MODULARITY OF COMPATIBLE FAMILY OF *p*-ADIC REPRESENTATIONS

1. INTRODUCTION

This notes proves the modularity of certain compatible family of *l*-adic Galois representations, via Serre and Kisin's arguments.

2. Compatible family of p-adic representations

Following [Tay06], we define that a rank 2 weakly compatible system of \mathfrak{p} -adic representations \mathcal{R} over \mathbb{Q} is a 5-tuple $(E, S, \{Q_l(X)\}, \rho_{\mathfrak{p}}, \{n_1, n_2\})$ where

- E is a number field over \mathbb{Q} ;
- S is a finite set of primes over \mathbb{Q} ;
- for each prime $l \notin S$, $Q_l(X)$ is a monic degree 2 polynomial in E[X];
- for each prime \mathfrak{p} of E, let p be the residue characteristic.

$$\rho_{\mathfrak{p}}: G := \operatorname{Gal}(\mathbb{Q}/\mathbb{Q}) \longrightarrow \operatorname{GL}_2(E_{\mathfrak{p}})$$

is a continuous representation such that, if $\mathfrak{p} \notin S$ then $\rho_{\mathfrak{p}}|_{G_p}$ is crystalline, and if $l \notin S$ and $l \neq p$ then $\rho_{\mathfrak{p}}$ is unramified at l and Fr_l has characteristic polynomial $Q_l(X)$;

• $\{n_1n_2\}$ are integers such that for all primes \mathfrak{p} of E (lying above a prime p) the representation $\rho_{\mathfrak{p}}|_{G_p}$ has Hodge-Tate weights n_1 and n_2 .

Lemma 2.1. Either all the $\rho_{\mathfrak{p}}$ is absolutely irreducible or all are absolutely reducible.

 $\mathit{Proof.}$ Now suppose that $\rho_{\mathfrak{p}}$ is absolutely reducible and we want to show that for any other $\lambda \in \text{Spec}(E)$, ρ_{λ} is also absolutely reducible. Note that there exists a finite extension K over $E_{\mathfrak{p}}$ such that ρ_p is reducible. Then there is a vector e_1 in the underline space $V' = V \otimes_{E_p} K$ such that G is stable over e_1 . Let χ'_1 be the character of G acts on e_1 , χ'_2 the character G acts on $V'/K \cdot e_1$. Since χ'_i is p-adic Hodge-Tate (i.e. potentially-semi-stable) character. Using Fontaine's classification, we can prove that $\chi'_i|_H \simeq \epsilon_p^{n'_i}$, where $H \subset I_p$ is an open subgroup. Since $\rho_{\mathfrak{p}}|_{G_p}$ has Hodge-Tate weights n_1 , n_2 . So we have no choice but $n_i = n'_i$ with i = 1, 2. Now $\chi_i = \chi'_i \epsilon_p^{-n_i}$ is a character of G such that χ_i has ramification at primes in $S \cup p$. Let L be the spitting field of χ_1 . We claim that L must be a finite abelian extension of \mathbb{Q} . Let $L' \subset L$ be a finite abelian subfield. It suffices that we can bound the conductor of L'. There are two cases: Case I, let $l \in S$ and $l \neq p$. Set $I_{l,L'}^w$ the wild ramification group (i.e., the *l*-Sylow subgroup inside the ramification group $I_{l,L'}$). Then $i: I_{l,L'}^w \hookrightarrow \mathcal{O}_{E_p}^*$. We claim that $I_{l,L'}^w \hookrightarrow \mathcal{O}_{E_p}^*/1 + \mathfrak{p}$. Suppose that $i(x) \in 1 + \mathfrak{p}$. Note that $1 + \mathfrak{p}$ is profinite *p*-group, but i(x) has order *l*-power, thus i(x) = 1 and $I_{l,L'}^w \hookrightarrow \mathcal{O}_{E_p}^*/1 + \mathfrak{p}$. Thus the order $I_{l,L'}^w$ is bounded. By [Ser] §4.9 Proposition 9, the conductor at l is bounded; Now considering the case II, conductor at p. The ramification index at p is $[I_p:H]$. Therefore we also bounded the conductor at p. In conclusion, we can bounded the conductor of L' and then the splitting field of χ_i is finite. Therefore the images of χ_i are finite. Then there exists finite extension E'/E such that images of χ_i are inside $\mathcal{O}_{E'}^*$.

Now for any $\rho_{\mathfrak{q}}$ for $\mathfrak{q} \neq \mathfrak{p}$ and \mathfrak{q} over rational prime q. Consider the \mathfrak{q} -adic representation $\rho'_{\mathfrak{q}} = \epsilon_q^{n_1}\chi_1 + \epsilon_q^{n_2}\chi_2$ defined over $E'_{\mathfrak{q}'}$, where prime $\mathfrak{q}' \in \operatorname{Spec}(E')$ over \mathfrak{q} . Since ϵ_p is compatible family of 1-dimensional p-adic Galois representation, the characteristic polynomial of Fr_l of $\rho'_{\mathfrak{q}}$ is the same as the that of $\rho_{\mathfrak{p}}$ for almost all primes l. Thus the characteristic polynomial of Fr_l of $\rho'_{\mathfrak{q}}$ is the same as that of $\rho_{\mathfrak{q}}$ for almost all primes l. Thus by Chebaratev density theorem, the traces of $\rho'_{\mathfrak{q}}$ and $\rho_{\mathfrak{q}}$ are the same. Then $\rho_{\mathfrak{q}}$ is reducible.

We call \mathcal{R} regular if $n_1 < n_2$ and $\det \rho_{\mathfrak{p}}(c) = -1$ for one (and hence all) primes, where c denotes complex conjugation. Set $\epsilon = (\epsilon_p)$ the compatible system of p-adic cyclotomic characters. For any $i \in \mathbb{Z}$, denote $\mathcal{R}(i)$ the system $(\rho_{\mathfrak{p}}\epsilon_p^i)$.

Lemma 2.2. $\mathcal{R}(-n_1)$ is weakly compatible system with Hodge-Tate weights 0 and $n_2 - n_1$.

