
MODULARITY OF COMPATIBLE FAMILY OF p-ADIC
REPRESENTATIONS

1. Introduction

This notes proves the modularity of certain compatible family of l-adic Galois
representations, via Serre and Kisin’s arguments.

2. Compatible family of p-adic representations

Following [Tay06], we define that a rank 2 weakly compatible system of p-adic
representations R over Q is a 5-tuple (E, S, {Ql(X)}, ρp, {n1, n2}) where

• E is a number field over Q;
• S is a finite set of primes over Q;
• for each prime l 6∈ S, Ql(X) is a monic degree 2 polynomial in E[X];
• for each prime p of E, let p be the residue characteristic.

ρp : G := Gal(Q/Q) −→ GL2(Ep)

is a continuous representation such that, if p 6∈ S then ρp|Gp
is crystalline,

and if l 6∈ S and l 6= p then ρp is unramified at l and Frl has characteristic
polynomial Ql(X);
• {n1n2} are integers such that for all primes p of E (lying above a prime p)

the representation ρp|Gp
has Hodge-Tate weights n1 and n2.

Lemma 2.1. Either all the ρp is absolutely irreducible or all are absolutely re-
ducible.

Proof. Now suppose that ρp is absolutely reducible and we want to show that for
any other λ ∈ Spec(E), ρλ is also absolutely reducible. Note that there exists a
finite extension K over Ep such that ρp is reducible. Then there is a vector e1 in
the underline space V ′ = V ⊗Ep K such that G is stable over e1. Let χ′1 be the
character of G acts on e1, χ′2 the character G acts on V ′/K · e1. Since χ′i is p-adic
Hodge-Tate (i.e. potentially-semi-stable) character. Using Fontaine’s classification,
we can prove that χ′i|H ' ε

n′i
p , where H ⊂ Ip is an open subgroup. Since ρp|Gp

has
Hodge-Tate weights n1, n2. So we have no choice but ni = n′i with i = 1, 2. Now
χi = χ′iε

−ni
p is a character of G such that χi has ramification at primes in S∪p. Let

L be the spitting field of χ1. We claim that L must be a finite abelian extension
of Q. Let L′ ⊂ L be a finite abelian subfield. It suffices that we can bound the
conductor of L′. There are two cases: Case I, let l ∈ S and l 6= p. Set Iwl,L′ the wild
ramification group (i.e., the l-Sylow subgroup inside the ramification group Il,L′).
Then i : Iwl,L′ ↪→ O∗Ep

. We claim that Iwl,L′ ↪→ O∗Ep
/1+p. Suppose that i(x) ∈ 1+p.

Note that 1 + p is profinite p-group, but i(x) has order l-power, thus i(x) = 1 and
Iwl,L′ ↪→ O∗Ep

/1 + p. Thus the order Iwl,L′ is bounded. By [Ser] §4.9 Proposition 9,
the conductor at l is bounded; Now considering the case II, conductor at p. The
ramification index at p is [Ip : H]. Therefore we also bounded the conductor at p.
In conclusion, we can bounded the conductor of L′ and then the splitting field of
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2 MODULARITY OF COMPATIBLE FAMILY OF P -ADIC REPRESENTATIONS

χi is finite. Therefore the images of χi are finite. Then there exists finite extension
E′/E such that images of χi are inside O∗E′ .

Now for any ρq for q 6= p and q over rational prime q. Consider the q-adic
representation ρ′q = εn1

q χ1 +εn2
q χ2 defined over E′q′ , where prime q′ ∈ Spec(E′) over

q. Since εp is compatible family of 1-dimensional p-adic Galois representation, the
characteristic polynomial of Frl of ρ′q is the same as the that of ρp for almost all
primes l. Thus the characteristic polynomial of Frl of ρ′q is the same as that of ρq

for almost all primes l. Thus by Chebaratev density theorem, the traces of ρ′q and
ρq are the same. Then ρq is reducible.

�

We call R regular if n1 < n2 and detρp(c) = −1 for one (and hence all) primes,
where c denotes complex conjugation. Set ε = (εp) the compatible system of p-adic
cyclotomic characters. For any i ∈ Z, denote R(i) the system (ρpε

i
p).

Lemma 2.2. R(−n1) is weakly compatible system with Hodge-Tate weights 0 and
n2 − n1.

