INTRODUCTION TO p-ADIC HODGE THEORY

TONG LIU

1. INTRODUCTION

Fix l a prime. Let $G := \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ the absolute Galois group. A l-adic Galois representations (of G) is a continuous linear representation of G on a finite dimensional \mathbb{Q}_l -vector space. The following examples of l-adic Galois representations are important:

Example 1.1 (*l*-adic cyclotomic character). Let μ_{l^n} be the group of l^n -th roots of unity. G acts on μ_{l^n} , hence on $\lim_{n \to \infty} \mu_{l^n} \simeq \mathbb{Z}_l$. Therefore, we get 1 dimensional *l*-adic Galois representation: $\epsilon : G \to \operatorname{Aut}_{\mathbb{Z}_l}(\mathbb{Z}_l) = \mathbb{Z}_l^*$, the *l*-adic cyclotomic character.

Example 1.2 (*l*-adic Tate module). Let A be an abelian variety over \mathbb{Q} of dimension g. Let $A[l^n] := \{x \in A(\overline{\mathbb{Q}}_l) | l^n x = 0\}$. Then $A[l^n] \simeq \bigoplus_{i=1}^{2g} \mathbb{Z}/l^n \mathbb{Z}$ and G acts on $A[l^n]$. Therefore G acts on the *l*-adic Tate module $T_l(A) = \lim_{n \to \infty} A[l^n]$. Then $V_l(A) := T_l(A) \otimes_{\mathbb{Z}_l} \mathbb{Q}_l$ is 2g dimensional *l*-adic Galois representation.

Let p be a prime and G_p a decomposition group at p. We may identify G_p with the local Galois group $\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ at p. We always have the exact sequence:

$$1 \to I_p \to G_p \to \operatorname{Gal}(\bar{\mathbb{F}}_p/\mathbb{F}_p) \to 0.$$

Let $\rho: G \to \operatorname{Aut}_{\mathbb{Q}_l}(V)$ be a *l*-adic Galois representation. We call ρ is unramified at p if $\rho(I_p)$ is trivial.

Example 1.3 (modular representations). Let $f \in S_k(\Gamma(N))$ be a newform with weight k and level N. Suppose that the Fourier expansion is $f(z) = \sum_{n=1}^{\infty} a_n e^{2\pi i n z/N}$ with $a_n = 1$. Then for any l, one¹ can construct a l-adic representation $\rho_{f,l} : G \to GL_2(E)$, where E is a finite extension of \mathbb{Q}_l containing all a_n . For any $p \nmid Nl, \rho_{f,l}$ is unramified at p and trace $(\rho_{f,l})(\operatorname{Fr}_p) = a_p$ where Fr_p is the Frobenius at p.

Example 1.4 (*l*-adic cohomology). Let X be an algebraic variety over \mathbb{Q} . We can define *l*-adic étale cohomology ² $\mathrm{H}^{i}_{\mathrm{\acute{e}t}}(X \otimes \overline{\mathbb{Q}}, \mathbb{Z}_{l})$ and $\mathrm{H}^{i}_{\mathrm{\acute{e}t}}(X \otimes \overline{\mathbb{Q}}, \mathbb{Q}_{l}) := \mathrm{H}^{i}_{\mathrm{\acute{e}t}}(X \otimes \overline{\mathbb{Q}}, \mathbb{Z}_{l}) \otimes_{\mathbb{Z}_{l}} \mathbb{Q}_{l}$. Example 1.1, 1.2, are the dual of the *l*-adic étale cohomology where i = 1 and X is respectively the multiplicative group \mathbb{G}_{m} and abelian varieties. Example 1.3, are essentially comes from an *l*-adic étale cohomology via a much more dedicated construction.

¹The construction is highly non-trivial, see [Con] for details. In general, it is still an open question to construct a l-adic Galois representation from a general automorphic form

²See SGA 4 or Milne's book: *Lectures on Etale Cohomology*, available at http://www.jmilne.org/math/index.html

TONG LIU

All our examples of *l*-adic representations come from geometry. One of the key questions in this area is that how we can describe those *l*-adic Galois representations from algebraic geometry by purely Galois representation theoretic language.

If ρ is a *l*-adic representation from geometry, then one can prove that ρ is unramified except finitely many places. This is mainly due to the fact that a variety over \mathbb{Q} always has an integral model over \mathbb{Z} which is smooth except finitely many places. In fact, for any $p \neq l$, one can prove that $\rho|_{G_p}$ is not far from being unramified. (See the fourth lecture in details).