Proof. It suffices to show that for any $p \notin S$ and $l \notin S$ and $l \neq p$. The characteristic polynomial $f_l(X)$ of Fr_l is independent of choice of \mathfrak{p} . Note that $f_l(X) = \det(IX - \rho_{\mathfrak{p}}\epsilon_p^{-n_1}(\operatorname{Fr}_l)) = \det(IX - l^{-n_1}\rho_{\mathfrak{p}}((Fr)_l)) = l^{-2n_1}Q_l(l^{n_1}X)$. \Box

Now we state the classical theorem on compatible system constructed from modular forms. For any prime p, we fix an embedding $E \hookrightarrow \overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_p$. Let $k \ge 2, N \ge 1$ and $S_k(\Gamma_1(N), \mathbb{C})$ the space of cuspidal modular form with weight k and level N. Suppose that $f = \sum_{i=1}^{\infty} a_n q^n$ is an eigenform normalized such that $a_1 = 1$.

Theorem 2.3. Notations as above, then $E_f = \mathbb{Q}(a_n)_{n \ge 1} \subset \mathbb{C}$ is a number field. Moreover, for any $\lambda | p$ of E_f , there exists a continuous representation

$$\rho_{f,\lambda}: G \longrightarrow \operatorname{GL}_2(E_{f,\lambda})$$

such that

- (1) $\rho_{f,\lambda}$ is odd and absolutely irreducible.
- (2) For any $l \nmid Np$, $\rho_{f,\mathfrak{p}}$ is unramified over l and $\operatorname{tr}(\rho_{f,\lambda}(\operatorname{Fr}_l) = a_l)$.
- (3) For any $\lambda | p, \rho_{f,\lambda} |_{G_p}$ is potential semi-stable with Hodge-Tate weights in $\{0, k-1\}$. If $\lambda \nmid N$, the $\rho_{f,\lambda} |_{G_p}$ is crystalline.

Let $\rho_i : G \to \operatorname{GL}_2(E_i), i = 1, 2$ be a two representations with E_i finite extensions of \mathbb{Q}_p (resp. $\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}$). We write $\rho_1 \sim \rho_2$ if there exist an finite extension E/\mathbb{Q}_p (resp. E/\mathbb{F}_p) such that $E_i \subset E$ for all i = 1, 2 and $\rho_1 \otimes_{E_1} E \simeq \rho_2 \otimes_{E_2} E$.

Theorem 2.4. Let $\mathcal{R} = (\rho_{\mathfrak{p}})$ be an irreducible regular rank 2 weakly compatible system with weights $\{0, k\}$. Then there exists an eigenform f with weight k + 1 such that for any $\rho_{\mathfrak{p}}$ there exists a prime λ of E_f satisfying $\rho_{\mathfrak{p}} \sim \rho_{f,\lambda}$.

Note that all $\rho_{\mathfrak{p}}$ in Theorem 2.4 and $\rho_{f,\lambda}$ here are irreducible. To show they are isomorphic, using Chebotarev's density theorem, it suffices to show that there exists $\rho_{\mathfrak{p}}$, f and λ such that $\operatorname{tr}(\rho_{\mathfrak{p}}(\operatorname{Fr}_l)) = \operatorname{tr}(\rho_{f,\lambda}(\operatorname{Fr}_l))$ for almost all l.

Remark 2.5. The assumption on absolutely irreducibility here is equivalent to the following condition (pure weight k):

For any $l \notin S$ and for all $i : E \to \mathbb{C}$ the root of $i(Q_l(X))$ have absolute value $l^{k/2}$.

See Lemma 3.2 blew for the proof.

Corollary 2.6. If d = 1 then the Scholl representation is modular.

3. The proof of Theorem 2.4

In the proof, we mainly use Serre's conjecture. So let us first review Serre's conjecture. In the sequel, for any prime l, we use $G_l \subset G$ to denote the decomposition group over prime l and $I_l \subset G_l$ the inertia subgroup. \mathbb{F}/\mathbb{F}_p is always a finite field with characteristic p.

3.1. The strong Serre's conjecture. In this subsection, we recall the precise form of Serre's conjecture which predicts not only that an odd representation $\bar{\rho}$: $G \to \operatorname{GL}_2(\mathbb{F})$ arises from a modular form, but also the minimal weight and level of the form.

Let

$$\omega_i: I_p \to \mathbb{F}_{p^i}^{\times}; \ g \mapsto \frac{g(p^i - \sqrt{p})}{p^i - \sqrt{p}} \mod p$$

be the fundamental character of level *i*. We will write ω for ω_1 , which is mod *p* reduction of *p*-adic cyclotomic character ϵ_p .

Suppose we are given a representation $\stackrel{r}{\bar{\rho}_p}: G_p \to \operatorname{GL}_2(\overline{\mathbb{F}}_p)$. Then $\bar{\rho}_p|_{I_p}$ is either of the form $\begin{pmatrix} \omega^i & * \\ 0 & 1 \end{pmatrix} \otimes \omega^j$ with $i, j \in \mathbb{Z}$ or $\begin{pmatrix} \omega^i & 0 \\ 0 & \omega^{p^i} \end{pmatrix} \otimes \omega^j$ for some integers $i, j \in \mathbb{Z}$ and $p+1 \nmid i$.

When $\bar{\rho_p}|_{I_p}$ is semi-simple, or equivalently tamely ramified, we can always choose $j \in [0, p-2]$ and $i+j \in [1, p-1]$; when $\bar{\rho_p}|_{I_p}$ is wildly ramified $i, j \in [0, p-2]$ can be uniquely determined. We set $k(\bar{\rho_p}) = 1 + i + (p+1)j$, unless $\bar{\rho_p}|_{I_p} \sim \begin{pmatrix} \omega & * \\ 0 & 1 \end{pmatrix} \otimes \omega^j$, with * très ramified. In this exceptional case, we set $k(\bar{\rho_p}) = (p+1)(j+1)$. For a representation $\bar{\rho} : G \to \mathrm{GL}_2(\mathbb{F})$, we set $k(\bar{\rho}) = k(\bar{\rho}|_{G_p})$ and set

$$N(\bar{\rho}) = \prod_{l \neq p} \operatorname{cond}(\bar{\rho}|_{G_l}),$$

where $\operatorname{cond}(\bar{\rho}|_{G_l})$ is the Artin conductor of $\bar{\rho}|_{G_l}$. Let V be the underlying space of $\bar{\rho}$, then $\operatorname{cond}(\bar{\rho}_{G_l}) = l^{n_l}$ where

(3.1)
$$n_l = \sum_{i=0}^{\infty} \frac{1}{(G_0 : G_i)} \dim(V/V^{G_i})$$

where $G_i \subset G_0 = I_l$ are the ramification subgroups.