Proof. It suffices to show that for any p 6∈ S and l 6∈ S and l 6= p. The charac-
teristic polynomial fl(X) of Frl is independent of choice of p. Note that fl(X) =
det(IX − ρpε

−n1
p (Frl)) = det(IX − l−n1ρp((Fr)l)) = l−2n1Ql(ln1X). �

Now we state the classical theorem on compatible system constructed from mod-
ular forms. For any prime p, we fix an embedding E ↪→ Q̄ ↪→ Q̄p. Let k ≥ 2, N ≥ 1
and Sk(Γ1(N),C) the space of cuspidal modular form with weight k and level N .

Suppose that f =
∞∑
i=1

anq
n is an eigenform normalized such that a1 = 1.

Theorem 2.3. Notations as above, then Ef = Q(an)n≥1 ⊂ C is a number field.
Moreover, for any λ|p of Ef , there exists a continuous representation

ρf,λ : G −→ GL2(Ef,λ)

such that

(1) ρf,λ is odd and absolutely irreducible.
(2) For any l - Np, ρf,p is unramified over l and tr(ρf,λ(Frl) = al.
(3) For any λ|p, ρf,λ|Gp

is potential semi-stable with Hodge-Tate weights in
{0, k − 1}. If λ - N , the ρf,λ|Gp

is crystalline.

Let ρi : G→ GL2(Ei), i = 1, 2 be a two representations with Ei finite extensions
of Qp (resp. Fp := Z/pZ). We write ρ1 ∼ ρ2 if there exist an finite extension E/Qp

(resp. E/Fp) such that Ei ⊂ E for all i = 1, 2 and ρ1 ⊗E1 E ' ρ2 ⊗E2 E.

Theorem 2.4. Let R = (ρp) be an irreducible regular rank 2 weakly compatible
system with weights {0, k}. Then there exists an eigenform f with weight k + 1
such that for any ρp there exists a prime λ of Ef satisfying ρp ∼ ρf,λ.

Note that all ρp in Theorem 2.4 and ρf,λ here are irreducible. To show they
are isomorphic, using Chebotarev’s density theorem, it suffices to show that there
exists ρp, f and λ such that tr(ρp(Frl)) = tr(ρf,λ(Frl)) for almost all l.
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Remark 2.5. The assumption on absolutely irreducibility here is equivalent to the
following condition (pure weight k):

For any l 6∈ S and for all i : E → C the root of i(Ql(X)) have absolute value
lk/2.

See Lemma 3.2 blew for the proof.

Corollary 2.6. If d = 1 then the Scholl representation is modular.

3. The proof of Theorem 2.4

In the proof, we mainly use Serre’s conjecture. So let us first review Serre’s con-
jecture. In the sequel, for any prime l, we use Gl ⊂ G to denote the decomposition
group over prime l and Il ⊂ Gl the inertia subgroup. F/Fp is always a finite field
with characteristic p.

3.1. The strong Serre’s conjecture. In this subsection, we recall the precise
form of Serre’s conjecture which predicts not only that an odd representation ρ̄ :
G→ GL2(F) arises from a modular form, but also the minimal weight and level of
the form.

Let

ωi : Ip → F×pi ; g 7→
g( pi−1

√
p)

pi−1
√
p

mod p

be the fundamental character of level i. We will write ω for ω1, which is mod p
reduction of p-adic cyclotomic character εp.

Suppose we are given a representation ρ̄p : Gp → GL2(F̄p). Then ρ̄p|Ip is either

of the form
(
ωi ∗
0 1

)
⊗ωj with i, j ∈ Z or

(
ωi 0
0 ωp

i

)
⊗ωj for some integers i, j ∈ Z

and p+ 1 - i.
When ρ̄p|Ip is semi-simple, or equivalently tamely ramified, we can always choose

j ∈ [0, p−2] and i+j ∈ [1, p−1]; when ρ̄p|Ip is wildly ramified i, j ∈ [0, p−2] can be

uniquely determined. We set k(ρ̄p) = 1 + i+ (p+ 1)j, unless ρ̄p|Ip
∼
(
ω ∗
0 1

)
⊗ωj ,

with ∗ très ramified. In this exceptional case, we set k(ρ̄p) = (p+ 1)(j + 1).
For a representation ρ̄ : G→ GL2(F), we set k(ρ̄) = k(ρ̄|Gp

) and set

N(ρ̄) =
∏
l 6=p

cond(ρ̄|Gl
),

where cond(ρ̄|Gl
) is the Artin conductor of ρ̄|Gl

. Let V be the underlying space of
ρ̄, then cond(ρ̄Gl

) = lnl where

(3.1) nl =
∞∑
i=0

1
(G0 : Gi)

dim(V/V Gi)

where Gi ⊂ G0 = Il are the ramification subgroups.