On the other hand, when l = p, $\rho_p := \rho|_{G_p}$ can be much more complicated even if ρ comes from geometry. In particular, ρ_p can be very ramified, i.e., $\rho(I_p)$ has very huge image (For an example, *p*-adic cyclotomic character). To deal with this situation, Fontaine invent the *p*-adic theory to classified those *p*-adic representations from Geometry.

In general, *p*-adic representations always refer to those continuous representations of G_p to finite dimensional \mathbb{Q}_p -vector spaces.

A *p*-adic representation V of G_p is called *semi-stable* if $\dim_{\mathbb{Q}_p}(B_{\mathrm{st}} \otimes_{\mathbb{Q}_p} V)^{G_p} = \dim_{\mathbb{Q}_p} V$, where B_{st} is a huge \mathbb{Q}_p -algebra with a continuous G_p -action and other extra structures. The construction of B_{st} (See also [Fon94]) and the classification of semi-stable representation (by admissible filtered (φ, N) -module) consists the main body of this mini course³.

A *p*-adic Galois representation ρ is called *potentially semi-stable* if there exists a finite extension K/\mathbb{Q}_p such that ρ restricted to $\operatorname{Gal}(\overline{\mathbb{Q}}_p/K)$ is semi-stable. By Tsuji's comparison theorem ([Tsu99]), we know that *p*-adic étale cohomology $\operatorname{H}^i(X \otimes_{\mathbb{Q}} \overline{\mathbb{Q}}, \mathbb{Q}_p)$ is always potentially semi-stable. Hence any *p*-adic representation from geometry is potentially semi-stable. In particular, if ρ is the *l*-adic representations from Example 1.1, 1.2 and 1.3, $\rho|_{G_p}$ is potentially semi-stable. Therefore Fontaine and Mazur ([FM95]) made the following remarkable conjecture:

Conjecture 1.5 (Fontaine-Mazur). (1) Let $\rho : G \to \operatorname{GL}_n(\mathbb{Q}_l)$ be a continuous representation, which is irreducible, unramified away from finitely many primes, and whose restriction to every decomposition group over l is potentially semi-stable. Then ρ is geometric in the sense that, up to a twist, it appears as a subquotient in the étale cohomology of a finite type \mathbb{Q} -scheme.

(2) Let E/\mathbb{Q}_l be a finite extension. Suppose that $\rho : G \to \operatorname{GL}_2(E)$ is a continuous representation, which is odd, irreducible, unramified outside finitely many prime, and whose restriction to G_l is potentially semi-stable, when regard as a \mathbb{Q}_l representation. Then up to a twist of ϵ , it arises from a modular form, i.e., there exists a modular form f such that $\rho \simeq \rho_{f,l}$.

Leading by the breaking through work of Wiles, many cases of Conjecture 1.5 have been known and we have many important applications, e.g., the proof of Fermat's last theorem, Sato-Tate conjecture and Serre's modularity conjecture. ⁴ In the proof of many known cases (especially in work of Kisin), p-adic Hodge theory

³Of course, we will also discuss crystalline representations and Hodge-Tate representations

⁴Note that Taniyama-Shimura conjecture is the only the special case of Conjecture 1.5 for k = 2 where k is the weight of modular forms.

plays a central technical role. Here we cite one of the most recent results from $Kisin^5$ which depends on the known case of *p*-adic Langlands correspondence:

Theorem 1.6 ([Kis06]). Fix a prime p > 2, S a set of prime containing p, ∞ , $G_{\mathbb{Q},S}$ the Galois group of maximal unramified extension of \mathbb{Q} outside of S and G_p the decomposition group at p. Let \mathcal{O} be the ring of integers in a finite extension of \mathbb{Q}_p , having the residue field \mathbb{F} , and $\rho: G_{\mathbb{Q},S} \to \mathrm{GL}_2(O)$ a continuous representation. Suppose that

- (1) $\rho|_{G_p}$ is potentially semi-stable with distinct Hodge-Tate weights.
- (2) $\rho|_{G_p}$ is semi-stable over an abelian extension over \mathbb{Q}_p .
- (3) $\bar{\rho} :\xrightarrow{\rho} \operatorname{GL}_2(O) \to \operatorname{GL}_2(\mathbb{F})$ is modular, and $\bar{\rho}|_{\mathbb{Q}(\zeta_p)}$ is absolutely irreducible.
- (4) $\bar{\rho}|_{G_p} \not\sim \begin{pmatrix} \omega \chi & * \\ 0 & \chi \end{pmatrix}$ for any character $\chi : G_p \to \mathbb{F}^{\times}$, where $\omega := \epsilon \mod p$.