Theorem 3.1 (Serre's conjecture). Let $\bar{\rho} : G \to \operatorname{GL}_2(\mathbb{F})$ be odd and absolutely irreducible. Then there exists an eigenform f with weight $k(\bar{\rho})$ and level $N(\bar{\rho})$ such that $\bar{\rho} \sim \bar{\rho}_{f,\lambda}$.

3.2. The proof of Theorem 2.4. Now we use Theorem 3.1 to prove the Theorem 2.4. We claim that there exist infinite many primes $\mathfrak{p}_i \in \operatorname{Spec}(E)$ such that

(1) $k(\bar{\rho}_{\mathfrak{p}_i}) = k+1$ for all i

4

- (2) The set $\{N(\bar{\rho}_{\mathfrak{p}_i})\}$ is bounded.
- (3) For all $i, \bar{\rho}_{\mathfrak{p}_i}$ is absolutely irreducible.

Let us first accept claim and prove Theorem 2.4. Suppose the set $\{\mathfrak{p}_i\}$ does exist. By Theorem 3.1, for any *i*, there exists an eigenform $f_i \in S_{k+1}(\Gamma_1(N(\bar{\rho}_{\mathfrak{p}_i})), \mathbb{C})$ such that $\bar{\rho}_{\mathfrak{p}_i} \sim \bar{\rho}_{f_i,\lambda_i}$. Select an *N* such that $N(\bar{\rho}_{\mathfrak{p}_i})|N$ for all *i*. We see that f_i are eigenforms in $S_{k+1}(\Gamma_1(N), \mathbb{C})$, which is a finite dimensional \mathbb{C} -space. So there are only finitely many normalized eigenforms. Therefore, there exists an eigenform f such that $f_i = f$ for infinitely many *i*. Without loss of generality, we assume that $f_i = f$ for all *i*.

Now for any fix prime $l \notin S$, let a_l be the coefficient of X in $Q_l(X)$. Since $\{\rho_p\}$ is compatible, for any $\mathfrak{p}_i \neq l$, $a_l = \operatorname{tr}(\rho_{\mathfrak{p}_i}(\operatorname{Fr}_l))$. On the other hand, set b_l the *l*-th Fourier coefficient of f. Then we have $b_l = \operatorname{tr}(\rho_{f,\lambda_i}(\operatorname{Fr}_l))$. Choose a Galois extension F/\mathbb{Q} which contains E and E_f . Without loss of generality, we can assume our embedding $\iota : E \hookrightarrow F \hookrightarrow \overline{\mathbb{Q}}_p$ in a way such that $\mathfrak{p}_i = \mathcal{O}_E \cap \mathfrak{m}$ with \mathfrak{m} the maximal ideal of $\mathcal{O}_{\overline{\mathbb{Q}}_p}$. Then λ_i is determined an embedding $\sigma_i : E_f \hookrightarrow F \hookrightarrow \overline{\mathbb{Q}}_p$. But there are only finitely many embeddings $E_f \hookrightarrow F$ here, so there must be an embedding σ such that $\sigma_i = \sigma$ for infinitely many i. Without loss of generality, we can assume that $\sigma = \sigma_i$ for all i, and we embed $E_f \to \overline{\mathbb{Q}}_p$ and $\lambda_i = E_f \cap \mathfrak{m}$. Set $q_i = F \cap \mathfrak{m}$.

Now since $\bar{\rho}_{\mathfrak{p}_i} \sim \bar{\rho}_{f,\lambda_i}$. Thus $a_l = b_l \mod q_i$ for all *i*. Since there are infinitely many *i*, we see that $a_l = b_l$ for all $l \notin S$. This prove Theorem 2.4.

3.3. The proof of the claim. The first two claims are not hard, while the last one need more work.

For any $p \notin S$ and p > k + 1, we claim that for any $\mathfrak{p}|p$, $k(\bar{\rho}_{\mathfrak{p}}) = k + 1$. In fact, since $\rho_{\mathfrak{p}}|_{G_p}$ is crystalline and Hodge-Tate weights are 0, k with $k \leq p - 2$. The one can use Fontaine-Messing theory on strongly divisible lattices in filtered φ -modules to compute the reduction of such crystalline representations. Let T be a lattice in $\rho_{\mathfrak{p}}|_{G_p}$ and denote \overline{T} the reduction of T. There are two cases:

Case I: T is irreducible, then $\bar{T}|_{I_p} \otimes \bar{\mathbb{F}}_p \sim \begin{pmatrix} \omega_2^k & 0\\ 0 & \omega_2^{pk} \end{pmatrix}$. So $k(\bar{\rho}_p) = k + 1$. Case II: T is reducible, then $\bar{T}|_{I_p} \otimes \bar{\mathbb{F}}_p \sim \begin{pmatrix} \omega^k & *\\ 0 & 1 \end{pmatrix}$. In this case if k > 1, then we see that $k(\bar{\rho}_p) = k + 1$. For k = 1, we must eliminate the case that $\bar{T}|_{I_p}$ is très

we see that $\kappa(\rho_p) = \kappa + 1$. For $\kappa = 1$, we must eminiate the case that $T|_{I_p}$ is the ramifiée. And this case can be eliminated by some explicit computations.

Now let us bound the conductors of $\bar{\rho}_{\mathfrak{p}_{l}}$. We claim that there exist infinitely many primes $\mathfrak{p}_{i} \in \operatorname{Spec}(E)$ such that the set $\{N(\bar{\rho}_{\mathfrak{p}_{l}})\}$ is bounded. First note that for any $l \notin S$ and $l \neq p$, then $\rho_{\mathfrak{p}}$ is unramified at l. Therefore the conductor $N(\bar{\rho}_{\mathfrak{p}})$ only consists those primes in S. For any $l \in S$, let n_{l} be the integer defined in (3.1). Let F be the splitting field of $\bar{\rho}_{\mathfrak{p}}$ and G_{0} the inertia subgroup at l inside $\operatorname{Gal}(F/\mathbb{Q})$ and G_{1} the l-Sylow subgroup (i.e., teh wild inertia). Assume that the residue field $[k_{\mathfrak{p}}:\mathbb{F}_{p}] = g$. Note that $g \leq [E:\mathbb{Q}]$. Since that $G_{0} \hookrightarrow \operatorname{GL}_{2}(k_{\mathfrak{p}})$. Thus we have $l^{m_{l}} := \#(G_{1})|(p^{2g}-1)(p^{2g}-p^{g})$. Thus $(p^{2g}-1)(p^{g}-1) = 0 \mod l^{m_{l}}$. Select an integer a_{l} sufficient large (depending on l and g) such that there exists a $b_{l} \in (\mathbb{Z}/l^{a_{l}}\mathbb{Z})^{*}$ satisfying $b_{l}^{2g} \neq 1 \mod l^{a_{l}}$. Therefore for any primes p such that $p \equiv b_l \mod l^{a_l}, l^{a_l} \nmid (p^{2g} - 1)(p^{2g} - p^g)$. Thus for any primes \mathfrak{p} above $p, m_l < a_l$. Now by [Ser] §4.9 Proposition 9, so $n_l \leq 2(a_l + \frac{1}{l-1})$. Now by Chinese reminder theorem, we can select infinitely many primes p such that $p = b_l \mod l^{a_l}$. Thus there exists infinity many primes \mathfrak{p}_i over those p such that $\{N(\bar{\rho}_{\mathfrak{p}_i})\}$ is bounded.

