12/9: proof of Mazur's Thun & Eisenstein ideal AIM of Today:

Theorem. Let N be a prime greater than 7 and not 13. Then no elliptic curve over \mathbf{Q} has a rational point of order N.

Theorem (Theorem 1). Let N > 7 be a prime number. Suppose there exists an abelian variety A/\mathbf{Q} and a map of varieties $f: X_0(N) \to A$ satisfying the following conditions:

- A has good reduction away from N.
- $A(\mathbf{Q})$ has rank 0.
- $f(0) \neq f(\infty)$.

Then no elliptic curve defined over \mathbf{Q} has a rational point of order N.

Combined with Theorem B from Lecture 1 [PP69BM], we have the following criterion:

Theorem (Theorem 2). Let N > 7 be a prime number and let $p \neq N$ be a second prime number. Suppose there exists an abelian variety A/\mathbf{Q} and a map $f: X_0(N) \rightarrow A$ satisfying the following:

- A has good reduction away from N.
- *A* has completely toric reduction at *N*.
- The Jordan--Holder constituents of $A[p](\mathbf{Q})$ are 1-dimensional and either trivial or cyclotomic. JH(p) condition

• $f(0) \neq f(\infty)$.

Then no elliptic curve defined over \mathbf{Q} has a rational point of order N.

Let $\rho: G_{\Theta} \longrightarrow GL_d(\overline{H}_p)$ be a residue rep. We call ρ staisfy TH(p) if ρ^{ss} the semi-simplification of $\rho \simeq \bigoplus \chi_p \oplus 1$ where $\chi_p = cyclotomic mod p$. Idea: Find an ideal $I \subseteq T$ (Tate algebra) so that $A = J_0(N)/I J_0(N)$ satisfies conditions of thin2, in particular, JH(p).

I pEisenstein prime & Eisenstein ideel:
Def Let p be a prime. p-Eisenstein prime Q is the ideal of T
generated by p & T₂-(k+1). V k+ N.
Lemma 1 24 G is nortrivid then T/R
$$\leftarrow$$
 Fp. So Q is max.
pitef: We have $Z \rightarrow T_A$ is surjective as Te $\in Z$ in TA
since $pZ \leq EL$, we have $\mathbb{F}_{p} \rightarrow T_A$ as required.
Now let us explain uby a relates to JH(p). Recall by Shiang's talk,
we have $V_p(T_0(N)) \sim \bigoplus P_{1,2}$ where $P_{1,A}$ is 2-dim podiz
G a -rep attached to the weight 2 eigenform f. By the construction of $P_{1,3}$,
we can the reduction of $P_{1,A}$ corresponds to a nex. ideal on of T
in the way that $T(\overline{P}_{1,A}(\overline{T}_{R_A})) = T_A$ mod \mathfrak{M}_{-} , $V \pm p$, N.
Lemma 2 $\mathfrak{M} = \mathfrak{A} \bigoplus P_{1,A} \equiv \mathfrak{Ap} \oplus 1$.
pitef: $\mathfrak{M} = \Omega \iff \mathrm{if}(\overline{P}_{1,A}(\overline{T}_{R_A})) = k+1$
 SU if $\overline{P}_{1,A}^{-S} = \mathfrak{Ap} \oplus 1$.
pitef: $\mathfrak{M} = \Omega \iff \mathrm{if}(\mathbb{P}_{1,A}(\overline{T}_{R_A})) = k+1$
 SU if $\overline{P}_{1,A}^{-S} = \mathfrak{Ap} \oplus 1$.
 \mathfrak{P} for $\mathcal{P}_{1,A} \cong \mathfrak{Ap} \oplus 1$.
 \mathfrak{P} is correcte).
I find p so the \mathfrak{A} is nontrivial torsion in $J_0(N)$ killed by N-1
 \mathfrak{D} Te ($[O_1 - [O_0]] = (L+1)([O_1 - [O_0]), V \pm M$
 \mathfrak{P} is \mathcal{O} if $O_1 - (O_1 - O_1) = (L+1)([O_1 - [O_0]), V \pm M$
 \mathfrak{P} is \mathcal{O} if $\mathcal{O}_1 - (O_1 - O_1) = \mathcal{O}$ in $J_0(M) = \mathfrak{M}^{-1}$. $J_0(M)$
has generate \mathcal{O} is \mathcal{O} to the for $N > \mathbb{T}_4$ is \mathcal{O} .
 \mathcal{O} if $\mathcal{O}_1 - (O_1 - O_1) \Rightarrow \mathcal{I}_1$.
 \mathcal{O} is \mathcal{O} to the for $N > \mathbb{T}_4$ is \mathcal{O} .
 \mathcal{O} is \mathcal{O} to the for $N > \mathbb{T}_4$ is \mathcal{O} .
 \mathcal{O} by $\mathcal{O}_1 - (O_1 - O_1) \Rightarrow \mathcal{I}_1$.
 \mathcal{O} by $\mathcal{O}_1 = \mathcal{O}_1 - (O_1 - O_1) \Rightarrow \mathcal{I}_1$.
 \mathcal{O} by $\mathcal{O}_1 = \mathcal{O}_1 - (O_1 - O_1) \Rightarrow \mathcal{I}_1$.
 \mathcal{O} by $\mathcal{O}_1 - (O_1 - O_1) \Rightarrow \mathcal{I}_1$.
 \mathcal{O} by $\mathcal{O}_1 = \mathcal{O}_1 - (O_1 - O_1) \Rightarrow \mathcal{I}_1$.
 \mathcal{O} by $\mathcal{O}_1 = \mathcal{O}_1 - (O_1 - O_1) \Rightarrow \mathcal{I}_1$.
 $\mathcal{O}_1 = \mathcal{O}_1 - (O_1 - O_1) \Rightarrow \mathcal{I}_1$.
 $\mathcal{O}_1 = \mathcal{O}_2 - (O_1 - O_1) \Rightarrow \mathcal{I}_1$.
 $\mathcal{O}_1 = \mathcal{O}_1 = \mathcal{O}_1 = \mathcal{O}_1 = \mathcal{O}_1$. $\mathcal{O}_1 = \mathcal{O}_1 = \mathcal{O}_1$.
 $\mathcal{O}_1 = \mathcal{O}_1 = \mathcal{O}_1 = \mathcal{O}_1 = \mathcal{O}_1 = \mathcal{O}_1 = \mathcal{O}_1$.
 $\mathcal{O}_1 = \mathcal{O}_1 = \mathcal{O}_1 = \mathcal{O}_1 = \mathcal{O$

