalizable.

Proof. We may assume that ρ factors through $\operatorname{GL}_d(\mathcal{O})$ for a sufficient large \mathcal{O} . By Lemma 2.1.2, we can assume that ρ is irreducible and hence $\rho^*(p-1)$ is nilpotent. Just as in the proof of Lemma 1.4.3 of [BLGGT10], we can assume $a_{\tau} = 0$ for all τ . Then we can choose an unramified extension K', such that $\overline{\rho}|_{G_{K'}}$ has a $G_{K'}$ -invariant filtration with 1-dimensional graded pieces. By Theorem 2.2.1 (4), $\rho^*(p-1)$ is still nilpotent when restricted to $G_{K'}$. Without loss of generality, we can assume that $K_0 = K'$. Now there exists an $M \in \mathcal{MF}^n_{\mathcal{O},\mathrm{fr}}$ such that $T_{\mathrm{cris}}(M) \simeq \rho$. Then $\overline{M} := M/\varpi M$ is nilpotent and $T_{\rm cris}(\overline{M}) \simeq \overline{\rho}$. Note that \overline{M} has filtration with rank-1 $\mathbb{F} \otimes_{\mathbb{Z}/p\mathbb{Z}} k$ -graded pieces to correspond to the filtration of $\bar{\rho}$. Now by Lemma 1.4.2 of [BLGGT10], we lift \overline{M} to $M' \in \mathcal{MF}_{\mathcal{O},\mathrm{fr}}$ which has filtration with rank-1 $W(k)_{\mathcal{O}}$ -graded pieces (note the proof of Lemma 1.4.2 did not use the restriction that $\operatorname{HT}_{\tau}(\rho) \subseteq \{0, \ldots, p-2\}$). Hence M' is nilpotent by Theorem 2.2.1 (3). Then $\rho' = T_{\rm cris}(M')$ is crystalline and has a G_{K_0} -invariant filtration with 1dimensional graded pieces by Theorem 2.2.1 (5). Then part 1 of Lemma 1.4.3 of [BLGGT10] implies that ρ' is potentially diagonalizable. Now it suffices to show that ρ connects to ρ' . But it is obvious that $R^{n}_{\bar{\rho}, \mathrm{cris}}$ is a quotient $R^{\square}_{\bar{\rho}, \{\mathrm{HT}_{\tau}(\rho)\}, K\text{-cris}}$. By Proposition 2.2.2, we see that ρ and ρ' must be in the same connected component of Spec $(R_{\bar{\rho},\{\mathrm{HT}_{\tau}(\rho)\},K\text{-cris}}^{\Box}[\frac{1}{p}])$. Hence $\rho \sim \rho'$ and ρ is potentially diagonalizable.

References

[BLGGT10] Thomas Barnet-Lamb, Toby Gee, David Geraghty, and Richard Taylor. Potential automorphy and change of weight. preprint, 2010.

HUI GAO, TONG LIU

- [CHT08] Laurent Clozel, Michael Harris, and Richard Taylor. Automorphy for some *l*-adic lifts of automorphic mod *l* Galois representations. *Publ. Math. Inst. Hautes Études Sci.*, (108):1–181, 2008. With Appendix A, summarizing unpublished work of Russ Mann, and Appendix B by Marie-France Vignéras.
- [FL82] Jean-Marc Fontaine and Guy Laffaille. Construction de représentations p-adiques. Ann. Sci. École Norm. Sup. (4), 15(4):547–608 (1983), 1982.
- [Kis08] Mark Kisin. Potentially semi-stable deformation rings. J. Amer. Math. Soc., 21(2):513-546, 2008.
- [Laf80] Guy Laffaille. Groupes p-divisibles et modules filtrés: le cas peu ramifié. Bull. Soc. Math. France, 108(2):187–206, 1980.

 $E\text{-}mail\ address:\ \texttt{gaohQmath.purdue.edu, tongliuQmath.purdue.edu}$

Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, IN 47907, USA

6