Lemma 3.2. Let $\mathcal{R} = (\rho_{\mathfrak{p}})$ be a regular rank 2 weakly compatible system with weights $\{0, k\}$. Then \mathcal{R} is absolutely irreducible if and only the following condition holds:

For any $l \notin S$ and for all $i : E \to \mathbb{C}$ the root of $i(Q_l(X))$ have absolute value $l^{k/2}$.

Moreover, there exists for infinitely many prime \mathfrak{p}_i such that $\bar{\rho}_{\mathfrak{p}_i}$ is absolutely irreducible.

Proof. If \mathcal{R} is irreducible, by main theorem of [Tay06], we see that for any $l \notin S$ and for all $i: E \to \mathbb{C}$ the root of $i(Q_l(X))$ have absolute value $l^{k/2}$.

Now by the proof of the Lemma, we see that there exists a set S' of infinitely many primes \mathfrak{p}_i such that $k(\bar{\rho}_{\mathfrak{p}_i}) = k + 1$ and the set of $\{N(\bar{\rho}_{\mathfrak{p}_i})\}$ is bounded. Now we claim that there are only finitely many primes $\mathfrak{p}_i \in S'$ such that $\bar{\rho}_{\mathfrak{p}_i}$ is absolutely reducible. Now suppose that there exists a subset $S'' \in S'$ of infinitely many primes such that for any $\mathfrak{p}_i \in S'' \ \bar{\rho}_{\mathfrak{p}_i}$ is absolutely reducible. We would like to derive a contradiction.

Note that for any $p \ge k+2$, $p \notin S$ and $\mathfrak{p}|p$, then $T := \rho_{\mathfrak{p}}|_{G_p}$ is crystalline. As discussed in the beginning of this subsection, we have 2 cases of reduction, where the first case is absolutely irreducible. So if $\bar{\rho}_{\mathfrak{p}}$ is absolutely reducible, then we must have the second case. Therefore we have

(3.2)
$$\bar{\rho}_{\mathfrak{p}} \otimes \bar{\mathbb{F}}_{p} \sim \begin{pmatrix} \chi_{1} \omega^{k} & * \\ 0 & \chi_{2} \end{pmatrix}$$

where χ_1, χ_2 are characters unramified at p. It is easy to see that the conductor $N(\chi_j)|N(\bar{\rho}_p)$ for j = 1, 2. We can lift χ_j to $\hat{\chi}_j : G \to \mathbb{Z}^*$ with the same conductor. For any $\mathfrak{p}_i \in S''$, write $\hat{\chi}_j^{(i)}$ for characters attached to $\bar{\rho}_{\mathfrak{p}_i}$. Since the set of $\{N(\bar{\rho}_{\mathfrak{p}_i}), i \in S'\}$ is bounded, conductors $\hat{\chi}_j^{(i)}$ are bounded. So there are only finitely many $\hat{\chi}_j^{(i)}$. Therefore, without loss of generality, we can assume that $\hat{\chi}_j = \hat{\chi}_j^{(i)}$ for all i.

Now select a finite Galois extension F such that F contains E and all values of $\hat{\chi}_1$ and $\hat{\chi}_2$. Using the same trick in the second paragraph of the proof of Theorem 2.4, we can assume $\mathfrak{p}_i \in S''$ are all primes in \mathcal{O}_F . Now we claim that for any fixed prime $\mathfrak{q}|q$ of \mathcal{O}_F and $\mathfrak{q} \in S''$, the semi-simplification $\rho_{\mathfrak{q}}$ is $\begin{pmatrix} \epsilon_q^k \hat{\chi}_1 & 0 \\ 0 & \hat{\chi}_2 \end{pmatrix}$, where ϵ_q is the q-adic cyclotomic character. It suffices to prove that their traces coincides for almost all primes. For any $l \notin S$ and $\mathfrak{q} \nmid l$, let $a_l = \operatorname{tr}(\rho_{\mathfrak{q}}(\operatorname{Fr}_l))$. For any $\mathfrak{p}_i \nmid l$, $\mathfrak{p}_i|p$ and $\mathfrak{p}_i \in S''$, we also have $a_l = \operatorname{tr}(\rho_{\mathfrak{p}_i}(\operatorname{Fr}_l))$. But $\bar{\rho}_{\mathfrak{p}_i}$ is reducible and has shape (3.2). So we have

$$a_l = \operatorname{tr}((\hat{\chi}_1 \epsilon_p^k + \hat{\chi}_2)(\operatorname{Fr}_l)) \mod \mathfrak{p}_i.$$

Note that (ϵ_p) is compatible system and there are infinitely many \mathfrak{p}_i . We have $a_l = \operatorname{tr}((\hat{\chi}_1 \epsilon_p^k + \hat{\chi}_2)(\operatorname{Fr}_l))$ and the semi-simplification $\rho_{\mathfrak{q}}$ is just $\begin{pmatrix} \epsilon_q^k \hat{\chi}_1 & 0 \\ 0 & \hat{\chi}_2 \end{pmatrix}$. This is impossible because the roots of $Q_l(X)$ have absolute value $l^{k/2}$ for all l. So except

finitely many primes in S', $\bar{\rho}_{\mathfrak{p}}$ are absolutely irreducible.

