MODULARITY OF COMPATIBLE FAMILY OF p-ADIC
REPRESENTATIONS

1. INTRODUCTION

This notes proves the modularity of certain compatible family of [-adic Galois
representations, via Serre and Kisin’s arguments.

2. COMPATIBLE FAMILY OF p-ADIC REPRESENTATIONS

Following [Tay06], we define that a rank 2 weakly compatible system of p-adic
representations R over Q is a 5-tuple (E, S, {Q;(X)}, pp, {n1,n2}) where
e F is a number field over Q;
S is a finite set of primes over Q;
for each prime I ¢ S, Q;(X) is a monic degree 2 polynomial in E[X];
for each prime p of F, let p be the residue characteristic.

pp : G = Gal(Q/Q) — GL2(Ey)

is a continuous representation such that, if p ¢ S then py|g, is crystalline,
and if | € S and [ # p then p, is unramified at { and Fr; has characteristic
polynomial Q;(X);

e {niny} are integers such that for all primes p of E (lying above a prime p)
the representation py|g, has Hodge-Tate weights n; and ns.

Lemma 2.1. Either all the p, is absolutely irreducible or all are absolutely re-
ducible.

Proof. Now suppose that p, is absolutely reducible and we want to show that for
any other A\ € Spec(E), py is also absolutely reducible. Note that there exists a
finite extension K over E, such that p, is reducible. Then there is a vector e; in
the underline space V' = V ®p, K such that G is stable over e;. Let x be the
character of G acts on e1, x4 the character G acts on V//K - e1. Since x} is p-adic
Hodge-Tate (i.e. potentially-semi-stable) character. Using Fontaine’s classification,

we can prove that x}|g =~ €,°, where H C I, is an open subgroup. Since pp|¢, has
Hodge-Tate weights ny, ns. So we have no choice but n; = n} with i = 1, 2. Now
Xi = Xi€, " is a character of G such that x; has ramification at primes in SUp. Let
L be the spitting field of x;. We claim that L must be a finite abelian extension
of Q. Let L’ C L be a finite abelian subfield. It suffices that we can bound the
conductor of L’. There are two cases: Case I, let [l € S and [ # p. Set I}’ the wild
ramification group (i.e., the {-Sylow subgroup inside the ramification group I; 1-).
Then i : I}, — Of, . We claim that I}",, — OF,_/1+p. Suppose that i(z) € 1+p.
Note that 1 4 p is profinite p-group, but i(z) has order I-power, thus i(z) = 1 and
I, — O}ﬁ:p/l + p. Thus the order I}, is bounded. By [Ser] §4.9 Proposition 9,
the conductor at [ is bounded; Now considering the case II, conductor at p. The
ramification index at p is [I,, : H|. Therefore we also bounded the conductor at p.
In conclusion, we can bounded the conductor of L’ and then the splitting field of
1



2 MODULARITY OF COMPATIBLE FAMILY OF P-ADIC REPRESENTATIONS

X is finite. Therefore the images of x; are finite. Then there exists finite extension
E'/FE such that images of x; are inside O%,.

Now for any pq for q # p and q over rational prime g. Consider the g-adic
representation py = €' X1 +€;2 X2 defined over Ey,, where prime q' € Spec(E") over
gq. Since €, is compatible family of 1-dimensional p-adic Galois representation, the
characteristic polynomial of Fr; of pél is the same as the that of p, for almost all
primes [. Thus the characteristic polynomial of Fr; of pg is the same as that of p,
for almost all primes [. Thus by Chebaratev density theorem, the traces of p; and

pq are the same. Then pq is reducible.
O

We call R regular if n; < ny and detp,(c) = —1 for one (and hence all) primes,
where ¢ denotes complex conjugation. Set € = (¢,) the compatible system of p-adic
cyclotomic characters. For any i € Z, denote R(i) the system (pyel).

Lemma 2.2. R(—n1) is weakly compatible system with Hodge-Tate weights 0 and
Ng —MNy.