has no zero on upper half plane
$$\mathcal{A}$$
. so $\Delta(\mathbb{Z})/\Delta(\mathbb{NZ})$ is
a menomorphic function on $X_0(\mathbb{N})$ & hubbomorphic at $Y_0(\mathbb{N})$. At
as, we have $f = \Delta(\mathbb{Z})/\Delta(\mathbb{NZ}) = g^{-(W+1)} + \cdots$. so divf $-(W-1)([\mathbb{C}] - [\mathbb{C}M])$
 \therefore $(N-1)([\mathbb{C}] - [\mathbb{C}M]) = 0$ in $J_0(\mathbb{N})$
 \textcircled{O} consider Hecke correspondence f, g $X_0(\mathbb{N}) \longrightarrow X_0(\mathbb{N})$
using faces a) $X_0(\mathbb{N})$ has 4 curps coming from $X_0(\mathbb{N}) \oplus X_0(\mathbb{R})$
 \bigcirc $f(\mathbb{X}, \mathbb{Y}) = g(\mathbb{X}, \mathbb{Y}) = \mathbb{X} \in X_0(\mathbb{N})$
 \bigcirc $f(\mathbb{X}, \mathbb{Y}) = g(\mathbb{X}, \mathbb{Y}) = \mathbb{X} \in X_0(\mathbb{N})$
 \bigcirc $f(\mathbb{X}, \mathbb{Y}) = g(\mathbb{X}, \mathbb{Y}) = \mathbb{X} \in (\mathbb{X}, 0)$, (\mathbb{X}, ∞)
 \Rightarrow $f^1(\mathbb{C}X] = \mathbb{X} [(\mathbb{X}, 0)] + [\mathbb{I}X, \infty]$
 \therefore $T_{\mathbb{K}}(\mathbb{K}) = g_{\mathbb{X}} \int^{\mathbb{K}} (\mathbb{K}) = \mathbb{E} + \mathbb{E} [\mathbb{X}]$.
 $(Ore, 4: pick p | \mathbb{N}^{-1}$ so that \exists nontrivial $\mathbb{C} \in J_0(\mathbb{N})[\mathbb{P}]$. Then p -
Eisenstein prime is nontrivial.
 $proof$ Since $V_p(J_0(\mathbb{N})) \sim \bigoplus f_{P,f,f}$, \mathbb{R} semi-simplification
of reduction is independent on eduction of lattices, we see that \mathbb{Z}_{pZ}
 $\stackrel{\frown}{=} f_{1,\infty}$ for at lease one $f_1 A$. As $det([\overline{P}_{1,A}) = X_p$
 $\stackrel{\frown}{=} (\overline{P}_{1,A})^{1/5} = 1 \oplus X_P$. \Rightarrow \mathbb{R} is nontrivid.
If construction of f .
Now set $I = \bigcap \mathbb{P}$ where $S = \mathbb{P}$ prime $\mathbb{P} \in \mathbb{T}$ \mathbb{R} is $\mathbb{R} \in \mathbb{R}^3$.
 $\mathbb{R} = J_0(\mathbb{N}) / \mathbb{T} J_0(\mathbb{N})$ (I accurally an proof neuron educt due protect
This should be or as lease as $\mathbb{C} - lease)$.
Now we need to show $f(0) \neq f(\infty)$ where $f: X_0(\mathbb{N}) \to J_0(\mathbb{N}) \gg A$.
 $\mathcal{R} = A(\mathbb{G})$ is finite. The second point is much howder \mathbb{R} will be
discussed in the end.
Let $\mathbb{T}_P = \mathbb{T} \mathcal{B}_{\mathbb{Z}}\mathbb{P} = \lim_{\mathbb{R}} \mathbb{T}_P \to \mathbb{T} = \lim_{\mathbb{R}} \mathbb{T}_{\mathbb{R}}^n$.
Fact: Ta is a divect summand of \mathbb{T} p as \mathbb{T} is finite \mathbb{T} elegebran
 $\mathcal{R} = A \text{ is now, ideal}. (following Hencel's (comma).$