4. TOTALLY REAL CASE

Now let us extend some results of the above to the totally real case. Let F be a totally real field with $[F : \mathbb{Q}] = g$. Assume that F is Galois. A regular ¹ rank 2 weakly compatible system of λ -adic representations \mathcal{R}_F over F is a 5-tuple $(E, S, {Q_i(X)}, \rho_{\lambda}, \{n_1, n_2\})$ where

- E is a number field over F;
- S is a finite set of primes over F;
- for each prime $\mathfrak{l} \notin S$ of F, $Q_{\mathfrak{l}}(X)$ is a monic degree 2 polynomial in E[X];
- for each prime λ of E, let p be the residue characteristic and $\mathfrak{p} := \lambda \cap \mathcal{O}_F$.

$$\rho_{\lambda}: G_F := \operatorname{Gal}(F/F) \longrightarrow GL_2(E_{\lambda})$$

is a continuous representation such that, if $\mathfrak{p} \notin S$ then $\rho_{\lambda}|_{G_{\mathfrak{p}}}$ is crystalline with the sets Hodge-Tate weights being $\{n_1, n_2\}$, and if $\mathfrak{l} \notin S$ then $\rho_{\lambda}|_{G_{\mathfrak{l}}}$ is unramified at \mathfrak{l} and the Frobenius $\operatorname{Fr}_{\mathfrak{l}}$ has the characteristic polynomial $Q_{\mathfrak{l}}(X)$.

• $n_1 < n_2$ and $\det \rho_{\mathfrak{p}}(c) = -1$ for one (and hence all) primes, where c denotes complex conjugation.

Remark 4.1. In general, one should consider the case that the sets of Hodge-Tate weights are $\{n_1, \ldots, n_g\}$ in \mathcal{R} instead of just $\{n_1, n_2\}$. But the definition of more general treatment is much more complicated. For our ad hoc concern of this note, we only consider the simpler case.

We call the compatible family \mathcal{R}_F has a *semi-descent to* \mathbb{Q} if for any prime $\lambda | p$ over \mathcal{O}_E there exists a λ -adic representation $\rho'_{\lambda} : G_{\mathbb{Q}} \to GL_2(L_{\lambda})$ and L_{λ} is a finite extension of E_{λ} such that $\rho'_{\lambda}|_{G_F} \sim \rho_{\lambda}$. Of course, if there exists a weakly compatible family $\mathcal{R}_{\mathbb{Q}} = (\rho'_{\lambda})$ over \mathbb{Q} such that $\rho'_{\lambda}|_{G_F} \sim \rho_{\lambda}$. Then we see that $\mathcal{R}_{\mathbb{Q}}$ is a quasi-descent of \mathcal{R}_F . In this case, we call that \mathcal{R}_F has a *descent to* \mathbb{Q} .

Remark 4.2. In general, the descent of \mathcal{R}_F is not unique.

Theorem 4.3. Definitions as the above, let $\mathcal{R}_F = (\rho_\lambda)$ be a regular rank 2 weakly compatible family over F. Suppose that For any $\mathfrak{l} \notin S$ and for all $i : E \to \mathbb{C}$ the root of $i(Q_{\mathfrak{l}}(X))$ have absolute value $l^{\frac{n_2-n_1}{2}}$. Then \mathcal{R}_F has a semi-descent to \mathbb{Q} if and only if \mathcal{R}_F has a descent $\mathcal{R}_{\mathbb{Q}}$ to \mathbb{Q} . In this case there exists a modular form fsuch that $\mathcal{R}_{\mathbb{Q}}$ comes from f.

Of course if we know that \mathcal{R}_F can be descent to a weakly compatible family $\mathcal{R}_{\mathbb{Q}}$ over \mathbb{Q} . Then the last statement is just the consequence of Theorem 2.4. But the proof of the Theorem actually circle around: we first prove that \mathcal{R}_F comes from a modular form f over \mathbb{Q} . Then construct the descent $\mathcal{R}_{\mathbb{Q}}$ via f. Without loss of generality, we assume that $n_1 = 0$ and $n_2 = k$ from now on. To carry out the first step, we use the similar strategy of the proof of Theorem 2.4. So the following Lemma is crucial.

Lemma 4.4. There exists a set $S' \subset \operatorname{Spec}(\mathcal{O}_E)$ of infinitely many primes such that (1) $k(\bar{\rho}'_{\lambda}) = k + 1$ for any $\lambda \in S'$.

¹need a better name here

- (2) $\{N(\bar{\rho}_{\lambda}')|\lambda \in S\}$ is bounded.
- (3) $\bar{\rho}_{\lambda}$ is absolutely irreducible for any $\lambda \in S'$.

Proof. To prove the lemma, we first construct a set \tilde{S} of infinitely many primes λ such that \tilde{S} satisfies the first two requirements. For any prime $\lambda | p$ in \mathcal{O}_E , write $\mathfrak{p} = \lambda \cap F$. We claim that if $p \geq k+2$ and $\mathfrak{p} \notin S \cup \{p, p | \Delta_F\}$ where Δ_F is the discriminant of F, then $k(\bar{\rho}'_{\lambda}) = k+1$. To see this, for any such λ , consider $\rho'_{\lambda}|_{G_{\mathbb{Q}_p}}$. Note that $F_{\mathfrak{p}}$ is unramified extension over \mathbb{Q}_p , and $\rho_{\lambda}|_{G_{F_p}}$ is crystalline with Hodge-Tate weights $\{0, k\}$, so is $\rho'_{\lambda}|_{G_{\mathbb{Q}_p}}$. So the discussion of weights in the beginning of §3.3 applies, we get $k(\bar{\rho}'_{\lambda}) = k+1$.