Proof. Tt suffices to show that for any p ¢ S and | € S and | # p. The charac-
teristic polynomial f;(X) of Fr; is independent of choice of p. Note that fj(X) =
det(IX — ppe, ™ (Fr;)) = det(IX — 17" py ((Fr);)) = 172 Qu(I"™ X). O

Now we state the classical theorem on compatible system constructed from mod-
ular forms. For any prime p, we fix an embedding £ — Q — Q,,. Let k > 2, N > 1
and Si(I'1(N),C) the space of cuspidal modular form with weight k& and level N.

o0
Suppose that f = > a,q¢" is an eigenform normalized such that a; = 1.

i=1
Theorem 2.3. Notations as above, then Ey = Q(an)n>1 C C is a number field.
Moreover, for any Mp of Ey, there exists a continuous representation

pf’)\ G — GLQ(Ef’)\)

such that

(1) pgx is odd and absolutely irreducible.

(2) For any l{ Np, psp is unramified over | and tr(pyg x(Fr;) = a;.

(3) For any A|p, psalg, is potential semi-stable with Hodge-Tate weights in
{0,k —1}. If X\Y N, the py\|a, is crystalline.

Let p; : G — GLa(E;), i = 1, 2 be a two representations with F; finite extensions
of Q, (resp. F, := Z/pZ). We write p; ~ po if there exist an finite extension E/Q,
(resp. E/F,) such that E; C E for alli =1, 2 and p1 ®p, £ ~ p2 @, E.

Theorem 2.4. Let R = (p,) be an irreducible reqular rank 2 weakly compatible
system with weights {0,k}. Then there exists an eigenform f with weight k + 1
such that for any p, there exists a prime A\ of Ef satisfying p, ~ pf.a.

Note that all p, in Theorem 2.4 and p¢ » here are irreducible. To show they
are isomorphic, using Chebotarev’s density theorem, it suffices to show that there
exists py, f and X such that tr(p, (Fr;)) = tr(ps a(Fr;)) for almost all [.
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Remark 2.5. The assumption on absolutely irreducibility here is equivalent to the
following condition (pure weight k):

For any [ ¢ S and for all i : E — C the root of i(Q;(X)) have absolute value
1k/2.

See Lemma 3.2 blew for the proof.

Corollary 2.6. Ifd =1 then the Scholl representation is modular.

3. THE PROOF OF THEOREM 2.4

In the proof, we mainly use Serre’s conjecture. So let us first review Serre’s con-
jecture. In the sequel, for any prime [, we use G; C G to denote the decomposition
group over prime [ and I; C G; the inertia subgroup. F/F, is always a finite field
with characteristic p.

3.1. The strong Serre’s conjecture. In this subsection, we recall the precise
form of Serre’s conjecture which predicts not only that an odd representation p :
G — GLy(F) arises from a modular form, but also the minimal weight and level of
the form.

Let

9(*"/p)
p’:f\l/ﬁ
be the fundamental character of level i. We will write w for wy, which is mod p

reduction of p-adic cyclotomic character e,. B
Suppose we are given a representation p, : G, — GLo(IF,). Then pp|;, is either

of the form (u()) T) ®w’ with i,j € Z or (u())

wi:Ip—>]F;i; g— mod p

A 7

0 .
pi> ®w’ for some integers i,j € Z
w
and p+111i.
When pp |7, is semi-simple, or equivalently tamely ramified, we can always choose
Jj€[0,p—2]and i+j € [1,p—1]; when p,|z, is wildly ramified 4, j € [0, p—2] can be
J
0 1)@
with % trés ramified. In this exceptional case, we set k(p,) = (p+ 1)(j + 1).
For a representation p: G — GLy(IF), we set k(p) = k(p|g,) and set

N(p) = [ ] cond(pl,);
l#p

uniquely determined. We set k(p,) = 14i+ (p+1)j, unless p,|;, ~ (w ¥

where cond(p|g,) is the Artin conductor of p|g,. Let V' be the underlying space of
p, then cond(pg,) = I™ where

oo

(3.1) m=3 (GOil:Gi)dim(V/VGi )

i=0
where G; C Gy = I; are the ramification subgroups.
Theorem 3.1 (Serre’s conjecture). Let p : G — GLa(F) be odd and absolutely

irreducible. Then there exists an eigenform f with weight k(p) and level N(p) such
that p ~ Pr-
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3.2. The proof of Theorem 2.4. Now we use Theorem 3.1 to prove the Theorem
2.4. We claim that there exist infinite many primes p; € Spec(FE) such that

(1) k(pp,) =k+1 for all ¢

(2) The set {N(pp,)} is bounded.

