Learning Seminar for Mazur's paper
I: Overview.
Setup: k a field.
1: An elliptic curve (E.C.) /k is a pair (E, D) where E is a
(smooth, projective, connected) curve /k with genus 1 &

$$o \in E(k)$$
.
2: An elliptic curve /Q is a curve which can be decribed by
weierstrass equation $y^2 = z^3 + az + b$
so that the discriminant $\Delta = -16 (4a^3 + 27b^3) \neq 0$.
3 There is a group low on $E(Q)$ which can be described in the following
Here $0 = \infty$.
4. By Mordell-weil's Thm, $E(Q)$ is a finite generated Z-module.
So $E(Q) = E(Q)_{tor} \oplus Z \oplus - \oplus Z$,
 $r = rank E(Q)$ which remains mysterious, BSD conjecture.

Theorem (Mazur, 1977, <u>MR488287</u>). $C(\mathbf{Q})_{tors}$ is isomorphic to one of the following 15 groups:

- $\mathbb{Z}/n\mathbb{Z}$ with $1 \le n \le 10$ or n = 12.
- $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ with n = 2, 4, 6, 8.

6: Basic idea: Thy so show if
$$N > 15$$
 being prime
 $E GN_3 = E(G)[N_3 - 1] \times C E(G) | N \times 0.5 = 103.$
Let $Y_0(N)$ be redular curve which parametrize (E, C) where
 $G \in E$ is a cyclic subgr of order N . Need to show $Y_0(N)(G) = \emptyset$.
 $Y_0(N) = S_0(N)$ its comparent factor. Let $J_0(N)$ be
it Jacobian. We have $Y_0(N) \rightarrow X_0(N) \rightarrow S_0(N)$
Now we need construct $Y_0(N) \rightarrow X_0(N) \rightarrow X_0(N) \rightarrow S_0(N)$
Now we need construct $Y_0(N) \rightarrow X_0(N) \rightarrow A$. a "good"
abolium varieng $Y_0(N)(D) = \phi$. Note therefore algebra TP_0 $J_0(N)$
The key point is to solve a Eisenstein ideal I \subseteq T. to
construct $J_0(N) \rightarrow A$. This involves modular farm into the
picture.
7: plan of Seminar: Basically follows Sowoden's course, but
need to be condensed.
If Elliptic Curve.
I: Basic far:
By Ricanan-Rock Thin $L(D) - L(K-D) = deg D - 3 + 1 A$
We $g = 1$, we can prove (see sidvernam ChopI, TI).
Group law : $E(K)$ is an abolian group via isoversphere. $E(K) \rightarrow Cl^{\circ}(E)$
 $Via \quad X \mapsto Ci - 5ci$
Equation
 $a_i J^2 + a_i X^2 + a_i X + a_i X + a_i X = 0$
where $chor(k) \pm 2, 3$, the above equation can be simplified
to $J^2 = X^2 + a X + b$.
where $\Delta = -1b (4a^3 + 27b^2) \pm 0$.
If Elliptic Curve / C.
 $E / C \iff a torus = 0$

$$= \mathbb{C}/\Lambda \quad \text{ukare} \quad \Lambda = \mathbb{Z} - \text{lattice} \subseteq \mathbb{C}$$

i.e. $\Lambda \otimes_{\mathbb{Z}} \mathbb{R} = \mathbb{C}$.

$$= \oint \mathbb{C}/\Lambda \longrightarrow \mathbb{E}(\mathbb{C}) \subseteq \mathbb{P}^{1}(\mathbb{C}) \text{ as isomorphism of complex}$$