Theorem 3.1 (Serre’s conjecture). Let ρ̄ : G → GL2(F) be odd and absolutely
irreducible. Then there exists an eigenform f with weight k(ρ̄) and level N(ρ̄) such
that ρ̄ ∼ ρ̄f,λ.
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3.2. The proof of Theorem 2.4. Now we use Theorem 3.1 to prove the Theorem
2.4. We claim that there exist infinite many primes pi ∈ Spec(E) such that

(1) k(ρ̄pi
) = k + 1 for all i

(2) The set {N(ρ̄pi
)} is bounded.

(3) For all i, ρ̄pi is absolutely irreducible.
Let us first accept claim and prove Theorem 2.4. Suppose the set {pi} does exist.

By Theorem 3.1, for any i, there exists an eigenform fi ∈ Sk+1(Γ1(N(ρ̄pi
)),C) such

that ρ̄pi ∼ ρ̄fi,λi . Select an N such that N(ρ̄pi)|N for all i. We see that fi are
eigenforms in Sk+1(Γ1(N),C), which is a finite dimensional C-space. So there are
only finitely many normalized eigenforms. Therefore, there exists an eigenform f
such that fi = f for infinitely many i. Without loss of generality, we assume that
fi = f for all i.

Now for any fix prime l 6∈ S, let al be the coefficient of X in Ql(X). Since
{ρp} is compatible, for any pi 6= l, al = tr(ρpi(Frl)). On the other hand, set
bl the l-th Fourier coefficient of f . Then we have bl = tr(ρf,λi(Frl)). Choose a
Galois extension F/Q which contains E and Ef . Without loss of generality, we can
assume our embedding ι : E ↪→ F ↪→ Q̄p in a way such that pi = OE∩m with m the
maximal ideal of OQ̄p

. Then λi is determined an embedding σi : Ef ↪→ F ↪→ Q̄p.
But there are only finitely many embeddings Ef ↪→ F here, so there must be an
embedding σ such that σi = σ for infinitely many i. Without loss of generality, we
can assume that σ = σi for all i, and we embed Ef → Q̄p and λi = Ef ∩ m. Set
qi = F ∩m.

Now since ρ̄pi ∼ ρ̄f,λi . Thus al = bl mod qi for all i. Since there are infinitely
many i, we see that al = bl for all l 6∈ S. This prove Theorem 2.4.

3.3. The proof of the claim. The first two claims are not hard, while the last
one need more work.

For any p 6∈ S and p > k + 1, we claim that for any p|p, k(ρ̄p) = k + 1. In fact,
since ρp|Gp

is crystalline and Hodge-Tate weights are 0, k with k ≤ p− 2. The one
can use Fontaine-Messing theory on strongly divisible lattices in filtered ϕ-modules
to compute the reduction of such crystalline representations. Let T be a lattice in
ρp|Gp and denote T̄ the reduction of T . There are two cases:

Case I: T is irreducible, then T̄ |Ip
⊗ F̄p ∼

(
ωk2 0
0 ωpk2

)
. So k(ρ̄p) = k + 1.

Case II: T is reducible, then T̄ |Ip
⊗ F̄p ∼

(
ωk ∗
0 1

)
. In this case if k > 1, then

we see that k(ρ̄p) = k + 1. For k = 1, we must eliminate the case that T̄ |Ip is très
ramifiée. And this case can be eliminated by some explicit computations.