(3) For all i, py, is absolutely irreducible.

Let us first accept claim and prove Theorem 2.4. Suppose the set {p;} does exist.
By Theorem 3.1, for any ¢, there exists an eigenform f; € Sk41(T1(N(pp,)), C) such
that py, ~ py,.a,. Select an N such that N(pp,)|N for all i. We see that f; are
eigenforms in Si4+1(I'1(N),C), which is a finite dimensional C-space. So there are
only finitely many normalized eigenforms. Therefore, there exists an eigenform f
such that f; = f for infinitely many i. Without loss of generality, we assume that
fi = f for all .

Now for any fix prime [ ¢ S, let a; be the coefficient of X in @;(X). Since
{pp} is compatible, for any p; # [, a; = tr(pp,(Fr;)). On the other hand, set
b; the l-th Fourier coefficient of f. Then we have b; = tr(py ., (Fr;)). Choose a
Galois extension F'/Q which contains E and Ey. Without loss of generality, we can
assume our embedding ¢ : F — F — @p in a way such that p; = OgNm with m the
maximal ideal of Og . Then A; is determined an embedding o; : Ef — F — Q-
But there are only finitely many embeddings E; — F' here, so there must be an
embedding ¢ such that o; = ¢ for infinitely many ¢. Without loss of generality, we
can assume that o = o; for all ¢, and we embed E; — @p and A\; = Ey Nm. Set
q; = FNm.

Now since pp, ~ py,x,- Thus a; = by mod g; for all . Since there are infinitely
many i, we see that a; = b; for all [ ¢ S. This prove Theorem 2.4.

3.3. The proof of the claim. The first two claims are not hard, while the last
one need more work.

For any p ¢ S and p > k + 1, we claim that for any p|p, k(py) = k + 1. In fact,
since pp|q, is crystalline and Hodge-Tate weights are 0, k with & < p —2. The one
can use Fontaine-Messing theory on strongly divisible lattices in filtered @-modules
to compute the reduction of such crystalline representations. Let T be a lattice in
pplc, and denote T' the reduction of T. There are two cases:

k

Case I: T is irreducible, then T'|;, ® F), ~ (“62 wgk). So k(pp) =k + 1.

2
Wk ox
0 1
we see that k(pp) = k + 1. For k = 1, we must eliminate the case that T, is tres
ramifiée. And this case can be eliminated by some explicit computations.

Now let us bound the conductors of p,,. We claim that there exist infinitely
many primes p; € Spec(E) such that the set {N(pp,)} is bounded. First note that
for any [ ¢ S and [ # p, then p, is unramified at . Therefore the conductor N(p,)
only consists those primes in S. For any [ € S, let n; be the integer defined in
(3.1). Let F be the splitting field of p, and Gy the inertia subgroup at [ inside
Gal(F/Q) and G the I-Sylow subgroup (i.e., teh wild inertia). Assume that the
residue field [k, : F,] = ¢g. Note that g < [E : Q]. Since that Gy — GLa(kp). Thus
we have "™ = #(G1)|(p*? — 1)(p?Y — p?). Thus (p*9 — 1)(p? — 1) = 0 mod ™.
Select an integer a; sufficient large (depending on [ and g) such that there exists
a by € (Z/1"Z)* satistying bfg # 1 mod [?. Therefore for any primes p such that

Case II: T is reducible, then T'|;, ® F), ~ ( ) In this case if k > 1, then
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p=b, mod %, [%{(p* —1)(p?9 — p9). Thus for any primes p above p, m; < a;.
Now by [Ser] §4.9 Proposition 9, so n; < 2(a; + %) Now by Chinese reminder
theorem, we can select infinitely many primes p such that p = b; mod [*. Thus
there exists infinity many primes p; over those p such that {N(p,,)} is bounded.

Lemma 3.2. Let R = (py) be a reqular rank 2 weakly compatible system with
weights {0,k}. Then R is absolutely irreducible if and only the following condition
holds:

For anyl ¢ S and for all i : E — C the root of i(Qi(X)) have absolute value
1F/2,

Moreover, there exists for infinitely many prime p; such that py, is absolutely
irreducible.