Let us bound the conductor of $\bar{\rho}'_{\lambda}$. We only need show there exist infinitely many primes λ_i such that n_l defined in (3.1) are bounded for those rational primes l such that there is a prime l l and $l \in S$. Let L' be the splitting field of $\bar{\rho}'_{\lambda}$ and G'_0 the inertia subgroup at l inside $\operatorname{Gal}(L'/\mathbb{Q})$ and G'_1 the l-Sylow subgroup (i.e., the wild inertia subgroup). Write $l^{m'_l} = \#(G'_1)$. By [Ser] §4.9 Proposition 9, it suffices to bound m'_l for certain λ_i . Now consider $\bar{\rho}_{\lambda}$, Let L be the splitting field of $\bar{\rho}_{\lambda}$ and select $\mathfrak{l} \in \operatorname{Spec}(\mathcal{O}_F)$ is a prime over l. We also define G_0, G_1 , m_i (respect to \mathfrak{l}) respectively. We claim that $m'_l \leq \log_l(g) + m_l$ and hence it suffices to bound m_l . To see the claim, note that $\bar{\rho}_{\lambda} \sim \bar{\rho}'_{\lambda}|_{G_F}$. Then L' = LF and $[L':L] \leq [F:\mathbb{Q}] = g$. Consequently $[G'_0:G_0] \leq g$ and $[G'_1:G_1] \leq g$. Hence $m'_l \leq m_l + \log_l(g)$. Now we can bound m_l just like $F = \mathbb{Q}$ case: Assume that the residue field $[k_{\lambda} : \mathbb{F}_p] = h$. Note that $h \leq [E : \mathbb{Q}]$. Since that $G_0 \hookrightarrow \mathrm{GL}_2(k_{\lambda})$. Thus we have $l^{m_l} = \#(G_1)|(p^{2h}-1)(p^{2h}-p^h)$. Thus $(p^{2h}-1)(p^h-1) = 0 \mod l^{m_l}$. Select an integer a_l sufficient large (depending on l and h) such that there exists a $b_l \in (\mathbb{Z}/l^{a_l}\mathbb{Z})^*$ satisfying $b_l^{2h} \neq 1 \mod l^{a_l}$. Therefore for any primes p such that $p \equiv b_l \mod l^{a_l}, l^{a_l} \nmid (p^{2h} - 1)(p^{2h} - p^h)$. Thus for any primes λ above $p, m_l < a_l$. Now by Chinese remainder theorem, there exists infinitely many primes λ_i over p_i such that $p_i \equiv b_i \mod l$. Hence $\{N(\bar{\rho}'_{\lambda_i})\}$ are bounded.

Now let us treat the last claim. By the proof above, we see that there exists a set S' of infinitely many primes λ_i such that $k(\bar{\rho}'_{\lambda_i}) = k+1$ and the set of $\{N(\bar{\rho}'_{\lambda_i})\}$ is bounded. Now we claim that there are only finitely many primes $\lambda_i \in S'$ such that $\bar{\rho}_{\lambda_i}$ (*Caution:* not only $\bar{\rho}'_{\lambda}$) is absolutely reducible. Now suppose that there exists a subset $S'' \in S'$ of infinitely many primes such that for any $\lambda_i \in S'' \bar{\rho}_{\lambda_i}$ is absolutely reducible. We would like to derive a contradiction.

Note that for any rational prime $p \geq k+2$, $\mathfrak{p} \notin S$ and $\lambda | p$ (recall that $\mathfrak{p} = \lambda \cap \mathcal{O}_F$), then $\rho_{\lambda}|_{G_{F_{\mathfrak{p}}}}$ is crystalline. If $p \nmid \Delta_F$ then we see that $\rho'_{\lambda}|_{G_{\mathbb{Q}_p}}$ is crystalline. Note we have two types of reductions for $\rho'_{\lambda}|_{G_{\mathbb{Q}_p}}$ as discussed in the beginning of §3.3. Either $\bar{\rho}'_{\lambda}|_{I_p} \otimes \bar{\mathbb{F}}_p \simeq \begin{pmatrix} \omega_2^k & 0\\ 0 & \omega_2^{pk} \end{pmatrix}$ or $\bar{\rho}'_{\lambda}|_{I_p} \otimes \bar{\mathbb{F}}_p \sim \begin{pmatrix} \omega^k & *\\ 0 & 1 \end{pmatrix}$. If ρ'_{λ} has the first reduction type. Note that $F_{\mathfrak{p}}$ is unramified over \mathbb{Q}_p . Thus $\bar{\rho}'_{\lambda}|_{I_p} \sim \bar{\rho}_{\lambda}|_{I_p}$ and hence $\bar{\rho}_{\lambda}$ must be absolutely irreducible. So if λ is in $S'', \bar{\rho}'_{\lambda}|_{I_p}$ must have the second reduction type. Hence we have $\bar{\rho}'_{\lambda} \otimes \bar{\mathbb{F}}_p \sim \begin{pmatrix} \chi_1 \omega^k & *\\ 0 & \chi_2 \end{pmatrix}$ where χ_1, χ_2 are characters unramified at all primes over p. Restricted to G_F , we have

(4.1)
$$\bar{\rho}_{\lambda} \otimes \bar{\mathbb{F}}_{p} \sim \begin{pmatrix} \chi_{1} \omega^{k} & * \\ 0 & \chi_{2} \end{pmatrix}$$

where χ_1, χ_2 are characters unramified at all primes over p. It is easy to see that the conductor $N(\chi_j)|N(\bar{\rho}_{\lambda})$ for j = 1, 2. We can lift χ_j to $\hat{\chi}_j: G_F \to \mathbb{Z}^*$ with the same conductor. For any $\lambda_i \in S''$, write $\hat{\chi}_j^{(i)}$ for characters attached to $\bar{\rho}_{\lambda_i}$. Since the set of $\{N(\bar{\rho}_{\lambda_i}), i \in S'\}$ is bounded, conductors $\hat{\chi}_j^{(i)}$ are bounded. So there are only finitely many $\hat{\chi}_j^{(i)}$. Therefore, without loss of generality, we can assume that $\hat{\chi}_j = \hat{\chi}_j^{(i)}$ for all *i*.

Now select a finite Galois extension L such that L contains E and all values of $\hat{\chi}_1$ and $\hat{\chi}_2$. Using the same trick in the second paragraph of the proof of Theorem 2.4, we can assume $\lambda_i \in S''$ are all primes in \mathcal{O}_L . Now we claim that for any fixed prime $\mathfrak{q}|q$ of \mathcal{O}_L and $\mathfrak{q} \in S''$, the semi-simplification $\rho_{\mathfrak{q}}$ is $\begin{pmatrix} \epsilon_q^k \hat{\chi}_1 & 0\\ 0 & \hat{\chi}_2 \end{pmatrix}$, where ϵ_q is the qadic cyclotomic character. It suffices to prove that their traces coincides for almost all primes. For any $\mathfrak{l}|l \notin S$ (l is a rational prime) and $\mathfrak{q} \nmid l$, let $a_{\mathfrak{l}} = \operatorname{tr}(\rho_{\mathfrak{q}}(\operatorname{Fr}_{\mathfrak{l}}))$. For any $\lambda_i \nmid l$, $\lambda_i | p$ and $\lambda_i \in S''$, we also have $a_{\mathfrak{l}} = \operatorname{tr}(\rho_{\lambda_i}(\operatorname{Fr}_{\mathfrak{l}}))$. But $\bar{\rho}_{\lambda_i}$ is reducible and has shape (4.1). So we have

$$a_{\mathfrak{l}} = \operatorname{tr}((\hat{\chi}_1 \epsilon_p^k + \hat{\chi}_2)(\operatorname{Fr}_{\mathfrak{l}})) \mod \lambda_i.$$