Now let us bound the conductors of ρ̄pi
. We claim that there exist infinitely

many primes pi ∈ Spec(E) such that the set {N(ρ̄pi
)} is bounded. First note that

for any l 6∈ S and l 6= p, then ρp is unramified at l. Therefore the conductor N(ρ̄p)
only consists those primes in S. For any l ∈ S, let nl be the integer defined in
(3.1). Let F be the splitting field of ρ̄p and G0 the inertia subgroup at l inside
Gal(F/Q) and G1 the l-Sylow subgroup (i.e., teh wild inertia). Assume that the
residue field [kp : Fp] = g. Note that g ≤ [E : Q]. Since that G0 ↪→ GL2(kp). Thus
we have lml := #(G1)|(p2g − 1)(p2g − pg). Thus (p2g − 1)(pg − 1) = 0 mod lml .
Select an integer al sufficient large (depending on l and g) such that there exists
a bl ∈ (Z/lalZ)∗ satisfying b2gl 6= 1 mod lal . Therefore for any primes p such that
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p ≡ bl mod lal , lal - (p2g − 1)(p2g − pg). Thus for any primes p above p, ml < al.
Now by [Ser] §4.9 Proposition 9, so nl ≤ 2(al + 1

l−1 ). Now by Chinese reminder
theorem, we can select infinitely many primes p such that p = bl mod lal . Thus
there exists infinity many primes pi over those p such that {N(ρ̄pi

)} is bounded.

Lemma 3.2. Let R = (ρp) be a regular rank 2 weakly compatible system with
weights {0, k}. Then R is absolutely irreducible if and only the following condition
holds:

For any l 6∈ S and for all i : E → C the root of i(Ql(X)) have absolute value
lk/2.

Moreover, there exists for infinitely many prime pi such that ρ̄pi
is absolutely

irreducible.

Proof. If R is irreducible, by main theorem of [Tay06], we see that for any l 6∈ S
and for all i : E → C the root of i(Ql(X)) have absolute value lk/2.

Now by the proof of the Lemma, we see that there exists a set S′ of infinitely
many primes pi such that k(ρ̄pi

) = k+ 1 and the set of {N(ρ̄pi
)} is bounded. Now

we claim that there are only finitely many primes pi ∈ S′ such that ρ̄pi
is absolutely

reducible. Now suppose that there exists a subset S′′ ∈ S′ of infinitely many primes
such that for any pi ∈ S′′ ρ̄pi is absolutely reducible. We would like to derive a
contradiction.

Note that for any p ≥ k + 2, p 6∈ S and p|p, then T := ρp|Gp
is crystalline. As

discussed in the beginning of this subsection, we have 2 cases of reduction, where
the first case is absolutely irreducible. So if ρ̄p is absolutely reducible, then we must
have the second case. Therefore we have

(3.2) ρ̄p ⊗ F̄p ∼
(
χ1ω

k ∗
0 χ2

)
where χ1, χ2 are characters unramified at p. It is easy to see that the conductor
N(χj)|N(ρ̄p) for j = 1, 2. We can lift χj to χ̂j : G → Z̄∗ with the same conduc-
tor. For any pi ∈ S′′, write χ̂(i)

j for characters attached to ρ̄pi . Since the set of

{N(ρ̄pi
), i ∈ S′} is bounded, conductors χ̂(i)

j are bounded. So there are only finitely

many χ̂(i)
j . Therefore, without loss of generality, we can assume that χ̂j = χ̂

(i)
j for

all i.
Now select a finite Galois extension F such that F contains E and all values of

χ̂1 and χ̂2. Using the same trick in the second paragraph of the proof of Theorem
2.4, we can assume pi ∈ S′′ are all primes in OF . Now we claim that for any fixed

prime q|q of OF and q ∈ S′′, the semi-simplification ρq is
(
εkq χ̂1 0

0 χ̂2

)
, where εq is

the q-adic cyclotomic character. It suffices to prove that their traces coincides for
almost all primes. For any l 6∈ S and q - l, let al = tr(ρq(Frl)). For any pi - l, pi|p
and pi ∈ S′′, we also have al = tr(ρpi

(Frl)). But ρ̄pi
is reducible and has shape

(3.2). So we have
al = tr((χ̂1ε

k
p + χ̂2)(Frl)) mod pi.