 $\mathbb{Z} \longrightarrow \mathbb{F}(\mathbb{D}), \mathbb{F}(\mathbb{D}), \mathbb{I}$. Le graps
where $\mathbb{F}(\mathbb{Z})$ is Weierstmas \mathbb{F} -function. (Silvermann clep VI)
complex multiplication we can use $\Lambda = \mathbb{Z} + \mathbb{Z}_{\mathbb{T}}$ $\mathbb{C} \in a+bi$, $b>o$
to understand End(\mathbb{E}). Since $\mathbb{X} \Lambda \subseteq \Lambda$, it is not
hard to show End (\mathbb{E}) = \mathbb{Z} or on order in K/\mathbb{G} , where
 $K \cong \operatorname{imaginang}$ quadratic field $/\mathbb{G}$. The latter case, we
call \mathbb{E} has complex multiplication
III Isogenies.
Def An isogeny $f: \mathbb{E} \to \mathbb{E}$ is a non-constant map \mathbb{R} $f(\mathbb{O}) = 0$.
An isogeny is a group home as $\mathbb{E}[-\mathbb{O}] \to \mathbb{F}(\mathbb{O}] - \mathbb{E}[0]$.
Example: \mathbb{O} In $\mathbb{I}: \mathbb{E} \to \mathbb{E}$ with $\mathbb{X} \mapsto n\mathbb{X}$
 \otimes If char(\mathbb{R}) = p then $\mathbb{F}_{P} \in \mathbb{E} \to \mathbb{E}^{(2)} = \mathbb{R} \otimes \mathbb{Q}_{P} \mathbb{E}$
 $\operatorname{via}(\mathbb{X}, \mathbb{Y}) \mapsto (\mathbb{X}^{2}, \mathbb{Y}^{2})$ is an isogeny.
Note f induces field extension of $\mathbb{K}(\mathbb{E})/\mathbb{K}(\mathbb{E}_{2})$ where
 $\mathbb{K}(\mathbb{E})$ are function field of \mathbb{E} . we have $\mathbb{K}(\mathbb{E}) \cong \mathbb{L} \subseteq \mathbb{K}(\mathbb{E})$.
 $\mathbb{L}/\mathbb{K}(\mathbb{E})$ is max separable extension. $\mathbb{R} \mathbb{K}(\mathbb{E})$.
 \mathbb{D} \mathbb{D} \mathbb{C} $\mathbb{E} \mathbb{K}(\mathbb{E}_{2})$ then \mathbb{F} is separable
 \mathbb{P} \mathbb{E} \mathbb{E}

Example © InI is separable
$$\Leftrightarrow$$
 char($\mathcal{W} \neq n$. deg(InI) = n⁴.
© Fp is inseparable
Dual Isogeny There exists a dual isogeny $\int^{V} : E_{\perp} \rightarrow E_{\perp} s.t$
 $E_{\perp} = \oint^{V} E_{\perp}$
 $E_{\perp} = \int^{V} E_{\perp}$
 $E_{\perp} = \int^{V} E_{\perp}$
See [Silvarman, II], Thun 6.1]. Note f^{\vee} is also defined via
 $E_{\perp} = O(O(E_{\perp}) = \int^{X} O(O(E_{\perp}) = \sum n_{\perp} p.p)$
 $G \longrightarrow IO(O(E_{\perp}) = \int^{X} O(O(E_{\perp}) = \sum n_{\perp} p.p)$
Note: when $E / C_{\perp} \simeq C^{\perp} / A$. Then $E_{\perp} = \int^{V} E_{\perp} \Leftrightarrow A_{\perp} = A_{\perp$

Weil pairing (Silverman, § II, 83]

Proposition. Let E/k be an elliptic curve and let *n* be prime to the characteristic. Then there exists a pairing $e_n: E[n] \times E[n] \rightarrow \mu_n$ satisfying the following:

- Bilinear: $e_n(x + y, z) = e_n(x, z)e_n(y, z)$. (Note: the group law on E[n] is typically written additively, while that on μ_n is written multiplicatively.)
- Alternating: $e_n(x, x) = 1$. This implies $e_n(x, y) = -e_n(y, x)$, but is stronger if *n* is even.
- Non-degenerate: if $e_n(x, y) = 1$ for all $y \in E[n]$ then x = 0.
- Galois equivariant: $e_n(\sigma x, \sigma y) = \sigma e_n(x, y)$ for $\sigma \in G_k$.
- Compatibility: if $x \in E[nm]$ and $y \in E[n]$ then $e_{nm}(x, y) = e_n(mx, y)$.

Consequence: $D \exists a \text{ bilineor}$, alternate, nondegenerate, Galois invariant pairing $e: T_{\ell}(E) \times T_{\ell}(E) \longrightarrow \mathbb{Z}_{\ell}(1)$ = $\mathbb{E}(f(x), y) = e(x, f^{v}(y))$ for an isogeny $f: E_1 \rightarrow E_2$.