Now we apply the above Lemma
$$M = A(Q)$$
. Let A be the Norm model
of with A^{C} the connected components. We aim to bound $A(Q) \otimes_{T} T_{Q}$ via
similar method in Yife Wang's talk.
Recall let G be admissible group science $/Z$. (G will be Afp^{-1} , $A^{C}(p^{-1})$
 $\cdot \lambda(G) = \log_{P} |G|$. Indeed why Afp^{-1} , $A^{C}(p^{-1})$
 $\cdot \lambda(G) = \pm of Z_{PZ}$ occurring in G. may be we applied decomponent
 $\cdot S(G) = \lambda(G_{Q}) - \lambda(G_{PN})$. Also,
 $\cdot h^{C}(G) = h^{C}(F_{Q}) - \lambda(G_{PN})$. Also,
 $\cdot h^{C}(G) = h^{C}(F_{Q}) - \mu^{C}(G_{PN})$. Also,
 $\cdot h^{C}(G) = h^{C}(F_{Q}) - \mu^{C}(G_{PN})$. Also,
 $\cdot h^{C}(G) = h^{C}(F_{Q}) = A(Q) \otimes_{T} T_{Q}$.
 $\cdot h^{C}(G) = h^{C}(F_{Q}) = A(Q) \otimes_{T} T_{Q}$.
Second the issue is that Afp_{1} may not satisfies $H^{C}(P)$. We have to look up
 $Afp_{1} = Afp_{2} \otimes_{T_{P}} T_{Q} = A(Q) \otimes_{T} T_{Q}$.
 $\cdot Afp_{1} = Afp_{2} \otimes_{T_{P}} T_{Q} = A(Q) \otimes_{T} T_{Q}$.
 $\cdot Afp_{1} = Afp_{2} \otimes_{T_{P}} T_{Q} = A(Q) \otimes_{T} T_{Q}$.
 $\cdot Afp_{1} = Afp_{2} \otimes_{T_{P}} T_{Q} = A(Q) \otimes_{T} T_{Q}$.
 $\cdot Afp_{1} = Afp_{2} \otimes_{T_{P}} T_{Q} = A(Q) \otimes_{T} T_{Q}$.
 $\cdot Afp_{1} = Afp_{2} \otimes_{T_{P}} T_{Q} = A(Q) \otimes_{T} T_{Q}$.
 $\cdot Afp_{1} = Afp_{2} \otimes_{T_{P}} T_{Q} = A(Q) \otimes_{T} T_{Q}$.
 $\cdot Afp_{1} = Afp_{2} \otimes_{T_{P}} T_{Q} = A(Q) \otimes_{T} T_{Q}$.
 $\cdot Afp_{1} = Afp_{2} \otimes_{T_{P}} T_{Q} = A(Q) \otimes_{T} T_{Q}$.
 $\cdot Afp_{1} = Afp_{2} \otimes_{T_{P}} T_{Q} = A(Q) \otimes_{T} T_{Q}$.
 $\cdot Afp_{1} = Afp_{2} \otimes_{T_{P}} T_{Q} \otimes_{T} \otimes_{T_{Q}} \otimes_{T} \otimes_{T_{Q}} \otimes_{T} \otimes_{$

4) Now Consider exact sequence 0→ A° [p"] → A° → A° → 0. which gives $A^{\circ}(\mathbb{Z}) \otimes \mathbb{Z}_{p^{n}\mathbb{Z}} \longrightarrow H^{1}_{fppf}(Spee(\mathbb{Z}), A^{\circ}(p^{n}J))$ Both sides one Tp-algebra, so it makes sense to take Ta-component, So A°(Z) OT TP C Jum Htppf (Spee(Z), In) whose size is bounded by $\xi(g_n) - \chi(g_n) = O(1)$. Since $A^{\circ}(\mathbb{Z}) \subseteq A(\mathbb{Z}) = A(\mathbb{Q})$ as finite index subgp, A(Q) Q TTA is finite set as required.