Proof. If R is irreducible, by main theorem of [Tay06], we see that for any [ & S
and for all i : E — C the root of i(Q;(X)) have absolute value I*/2.

Now by the proof of the Lemma, we see that there exists a set S’ of infinitely
many primes p; such that k(py,) = k + 1 and the set of {N(py,)} is bounded. Now
we claim that there are only finitely many primes p; € S’ such that gy, is absolutely
reducible. Now suppose that there exists a subset S” € S’ of infinitely many primes
such that for any p; € S” py, is absolutely reducible. We would like to derive a
contradiction.

Note that for any p > k +2, p ¢ S and p[p, then T := py|g, is crystalline. As
discussed in the beginning of this subsection, we have 2 cases of reduction, where
the first case is absolutely irreducible. So if p, is absolutely reducible, then we must
have the second case. Therefore we have

— . Xlwk *
(32) maf,~ (N )
where x1, x2 are characters unramified at p. It is easy to see that the conductor
N(x;)|N(pp) for j =1, 2. We can lift x; to X; : G — Z* with the same conduc-
tor. For any p; € S”, write )Zy) for characters attached to py,. Since the set of

{N(pp,), i € S"} is bounded, conductors )Zgi) are bounded. So there are only finitely

many )Zy) Therefore, without loss of generality, we can assume that x; = Xg,i) for

all 4.

Now select a finite Galois extension F' such that F' contains FE and all values of
x1 and xo. Using the same trick in the second paragraph of the proof of Theorem
2.4, we can assume p; € S” are all primes in Op. Now we clgim that for any fixed
Gqéa ;2>, where €, is
the g-adic cyclotomic character. It suffices to prove that their traces coincides for
almost all primes. For any [ ¢ S and q 11, let a; = tr(pq(Fr;)). For any p; {1, ps|p
and p; € S, we also have a; = tr(pp, (Fr;)). But p,, is reducible and has shape
(3.2). So we have

prime q|g of O and q € S”, the semi-simplification pq is

a; = tr((f(le’; + x2)(Fr;)) mod p;.
Note that (e,) is compatible system and there are infinitely many p,. We have

k: A~
a; = tr((X1€h + X2)(Fr;)) and the semi-simplification pq is just <Eq8ﬁ ;) This
2
is impossible because the roots of Q;(X) have absolute value 1%/ for all I. So except
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finitely many primes in S’, p, are absolutely irreducible. O

4. TOTALLY REAL CASE

Now let us extend some results of the above to the totally real case. Let F' be
a totally real field with [F : Q] = g. Assume that F is Galois. A regular ' rank 2
weakly compatible system of A-adic representations Ry over F is a 5-tuple (E, S,
{Q[(X)}v PXs {nlanQ}) where
FE is a number field over F;
S is a finite set of primes over F’;
for each prime [ € S of F, Q((X) is a monic degree 2 polynomial in F[X];
for each prime A of F, let p be the residue characteristic and p := AN Op.

px: Gp = Gal(F/F) — GL2(E))

is a continuous representation such that, if p ¢ S then py|g, is crystalline
with the sets Hodge-Tate weights being {n1,n2}, and if [ ¢ S then pylg,
is unramified at [ and the Frobenius Fr; has the characteristic polynomial
Qu(X).

e ny < ny and detp, (c) = —1 for one (and hence all) primes, where ¢ denotes
complex conjugation.

Remark 4.1. In general, one should consider the case that the sets of Hodge-Tate
weights are {ni,...,ny} in R instead of just {ni,n2}. But the definition of more
general treatment is much more complicated. For our ad hoc concern of this note,
we only consider the simpler case.

We call the compatible family R has a semi-descent to Q if for any prime \|p
over Of there exists a A-adic representation p’A : Gg — GLa(Ly) and Ly is a
finite extension of Ey such that p)|c, ~ px. Of course, if there exists a weakly
compatible family Rg = (p) over Q such that p |G, ~ pr. Then we see that Rq
is a quasi-descent of Rr. In this case, we call that R has a descent to Q.

Remark 4.2. In general, the descent of Ry is not unique.

Theorem 4.3. Definitions as the above, let R = (px) be a regular rank 2 weakly
compatible family over F. Suppose that For any | € S and for alli: E — C the
root of i(Qi(X)) have absolute value 1= . Then Ry has a semi-descent to Q if
and only if Rr has a descent Rqg to Q. In this case there exists a modular form f
such that Rg comes from f.