Then up to a twist, ρ is modular.

Variations of the above Theorem on potentially Barsoti-Tate representations are some essential inputs in Khare and Wintenberger to prove Serre's modularity conjecture:

Theorem 1.7. Notations as in Theorem 1.6, Let $\bar{\rho} : G_{\mathbb{Q},S} \to \mathrm{GL}_2(\mathbb{F})$ be a continuous representation with odd determinant then $\bar{\rho}$ is modular.

Injecting Theorem 1.7 into Theorem 1.6, the condition that $\bar{\rho}$ is modular then can be removed.

2. References

2.1. General discussion on Galois representations.

- (1) Jean-Pierre Serre, Abelian l-adic representations and Elliptic curves.
- (2) Jean-Marc Fontaine, Yi Ouyang, *p-adic Galois representations*, available at http://faculty.math.tsinghua.edu.cn/faculty/~ youyang/

2.2. Survey on *p*-adic Hodge theory.

(1) Laurent Berger, An Introduction to theory of p-adic representations, available in arxiv.

The references for the following topics are numerous, but we only list those that are important for beginners.

2.3. Classical Theory on Big rings and weakly admissible (φ, N) -modules.

- (1) Astérisque 223, Périods p-adiques, Exposé II, III, VIII.
- (2) [CF00]

2.4. Comparison Theorems, which can explain why *p*-adic representations from geometry is potentially semi-stable.

- (1) [FM87]
- (2) [Tsu99]

⁵Note that this celebrating result does not cover all known cases of Conjecture 1.5.

TONG LIU

2.5. Theory of (φ, Γ) -module.

- (1) [Fon90]
- (2) Pierre Colmez, *Fontaine's ring and p-adic L-functions*, available at http://faculty.math.tsinghua.edu.cn/faculty/~ youyang/

2.6. Integral *p*-adic Hodge theory.

- (1) [Bre02]
- (2) [Liu]

2.7. Theory of Modularity and *p*-adic Hodge theory. There are too many (and difficult) papers in this direction. One can find some relative friendly papers in Kisin and Breuil's homepages. For example:

- (1) Mark Kisin, Modularity of some geometric Galois representations.
- (2) Mark Kisin, Modularity of 2-dimensional Galois representation
- (3) Christopher Breuil, Towards a p-adic Langlands programme⁶

Of course, the best book to explain the original idea of Wiles is *Modular Forms and Fermat's Last Theorem* by Silverman, Cornell, and Stevens.

References

- [Bre02] Christophe Breuil, Integral p-adic Hodge theory, Algebraic geometry 2000, Azumino (Hotaka), Adv. Stud. Pure Math., vol. 36, Math. Soc. Japan, Tokyo, 2002, pp. 51–80.
- [CF00] Pierre Colmez and Jean-Marc Fontaine, Construction des représentations p-adiques semistables, Invent. Math. 140 (2000), no. 1, 1–43.
- [Con] Brian Conrad, Modular forms and the ramanujan conjecture, available soon, Available at bdconrad@umich.edu.
- [FM87] Jean-Marc Fontaine and William Messing, p-adic periods and p-adic étale cohomology, Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985), Contemp. Math., vol. 67, Amer. Math. Soc., Providence, RI, 1987, pp. 179–207.
- [FM95] Jean-Marc Fontaine and Barry Mazur, Geometric Galois representations, Elliptic curves, modular forms, & Fermat's last theorem (Hong Kong, 1993), Ser. Number Theory, I, Internat. Press, Cambridge, MA, 1995, pp. 41–78.
- [Fon90] Jean-Marc Fontaine, Représentations p-adiques des corps locaux. I, The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 249– 309.
- [Fon94] _____, Le corps des périodes p-adiques, Astérisque (1994), no. 223, 59-111.
- [Kis06] Mark Kisin, The fontaine-mazur conjecture for GL₂, Preprint (2006).
- [Liu] Tong Liu, Main conjecture of integral p-adic Hodge theory, Preprint, available at http://www.math.upenn.edu/~ tongliu/research.html.
- [Tsu99] Takeshi Tsuji, p-adic étale cohomology and crystalline cohomology in the semi-stable reduction case, Invent. Math. 137 (1999), no. 2, 233–411.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PENNSYLVANIA, PHILADELPHIA,19104, USA. *E-mail address*: tongliu@math.upenn.edu

4

 $^{^6\}mathrm{This}$ paper discuss basic idea of p-adic Langlands which essentially used in the proof of Theorem 1.6