Note that (ϵ_p) is compatible system and there are infinitely many λ_i . We have $a_{\mathfrak{l}} = \operatorname{tr}((\hat{\chi}_1 \epsilon_p^k + \hat{\chi}_2)(\operatorname{Fr}_{\mathfrak{l}}))$ and the semi-simplification $\rho_{\mathfrak{q}}$ is just $\begin{pmatrix} \epsilon_q^k \hat{\chi}_1 & 0 \\ 0 & \hat{\chi}_2 \end{pmatrix}$. This is impossible because the roots of $Q_{\mathfrak{l}}(X)$ have absolute value $l^{k/2}$ for all l. So except finitely many primes in S', $\bar{\rho}_{\lambda_i}$ are absolutely irreducible.

Proof of Theorem 4.3. By Lemma 4.4, we see that $\bar{\rho}'_{\lambda_i}$ is absolutely irreducible for all $\lambda_i \in S'$. Hence by Serre's conjecture (Theorem 3.1), there exists eigenform $f'_i \in S_{k+1}(\Gamma_1(N(\bar{\rho}'_{\lambda_i})), \mathbb{C})$ such that $\bar{\rho}_{f'_i,\alpha_i} \sim \bar{\rho}'_{\lambda_i}$, where α_i is a prime of E_{f_i} over p. Let f_i be the base change f'_i to F. We have $\bar{\rho}_{f_i,\alpha_i} \sim \bar{\rho}_{\lambda_i}$. Since f_i has the same weight and level as those f'_i . Now we just copy the remaining proof of Theorem 2.4. And we see that there exists an $f_i = f$ such that ρ_f gives the compatible family \mathcal{R}_F . Consequently, picking and f'_i such that $f_i = f$, then f'_i gives compatible family $\mathcal{R}_{\mathbb{Q}}$ over \mathbb{Q} which is a descent of \mathcal{R}_F .

5. Descend a p-adic Galois representation

In this section, let us discuss an intrinsic condition to descend a *p*-adic Galois representation. Let F, K be number fields and F/K Galois, $g = [F : \mathbb{Q}], E/\mathbb{Q}_p$ a finite extension and $\rho : G_F := \operatorname{Gal}(\overline{\mathbb{Q}}/F) \to \operatorname{Aut}_E(V)$ a *p*-adic Galois representation. We say ρ satisfies *quasi-descent* condition if the following holds:

There exists a finite set of primes $S_{\rho} \subset \operatorname{Spec}(\mathcal{O}_K)$ such that

- (1) S_{ρ} contains all ramified primes of F/K and ρ .
- (2) For any primes \mathfrak{l} of \mathcal{O}_K such that $\mathfrak{l} \notin S_\rho \cup \{p\}$, write $\mathfrak{l} = (\wp_1 \wp_2 \dots \wp_m)^e$ in \mathcal{O}_F , then

$$\det(\lambda I - \rho(\operatorname{Fr}_{\wp_i})) = \det(\lambda I - \rho(\operatorname{Fr}_{\wp_i})) \text{ for any } i, j = 1, \dots, m.$$

Apparently, suppose that there exists a *p*-adic representation $\rho' : G_K \to \operatorname{Aut}_{E'}(V')$ such that $\rho'|_{G_F} \sim \rho$ then ρ satisfies the quasi-descent condition. In this case, we call ρ' is a *descent* of ρ . Conversely, we have the following question: **Question 5.1.** Is that true that ρ satisfies the quasi-descent condition if ρ has a descent?

Remark 5.1. In general, V and V' are not defined in the same coefficients fields, even if the descent exists. Here is an example: let p = 3, select a cyclic extension F/\mathbb{Q} with degree g such that there exists a g-th roots of unity not in \mathbb{Z}_3 , and E/\mathbb{Z}_3 a finite extension such that g-th roots of unity are all in \mathcal{O}_E . Consider the Galois character $\rho' : G_{\mathbb{Q}} \to \operatorname{Gal}(F/\mathbb{Q}) \to \mathcal{O}_E^*$ by sending the generator of $\operatorname{Gal}(F/\mathbb{Q})$ to the g-th root of unity. $\rho = \rho'|_{G_F}$ is a trivial representation. So ρ can be defined over \mathbb{Q}_3 . This example also shows that given ρ the descent may not be unique. In fact, any character of $\operatorname{Gal}(F/\mathbb{Q})$ can be a descent of ρ .

However we can classify all descents of ρ in some nice situations. Let $\sigma \in G_K$, in the sequel, we write $\rho^{\sigma} : G_F \to \operatorname{Aut}_E(V)$ such that for any $\tau \in G_F$ and $v \in V$, $\rho^{\sigma}(\tau)v = \rho(\sigma^{-1}\tau\sigma)v$. Sometime, we may just use V^{σ} to denote ρ^{σ} . Note that if ρ has a descent ρ' . Then $\rho'(\sigma) : V \to V$ induces an isomorphism $\rho \to \rho^{\sigma}$.

Proposition 5.2. Suppose that F/K is cyclic and ρ is absolutely irreducible. Assume that ρ' is a descent of ρ . Let \hat{H} be the group of all *E*-characters of Gal(F/K). Then $\{\rho' \otimes \chi | \chi \in \hat{H}\}$ exhausts all possible descents of ρ .