Note that (εp) is compatible system and there are infinitely many pi. We have

al = tr((χ̂1ε
k
p + χ̂2)(Frl)) and the semi-simplification ρq is just

(
εkq χ̂1 0

0 χ̂2

)
. This

is impossible because the roots of Ql(X) have absolute value lk/2 for all l. So except
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finitely many primes in S′, ρ̄p are absolutely irreducible. �

4. Totally real case

Now let us extend some results of the above to the totally real case. Let F be
a totally real field with [F : Q] = g. Assume that F is Galois. A regular 1 rank 2
weakly compatible system of λ-adic representations RF over F is a 5-tuple (E, S,
{Ql(X)}, ρλ, {n1, n2}) where

• E is a number field over F ;
• S is a finite set of primes over F ;
• for each prime l 6∈ S of F , Ql(X) is a monic degree 2 polynomial in E[X];
• for each prime λ of E, let p be the residue characteristic and p := λ ∩ OF .

ρλ : GF := Gal(F/F ) −→ GL2(Eλ)

is a continuous representation such that, if p 6∈ S then ρλ|Gp is crystalline
with the sets Hodge-Tate weights being {n1, n2}, and if l 6∈ S then ρλ|Gl

is unramified at l and the Frobenius Frl has the characteristic polynomial
Ql(X).
• n1 < n2 and detρp(c) = −1 for one (and hence all) primes, where c denotes

complex conjugation.

Remark 4.1. In general, one should consider the case that the sets of Hodge-Tate
weights are {n1, . . . , ng} in R instead of just {n1, n2}. But the definition of more
general treatment is much more complicated. For our ad hoc concern of this note,
we only consider the simpler case.

We call the compatible family RF has a semi-descent to Q if for any prime λ|p
over OE there exists a λ-adic representation ρ′λ : GQ → GL2(Lλ) and Lλ is a
finite extension of Eλ such that ρ′λ|GF

∼ ρλ. Of course, if there exists a weakly
compatible family RQ = (ρ′λ) over Q such that ρ′λ|GF

∼ ρλ. Then we see that RQ
is a quasi-descent of RF . In this case, we call that RF has a descent to Q.

Remark 4.2. In general, the descent of RF is not unique.

Theorem 4.3. Definitions as the above, let RF = (ρλ) be a regular rank 2 weakly
compatible family over F . Suppose that For any l 6∈ S and for all i : E → C the
root of i(Ql(X)) have absolute value l

n2−n1
2 . Then RF has a semi-descent to Q if

and only if RF has a descent RQ to Q. In this case there exists a modular form f
such that RQ comes from f .

Of course if we know that RF can be descent to a weakly compatible family RQ
over Q. Then the last statement is just the consequence of Theorem 2.4. But the
proof of the Theorem actually circle around: we first prove that RF comes from
a modular form f over Q. Then construct the descent RQ via f . Without loss
of generality, we assume that n1 = 0 and n2 = k from now on. To carry out the
first step, we use the similar strategy of the proof of Theorem 2.4. So the following
Lemma is crucial.

Lemma 4.4. There exists a set S′ ⊂ Spec(OE) of infinitely many primes such that
(1) k(ρ̄′λ) = k + 1 for any λ ∈ S′.

1need a better name here
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(2) {N(ρ̄′λ)|λ ∈ S} is bounded.
(3) ρ̄λ is absolutely irreducible for any λ ∈ S′.

Proof. To prove the lemma, we first construct a set S̃ of infinitely many primes λ
such that S̃ satisfies the first two requirements. For any prime λ|p in OE , write
p = λ ∩ F . We claim that if p ≥ k + 2 and p 6∈ S ∪ {p, p|∆F } where ∆F is the
discriminant of F , then k(ρ̄′λ) = k+ 1. To see this, for any such λ, consider ρ′λ|GQp

.
Note that Fp is unramified extension over Qp, and ρλ|GFp

is crystalline with Hodge-
Tate weights {0, k}, so is ρ′λ|GQp

. So the discussion of weights in the beginning of
§3.3 applies, we get k(ρ̄′λ) = k + 1.