Of course if we know that R can be descent to a weakly compatible family Rq
over Q. Then the last statement is just the consequence of Theorem 2.4. But the
proof of the Theorem actually circle around: we first prove that Rp comes from
a modular form f over Q. Then construct the descent Rg via f. Without loss
of generality, we assume that n; = 0 and ny = k from now on. To carry out the
first step, we use the similar strategy of the proof of Theorem 2.4. So the following
Lemma is crucial.

Lemma 4.4. There exists a set S' C Spec(Og) of infinitely many primes such that
(1) k(py) =k+1 forany X € S’.

Lneed a better name here
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(2) {N(p))|A € S} is bounded.
(3) pa is absolutely irreducible for any \ € S’.

Proof. To prove the lemma, we first construct a set S of infinitely many primes A
such that S satisfies the first two requirements. For any prime Alp in O, write
p=ANF. We claim that if p > k+ 2 and p € S U {p,p|Ar} where Ap is the
discriminant of F', then k(p)) = k+ 1. To see this, for any such A, consider p’>\|GQp.
Note that F}, is unramified extension over Q,, and py|q Py is crystalline with Hodge-
Tate weights {0, k}, so is p) Gy, - So the discussion of weights in the beginning of
§3.3 applies, we get k(py) =k + L.

Let us bound the conductor of p). We only need show there exist infinitely
many primes A; such that n; defined in (3.1) are bounded for those rational primes
! such that there is a prime |l and [ € S. Let L’ be the splitting field of g
and G{, the inertia subgroup at [ inside Gal(L'/Q) and G} the I-Sylow subgroup
(i.e., the wild inertia subgroup). Write ™ = #(G,). By [Ser] §4.9 Proposition
9, it suffices to bound m; for certain \;. Now consider py, Let L be the splitting
field of py and select [ € Spec(Op) is a prime over I. We also define Gy, Gy,
m; (respect to [) respectively. We claim that m; < log;(g) + m; and hence it
suffices to bound m;. To see the claim, note that px ~ py|¢.. Then L' = LF and
[L' : L] < [F : Q] = g. Consequently [G : Go] < g and [G] : G1] < g. Hence
m; < my + log;(g). Now we can bound m; just like F' = Q case: Assume that the
residue field [ky : F,] = h. Note that h < [E : Q]. Since that Gy < GLy(ky). Thus
we have I = #(G1)|(p*" — 1)(p** — p"). Thus (p** — 1)(p" — 1) = 0 mod I"™.
Select an integer a; sufficient large (depending on ! and h) such that there exists
a b € (Z/1“7Z)* satisfying b2 # 1 mod [%. Therefore for any primes p such that
p=0b mod (%, [%{(p*" —1)(p?* — p"). Thus for any primes A above p, m; < a;.
Now by Chinese remainder theorem, there exists infinitely many primes \; over p;
such that p; = b; mod . Hence {N(p) )} are bounded.

Now let us treat the last claim. By the proof above, we see that there exists a
set S” of infinitely many primes ); such that k(p} ) = k+1 and the set of {N(p},)}
is bounded. Now we claim that there are only finitely many primes \; € S’ such
that py, (Caution: not only p) ) is absolutely reducible. Now suppose that there
exists a subset S” € S’ of infinitely many primes such that for any \; € S” py, is
absolutely reducible. We would like to derive a contradiction.

Note that for any rational prime p > k42, p € S and A|p (recall that p = A\NOF),
then py|G,, is crystalline. If p{ Ap then we see that p)\|c,, is crystalline. Note we

have two types of reductions for p)\ |, as discussed in the beginning of §3.3. Either

wk 0 *

_ _ k
iz, ® F, ~ < 0 pk> or pi|r, ® F, ~ (u:) 1). If p) has the first reduction
Wy

type. Note that F}, is unramified over Q,. Thus ﬁ’/\| 1, ~p Al 1, and hence p) must be
absolutely irreducible. So if A is in S”, p\ |7, must have the second reduction type.