Proof. Let $\sigma \in G_K$ such that σ is a generator of $\operatorname{Gal}(F/K)$. Assume that $\rho'' : G_K \to \operatorname{Aut}_{E'}(V')$ be another descent of ρ . We need show that there exists a $\chi \in \hat{H}$ such that $\rho'' \sim \rho' \otimes \chi$. Without loss of generality, we can assume that all representations here are finite dimensional $\overline{\mathbb{Q}}_p$ -spaces. Note that both $\alpha' := \rho'(\sigma)$ and $\alpha'' := \rho''(\sigma)$ induce isomorphisms $\rho \to \rho^{\sigma}$. Hence $(\alpha'')(\alpha')^{-1} \in \operatorname{Aut}_{\overline{\mathbb{Q}}_p[G_F]}(\rho)$. Since ρ is absolutely irreducible, we have $\operatorname{Aut}_{\overline{\mathbb{Q}}_p[G_F]}(\rho) = \overline{\mathbb{Q}}_p$. Thus there exists a constant $\zeta \in \overline{\mathbb{Q}}_p$ such that $\alpha'' = \zeta \alpha'$. On the other hand, since $\sigma^g \in G_F$, we have $(\rho''(\sigma))^g = (\rho'(\sigma))^g$. Hence $\zeta^g = 1$ and ζ is a g-th root of unity. Let $\chi \in \hat{H}$ such that $\chi(\sigma) = \zeta$ and we see that $\rho'' \sim \rho' \otimes \chi$.

Now let us gives a partial answer to Question 5.1.

Proposition 5.3. Assume that F/K is cyclic and ρ is absolutely irreducible. Then Conjecture 5.1 is true.

Proof. Without loss of generality, we assume that $E = \overline{\mathbb{Q}}_p$. Select a $\sigma \in G_K$ such that σ is a generator of $\operatorname{Gal}(F/K)$. The quasi-descent conditions implies that there exists an isomorphism $f_{\sigma} : V^{\sigma} \to V$. Then it is easy to check that $(f_{\sigma})^g : V^{\sigma^g} \to V$ is an isomorphism. On the other hand, $f' := \rho(\sigma^g)$ induces to isomorphism $V^{\sigma^g} \to V$. So $(f')(f_{\sigma})^{-g} : V \to V$ is inside $\operatorname{Aut}_{\overline{\mathbb{Q}}_p[G_F]}(V)$, which is $\overline{\mathbb{Q}}_p$ by the absolutely irreducibility of ρ . So there exists an $a \in \overline{\mathbb{Q}}_p$ such that $(f_{\sigma})^g a^g = f'$. So after replace f_{σ} by $f_{\sigma}a$, we can assume that $f_{\sigma}^g = f' = \rho(\sigma^g)$.

Now let us construct ρ' as following: For any $\tau \in G_K$, τ can be written uniquely $\tau = \sigma^m \beta$ with $0 \le m < g$ and $\beta \in G_F$. Set $\rho'(\tau) = (f_\sigma)^m \rho(\beta)$. Now it suffices to check that $\rho'(\tau_1 \tau_2) = \rho'(\tau_1)\rho'(\tau_2)$. Now write $\tau_i = \sigma^{m_i}\beta_i$. We have

$$\rho'(\tau_1)\rho'(\tau_2) = ((f_{\sigma})^{m_1}\rho(\beta_1))((f_{\sigma})^{m_2}\rho(\beta_2)) = (f_{\sigma})^{m_1+m_2}((f_{\sigma})^{-m_2}\rho(\beta_1)(f_{\sigma})^{m_2})\rho(\beta_2)$$

One the other hand,

10

 $\tau_{1}\tau_{2} = \sigma^{m_{1}+m_{2}}\sigma^{-m_{2}}\beta_{1}\sigma^{m_{2}}\beta_{2} = \sigma^{m'}\sigma^{qg}(\sigma^{-m_{2}}\beta_{1}\sigma^{m_{2}})\beta_{2}$

where $m_1 + m_2 = m' + qg$ with $0 \le m' < g$. Hence

$$\rho'(\tau_1\tau_2) = (f_{\sigma})^{m'}\rho(\sigma^{qg})\rho(\sigma^{-m_2}\beta_1\sigma^{m_2})\rho(\beta_2)$$

Now we need to check $(f_{\sigma})^{m_1+m_2} = (f_{\sigma})^{m'}\rho(\sigma^{qg})$ and $(f_{\sigma})^{-m_2}\rho(\beta_1)(f_{\sigma})^{m_2} = \rho(\sigma^{-m_2}\beta_1\sigma^{m_2})$. But these follows the facts that $f_{\sigma}^g = \rho(\sigma^g)$ and f_{σ} is an isomorphism $V^{\sigma} \to V$.

Now let $\mathcal{R}_F = (\rho_{\lambda})$ is a regular weakly compatible system over a Galois totally real field F as defined in §4. Suppose that one representation ρ_{β} satisfies the quasidescent condition. Since (ρ_{λ}) is a compatible family, all ρ_{λ} satisfies the quasidescent. Now combining Proposition 5.3 and theorem 4.3 together, we have

Theorem 5.4. Let $\mathcal{R}_F = (\rho_{\lambda})$ be a regular weakly compatible system of λ -adic Galois representations over a totally real field F. Suppose the following holds:

- (1) F/\mathbb{Q} is cyclic.
- (2) One of ρ_{λ} satisfies the quasi-descent condition.
- (3) For any $\mathfrak{l} \notin S$ and for all $i : E \to \mathbb{C}$ the root of $i(Q_{\mathfrak{l}}(X))$ have absolute value $l^{\frac{n_2-n_1}{2}}$.
- (4) Except finitely many primes, ρ_{λ} are absolutely irreducible.

Remark 5.5. It seems that one can relax (1) to case that F is solvable and (4) seems to be removable. Furthermore, (3) also can be removed if one can extend the main results of [Tay06]to totally real field. But all these seems need some non-trivial efforts.

Corollary 5.6. Let ρ be a p-adic Galois representation of $G_{\mathbb{Q}}$. Suppose that there exists a totally real field F/\mathbb{Q} such that ρ restricted to G_F comes from a Hilbert modular form f over F and F/\mathbb{Q} is cyclic. Then ρ comes from a modular form.

Proof. f gives arise a regular compatible family \mathcal{R}_F which satisfies (3) and (4) in the above theorem. Since ρ is a descent of $\rho|_{G_F}$, ρ satisfies the quasi-descent condition. Then the corollary follows.

References

- [Tay06] Taylor, Richard, On the meromorphic continuation of degree two L-functions, Doc. Math., (2006), Extra Vol., 729–779.
- [Ser] Serre, Jean-Pierre, Sur les représentations modulaires de degré 2 de Gal $(\overline{\mathbf{Q}}/\mathbf{Q})$, Duke Math. J., **54**, (1987), 1, 179–230.