Let us bound the conductor of ρ̄′λ. We only need show there exist infinitely
many primes λi such that nl defined in (3.1) are bounded for those rational primes
l such that there is a prime l|l and l ∈ S. Let L′ be the splitting field of ρ̄′λ
and G′0 the inertia subgroup at l inside Gal(L′/Q) and G′1 the l-Sylow subgroup
(i.e., the wild inertia subgroup). Write lm

′
l = #(G′1). By [Ser] §4.9 Proposition

9, it suffices to bound m′l for certain λi. Now consider ρ̄λ, Let L be the splitting
field of ρ̄λ and select l ∈ Spec(OF ) is a prime over l. We also define G0, G1,
mi (respect to l) respectively. We claim that m′l ≤ logl(g) + ml and hence it
suffices to bound ml. To see the claim, note that ρ̄λ ∼ ρ̄′λ|GF

. Then L′ = LF and
[L′ : L] ≤ [F : Q] = g. Consequently [G′0 : G0] ≤ g and [G′1 : G1] ≤ g. Hence
m′l ≤ ml + logl(g). Now we can bound ml just like F = Q case: Assume that the
residue field [kλ : Fp] = h. Note that h ≤ [E : Q]. Since that G0 ↪→ GL2(kλ). Thus
we have lml = #(G1)|(p2h − 1)(p2h − ph). Thus (p2h − 1)(ph − 1) = 0 mod lml .
Select an integer al sufficient large (depending on l and h) such that there exists
a bl ∈ (Z/lalZ)∗ satisfying b2hl 6= 1 mod lal . Therefore for any primes p such that
p ≡ bl mod lal , lal - (p2h − 1)(p2h − ph). Thus for any primes λ above p, ml < al.
Now by Chinese remainder theorem, there exists infinitely many primes λi over pi
such that pi ≡ bi mod l. Hence {N(ρ̄′λi

)} are bounded.
Now let us treat the last claim. By the proof above, we see that there exists a

set S′ of infinitely many primes λi such that k(ρ̄′λi
) = k+1 and the set of {N(ρ̄′λi

)}
is bounded. Now we claim that there are only finitely many primes λi ∈ S′ such
that ρ̄λi (Caution: not only ρ̄′λ ) is absolutely reducible. Now suppose that there
exists a subset S′′ ∈ S′ of infinitely many primes such that for any λi ∈ S′′ ρ̄λi is
absolutely reducible. We would like to derive a contradiction.

Note that for any rational prime p ≥ k+2, p 6∈ S and λ|p (recall that p = λ∩OF ),
then ρλ|GFp

is crystalline. If p - ∆F then we see that ρ′λ|GQp
is crystalline. Note we

have two types of reductions for ρ′λ|GQp
as discussed in the beginning of §3.3. Either

ρ̄′λ|Ip ⊗ F̄p '
(
ωk2 0
0 ωpk2

)
or ρ̄′λ|Ip ⊗ F̄p ∼

(
ωk ∗
0 1

)
. If ρ′λ has the first reduction

type. Note that Fp is unramified over Qp. Thus ρ̄′λ|Ip
∼ ρ̄λ|Ip and hence ρ̄λ must be

absolutely irreducible. So if λ is in S′′, ρ̄′λ|Ip
must have the second reduction type.

Hence we have ρ̄′λ ⊗ F̄p ∼
(
χ1ω

k ∗
0 χ2

)
where χ1, χ2 are characters unramified at

all primes over p. Restricted to GF , we have

(4.1) ρ̄λ ⊗ F̄p ∼
(
χ1ω

k ∗
0 χ2

)
where χ1, χ2 are characters unramified at all primes over p. It is easy to see that
the conductor N(χj)|N(ρ̄λ) for j = 1, 2. We can lift χj to χ̂j : GF → Z̄∗ with the
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same conductor. For any λi ∈ S′′, write χ̂(i)
j for characters attached to ρ̄λi

. Since

the set of {N(ρ̄λi
), i ∈ S′} is bounded, conductors χ̂(i)

j are bounded. So there are

only finitely many χ̂
(i)
j . Therefore, without loss of generality, we can assume that

χ̂j = χ̂
(i)
j for all i.

Now select a finite Galois extension L such that L contains E and all values of χ̂1

and χ̂2. Using the same trick in the second paragraph of the proof of Theorem 2.4,
we can assume λi ∈ S′′ are all primes in OL. Now we claim that for any fixed prime

q|q of OL and q ∈ S′′, the semi-simplification ρq is
(
εkq χ̂1 0

0 χ̂2

)
, where εq is the q-

adic cyclotomic character. It suffices to prove that their traces coincides for almost
all primes. For any l|l 6∈ S (l is a rational prime) and q - l, let al = tr(ρq(Frl)). For
any λi - l, λi|p and λi ∈ S′′, we also have al = tr(ρλi

(Frl)). But ρ̄λi
is reducible

and has shape (4.1). So we have

al = tr((χ̂1ε
k
p + χ̂2)(Frl)) mod λi.