_ k
Hence we have p) @ F), ~ <X160 X where X1, x2 are characters unramified at
2
all primes over p. Restricted to G, we have
k
_ = X1wW *
4.1 QF, ~
(@) ot~ ()

where X1, x2 are characters unramified at all primes over p. It is easy to see that
the conductor N(x;)|N(px) for j =1, 2. We can lift x; to x; : Gr — Z* with the
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same conductor. For any \; € S”, write X;i) for characters attached to py,. Since

the set of {N(py,), € S’} is bounded, conductors )A(;Z) are bounded. So there are
only finitely many Xy). Therefore, without loss of generality, we can assume that
X5 = %) for all 4.

Now select a finite Galois extension L such that L contains F and all values of x4
and Yo. Using the same trick in the second paragraph of the proof of Theorem 2.4,
we can assume \; € S” are all primes in Op. Now we claim that for any fixed prime
6{;)21 0

0 X
adic cyclotomic character. It suffices to prove that their traces coincides for almost
all primes. For any [|l ¢ S ([ is a rational prime) and q {1, let a; = tr(pq(Fr()). For
any A; 11, Ailp and A\; € S”, we also have a; = tr(py,(Fr()). But py, is reducible
and has shape (4.1). So we have

qlg of Op, and q € S”, the semi-simplification pq is ( >, where ¢, is the ¢-

ay = tr((f(le]; + )A(Q)(FI"[)) mod )\z
Note that (e,) is compatible system and there are infinitely many A;. We have
k A
ar = tr((R1€k + R2)(Fr1)) and the semi-simplification pq is just (Eqéﬁ ; ) This
2

is impossible because the roots of Q(X) have absolute value ¥/ for all I. So except
finitely many primes in S’; gy, are absolutely irreducible. (]

Proof of Theorem 4.3. By Lemma 4.4, we see that ,6’/\i is absolutely irreducible for
all \; € S’. Hence by Serre’s conjecture (Theorem 3.1), there exists eigenform
fi € Sk+1(T'1(N(p),)), C) such that py o, ~ py,, where ; is a prime of Ey, over
p. Let f; be the base change f/ to . We have py, o, ~ pa,. Since f; has the same
weight and level as those f/. Now we just copy the remaining proof of Theorem 2.4.
And we see that there exists an f; = f such that p; gives the compatible family
Rr. Consequently, picking and f/ such that f; = f, then f/ gives compatible family
Rg over Q which is a descent of Rp. g

5. DESCEND A p-ADIC GALOIS REPRESENTATION

In this section, let us discuss an intrinsic condition to descend a p-adic Galois
representation. Let F, K be number fields and F/K Galois, g = [F : Q], E/Q,, a fi-
nite extension and p : G := Gal(Q/F) — Autg(V) a p-adic Galois representation.
We say p satisfies quasi-descent condition if the following holds:

There exists a finite set of primes S, C Spec(Ok ) such that

(1) S, contains all ramified primes of F//K and p.
(2) For any primes [ of O such that [ € S, U {p}, write [ = (p1p2...pom)° in
OpF, then

det(A — p(Fry,,)) = det(A — p(Fry,,)) for any i,5 = 1,...,m.

Apparently, suppose that there exists a p-adic representation p’ : Gx — Autg (V')
such that p'|g, ~ p then p satisfies the quasi-descent condition. In this case, we
call p is a descent of p. Conversely, we have the following question:
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Question 5.1. Is that true that p satisfies the quasi-descent condition if p has a
descent?

Remark 5.1. In general, V and V' are not defined in the same coefficients fields,
even if the descent exists. Here is an example: let p = 3, select a cyclic extension
F/Q with degree g such that there exists a g-th roots of unity not in Zs, and E/Z3
a finite extension such that g-th roots of unity are all in Og. Consider the Galois
character p’ : Gg — Gal(F/Q) — Op, by sending the generator of Gal(F/Q) to the
g-th root of unity. p = p’|g, is a trivial representation. So p can be defined over
Q3. This example also shows that given p the descent may not be unique. In fact,
any character of Gal(F'/Q) can be a descent of p.

However we can classify all descents of p in some nice situations. Let o € Gk,
in the sequel, we write p? : Gp — Autg(V) such that for any 7 € Gy and v € V,
p° (7)v = p(c~170)v. Sometime, we may just use V7 to denote p°. Note that if p
has a descent p’. Then p/'(0) : V' — V induces an isomorphism p — p°.

Proposition 5.2. Suppose that F/K is cyclic and p is absolutely irreducible. As-
sume that p’ is a descent of p. Let H be the group of all E-characters of Gal(F/K).
Then {p' ® x|x € H} exhausts all possible descents of p.

Proof. Let 0 € Gk such that o is a generator of Gal(F/K). Assume that p” :
Gk — Autg/(V') be another descent of p. We need show that there exists a
X € H such that p"” ~ p’ ® x. Without loss of generality, we can assume that all
representations here are finite dimensional Q,-spaces. Note that both o := p’(0)
and o := p (o) induce isomorphisms p — p?. Hence (a”)(a’)™! € Autg (Gr)(P)-
o P
Since p is absolutely irreducible, we have Autg [GF](p) = Q,. Thus there exists a
J— P

constant ¢ € Q, such that o’ = (a’. On the other hand, since 09 € G, we have
(p"(0))9 = (p'(¢))?. Hence ¢¢ =1 and ( is a g-th root of unity. Let x € H such
that x(o) = ¢ and we see that p"” ~ p' ® x.

(]

Now let us gives a partial answer to Question 5.1.

Proposition 5.3. Assume that F/K is cyclic and p is absolutely irreducible. Then
Conjecture 5.1 is true.

Proof. Without loss of generality, we assume that £ = @p. Select a 0 € Gk
such that o is a generator of Gal(F/K). The quasi-descent conditions implies
that there exists an isomorphism f, : V7 — V. Then it is easy to check that
(f,)9 : Vo — V is an isomorphism. On the other hand, f’ := p(c9) induces to
isomorphism V°’ — V. So (f)(f,)™9 : V — V is inside Aut@p[GF](V), which
is @p by the absolutely irreducibility of p. So there exists an a € @p such that
(f)%a% = f'. So after replace f, by fsa, we can assume that f¢ = ' = p(c9).

Now let us construct p’ as following: For any 7 € G, 7 can be written uniquely
T=0"F with0<m < gand 8 € Gp. Set p'(7) = (fo)™p(B). Now it suffices to
check that p/'(7172) = p'(71)p'(12). Now write 7, = c™i3;. We have

P (1)p'(r2) = ((fo)™ p(B))(fo)™2 p(B2)) = (fo)™ T ((£4) " p(B1)(f6)™)p(B2)-
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One the other hand,
Ty = o™ MM B g ™2 By = o™ 9 (67 ™2 B10™2) B
where my +ms = m/ + gqg with 0 < m’ < g. Hence

P (1im2) = (f2)™ p(099)p(07™2B10™2) p(32)

Now we need to check (f,)™1+m2 = ()™ p(099) and (f,)"™p(31)(f,)™ =
p(c™™2B10™2). But these follows the facts that f¢ = p(09) and f, is an iso-
morphism V7 — V. ]

Now let Rr = (py) is a regular weakly compatible system over a Galois totally
real field F' as defined in §4. Suppose that one representation pg satisfies the quasi-
descent condition. Since (py) is a compatible family, all py satisfies the quasi-
descent. Now combining Proposition 5.3 and theorem 4.3 together, we have

Theorem 5.4. Let Rrp = (py) be a regular weakly compatible system of A-adic
Galois representations over a totally real field F. Suppose the following holds:

(1) F/Q is cyclic.

(2) One of px satisfies the quasi-descent condition.

(3) For any L € S and for all i : E — C the root of i(Q((X)) have absolute

ng—mnj

value |~ 2
(4) Except finitely many primes, px are absolutely irreducible.

Remark 5.5. It seems that one can relax (1) to case that F' is solvable and (4) seems
to be removable. Furthermore, (3) also can be removed if one can extend the main
results of [Tay06]to totally real field. But all these seems need some non-trivial
efforts.

Corollary 5.6. Let p be a p-adic Galois representation of Gg. Suppose that there
exists a totally real field F/Q such that p restricted to Ggp comes from a Hilbert
modular form f over F and F/Q is cyclic. Then p comes from a modular form.

Proof. f gives arise a regular compatible family R which satisfies (3) and (4) in
the above theorem. Since p is a descent of p|g,., p satisfies the quasi-descent con-
dition. Then the corollary follows. O
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