Note that (εp) is compatible system and there are infinitely many λi. We have

al = tr((χ̂1ε
k
p + χ̂2)(Frl)) and the semi-simplification ρq is just

(
εkq χ̂1 0

0 χ̂2

)
. This

is impossible because the roots of Ql(X) have absolute value lk/2 for all l. So except
finitely many primes in S′, ρ̄λi

are absolutely irreducible. �

Proof of Theorem 4.3. By Lemma 4.4, we see that ρ̄′λi
is absolutely irreducible for

all λi ∈ S′. Hence by Serre’s conjecture (Theorem 3.1), there exists eigenform
f ′i ∈ Sk+1(Γ1(N(ρ̄′λi

)),C) such that ρ̄f ′i ,αi
∼ ρ̄′λi

, where αi is a prime of Efi over
p. Let fi be the base change f ′i to F . We have ρ̄fi,αi

∼ ρ̄λi
. Since fi has the same

weight and level as those f ′i . Now we just copy the remaining proof of Theorem 2.4.
And we see that there exists an fi = f such that ρf gives the compatible family
RF . Consequently, picking and f ′i such that fi = f , then f ′i gives compatible family
RQ over Q which is a descent of RF . �

5. Descend a p-adic Galois representation

In this section, let us discuss an intrinsic condition to descend a p-adic Galois
representation. Let F,K be number fields and F/K Galois, g = [F : Q], E/Qp a fi-
nite extension and ρ : GF := Gal(Q/F )→ AutE(V ) a p-adic Galois representation.
We say ρ satisfies quasi-descent condition if the following holds:

There exists a finite set of primes Sρ ⊂ Spec(OK) such that

(1) Sρ contains all ramified primes of F/K and ρ.
(2) For any primes l of OK such that l 6∈ Sρ ∪ {p}, write l = (℘1℘2 . . . ℘m)e in
OF , then

det(λI − ρ(Fr℘i)) = det(λI − ρ(Fr℘j )) for any i, j = 1, . . . ,m.

Apparently, suppose that there exists a p-adic representation ρ′ : GK → AutE′(V ′)
such that ρ′|GF

∼ ρ then ρ satisfies the quasi-descent condition. In this case, we
call ρ′ is a descent of ρ. Conversely, we have the following question:
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Question 5.1. Is that true that ρ satisfies the quasi-descent condition if ρ has a
descent?

Remark 5.1. In general, V and V ′ are not defined in the same coefficients fields,
even if the descent exists. Here is an example: let p = 3, select a cyclic extension
F/Q with degree g such that there exists a g-th roots of unity not in Z3, and E/Z3

a finite extension such that g-th roots of unity are all in OE . Consider the Galois
character ρ′ : GQ → Gal(F/Q)→ O∗E by sending the generator of Gal(F/Q) to the
g-th root of unity. ρ = ρ′|GF

is a trivial representation. So ρ can be defined over
Q3. This example also shows that given ρ the descent may not be unique. In fact,
any character of Gal(F/Q) can be a descent of ρ.

However we can classify all descents of ρ in some nice situations. Let σ ∈ GK ,
in the sequel, we write ρσ : GF → AutE(V ) such that for any τ ∈ GF and v ∈ V ,
ρσ(τ)v = ρ(σ−1τσ)v. Sometime, we may just use V σ to denote ρσ. Note that if ρ
has a descent ρ′. Then ρ′(σ) : V → V induces an isomorphism ρ→ ρσ.

Proposition 5.2. Suppose that F/K is cyclic and ρ is absolutely irreducible. As-
sume that ρ′ is a descent of ρ. Let Ĥ be the group of all E-characters of Gal(F/K).
Then {ρ′ ⊗ χ|χ ∈ Ĥ} exhausts all possible descents of ρ.

Proof. Let σ ∈ GK such that σ is a generator of Gal(F/K). Assume that ρ′′ :
GK → AutE′(V ′) be another descent of ρ. We need show that there exists a
χ ∈ Ĥ such that ρ′′ ∼ ρ′ ⊗ χ. Without loss of generality, we can assume that all
representations here are finite dimensional Qp-spaces. Note that both α′ := ρ′(σ)
and α′′ := ρ′′(σ) induce isomorphisms ρ → ρσ. Hence (α′′)(α′)−1 ∈ AutQp[GF ](ρ).

Since ρ is absolutely irreducible, we have AutQp[GF ](ρ) = Qp. Thus there exists a

constant ζ ∈ Qp such that α′′ = ζα′. On the other hand, since σg ∈ GF , we have
(ρ′′(σ))g = (ρ′(σ))g. Hence ζg = 1 and ζ is a g-th root of unity. Let χ ∈ Ĥ such
that χ(σ) = ζ and we see that ρ′′ ∼ ρ′ ⊗ χ.

�

Now let us gives a partial answer to Question 5.1.

Proposition 5.3. Assume that F/K is cyclic and ρ is absolutely irreducible. Then
Conjecture 5.1 is true.

Proof. Without loss of generality, we assume that E = Qp. Select a σ ∈ GK
such that σ is a generator of Gal(F/K). The quasi-descent conditions implies
that there exists an isomorphism fσ : V σ → V . Then it is easy to check that
(fσ)g : V σ

g → V is an isomorphism. On the other hand, f ′ := ρ(σg) induces to
isomorphism V σ

g → V . So (f ′)(fσ)−g : V → V is inside AutQp[GF ](V ), which

is Qp by the absolutely irreducibility of ρ. So there exists an a ∈ Qp such that
(fσ)gag = f ′. So after replace fσ by fσa, we can assume that fgσ = f ′ = ρ(σg).

Now let us construct ρ′ as following: For any τ ∈ GK , τ can be written uniquely
τ = σmβ with 0 ≤ m < g and β ∈ GF . Set ρ′(τ) = (fσ)mρ(β). Now it suffices to
check that ρ′(τ1τ2) = ρ′(τ1)ρ′(τ2). Now write τi = σmiβi. We have

ρ′(τ1)ρ′(τ2) = ((fσ)m1ρ(β1))((fσ)m2ρ(β2)) = (fσ)m1+m2((fσ)−m2ρ(β1)(fσ)m2)ρ(β2).



10 MODULARITY OF COMPATIBLE FAMILY OF P -ADIC REPRESENTATIONS

One the other hand,

τ1τ2 = σm1+m2σ−m2β1σ
m2β2 = σm

′
σqg(σ−m2β1σ

m2)β2

where m1 +m2 = m′ + qg with 0 ≤ m′ < g. Hence

ρ′(τ1τ2) = (fσ)m
′
ρ(σqg)ρ(σ−m2β1σ

m2)ρ(β2)

Now we need to check (fσ)m1+m2 = (fσ)m
′
ρ(σqg) and (fσ)−m2ρ(β1)(fσ)m2 =

ρ(σ−m2β1σ
m2). But these follows the facts that fgσ = ρ(σg) and fσ is an iso-

morphism V σ → V . �

Now let RF = (ρλ) is a regular weakly compatible system over a Galois totally
real field F as defined in §4. Suppose that one representation ρβ satisfies the quasi-
descent condition. Since (ρλ) is a compatible family, all ρλ satisfies the quasi-
descent. Now combining Proposition 5.3 and theorem 4.3 together, we have

Theorem 5.4. Let RF = (ρλ) be a regular weakly compatible system of λ-adic
Galois representations over a totally real field F . Suppose the following holds:

(1) F/Q is cyclic.
(2) One of ρλ satisfies the quasi-descent condition.
(3) For any l 6∈ S and for all i : E → C the root of i(Ql(X)) have absolute

value l
n2−n1

2 .
(4) Except finitely many primes, ρλ are absolutely irreducible.

Remark 5.5. It seems that one can relax (1) to case that F is solvable and (4) seems
to be removable. Furthermore, (3) also can be removed if one can extend the main
results of [Tay06]to totally real field. But all these seems need some non-trivial
efforts.

Corollary 5.6. Let ρ be a p-adic Galois representation of GQ. Suppose that there
exists a totally real field F/Q such that ρ restricted to GF comes from a Hilbert
modular form f over F and F/Q is cyclic. Then ρ comes from a modular form.

Proof. f gives arise a regular compatible family RF which satisfies (3) and (4) in
the above theorem. Since ρ is a descent of ρ|GF

, ρ satisfies the quasi-descent con-
dition. Then the corollary follows. �
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