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A TAMENESS CRITERION FOR GALOIS
REPRESENTATIONS ASSOCIATED TO MODULAR

FORMS (OD p)

BENEDICT H. GROSS

We begin by recalling some results on the 2-dimensional Galois representations
which are associated to modular forms (mod p). If f E a,,q" is a normalized
cuspidal eigenform of weight k and character e for F1 (N), with coefficients in a finite
field E of characteristic p, there is a continuous semi-simple Galois representation

py" Gal(Q/Q) GL2(E)

which is characterized as follows. The representation Ps is unramified for all primes
X Np, and the matrix ps(Frob/) has characteristic polynomial x2 ax + e.(l)lk-.
The representation p. was conjectured to exist by Serre (cf. i-$2], [$6-1) and its
existence was proved by Deligne (cf. i-DI-I for the case N 1, and [C] for more
general levels). When k > 2 and ap % 0, Deligne [D2] also proved that the restric-
tion of p, to a decomposition group at p in Gal(Q/Q) has image contained in a
Borel subgroup of GL2(E). Up to conjugation, this restriction has the form

(0.1) (Zk- 2(e’(p)/a’) * )0 2(a,)

where ; is the character of Gal(Q/Q,) giving its action on #, and, for any e E*,
2() is the unramified character taking Frob to .

In this paper, we will establish a modular criterion conjectured by Serre
[$7, pg. 18] for the representation py to be tamely ramified at p, or more precisely,
for 0 in (0.1). Assume that f has weight 2 < k < p and a, 0; when k p

2assume further that a, :/: e(p), so the two characters 7.k-2(e(p)/a,) and 2(a) are
distinct. The criterion says that py is completely reducible when restricted to
Gal(Q/Q,) if and only if there is a normalized eigenform 9 E b,q" of weight
k’ p + 1 k and character e for F(N) over E, whose Fourier coefficients satisfy
nkb. na. for all n > 1.
The relationship between f and g is symmetric (for example, the relation between

Fourier coefficients may be written nb, n"a.), and Serre calls the pair (f, g) of
normalized eigenforms "companions". An equivalent formulation of companion-
ship is that the Galois representations ps and Po satisfy: py (R) . _ Po (R) 7. ’’ Using this,
it is easy to show that the existence of a companion forces py to be completely
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reducible when restricted to Gal(Q,/Q,): one finds that the character 2(ap) occurs
as a direct summand in P.r - Po (R) ;tk-l" The converse is more difficult, and provides
an excellent test case for Serre’s general conjectures ([$8], [$9]) on the weight of a

2"modular" Galois representation. We note that the case when k p and ap e(p)
is still open, and seems to require new methods.
We begin by recalling the geometric theory of modular forms, due to Deligne-

Rapoport [DR] and Katz [K2]. We then consider the case of modular forms
(rood p), which is due to Serre and Swinnerton-Dyer [$4], [Sw]. Our approach
stresses the Igusa coverings of modular curves in characteristic p, and we prove a
theorem of Serre on the differentials of the Igusa curve which frequently allows one
to reduce questions on forms of weight k < p + 1 on F1 (N) (mod p) to forms of
weight 2 on Fx (Np). The construction of the representation Ps when k < p + 1 is
accomplished using the p-torsion in the Jacobian of the curve X(Np); this con-
struction is based on ideas of Fontaine and Serre IF3], [$7] and is well-suited to
the study of the local behavior of ps at p. We have also followed Mazur’s approach
I-M], using ideals in the Heeke algebra, fairly closely. The restriction of py to a
decomposition group at p is determined, when a 4: 0, using the theory of ordinary
p-divisible groups.
The proof of Serre’s conjecture on companion forms uses p-adic techniques,

and specifically the different p-adic cohomology theories (de Rham, crystalline,
Washnitzer-Monsky) of modular curves and their Jacobians. Here we confess that
we have occasionally used rather artificial methods for defining the action of Hecke
operators on these cohomology groups, and have not always checked that the
actions are compatible with isomorphisms between the theories. In particular, the
assertions preceding (15.4), (15.7), and (16.7) depend on an unchecked compatibility.

It is a pleasure to thank O. Atkin, R. Coleman, N. Elkies, N. Katz, and B. Mazur
for their help. Special thanks go to J.-P. Serre, whose beautiful conjectures stimu-
lated my interest in this subject, and who provided invaluable assistance in the
writing of this paper.
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1. Elliptic curves. This section contains a brief review of the theory of elliptic
curves, and generalized elliptic curves, over an arbitrary base scheme S. We refer to
the papers of Deligne I-D3], Deligne-Rapoport [DR], and Katz-Mazur [KM] for
the proofs.
An elliptic curve over a field F is a complete, nonsingular curve of genus 1 over

F, furnished with an F-rational point. An elliptic curve E over a scheme S is a proper
and smooth morphism rr" E S, furnished with a section e: S E, whose geometric
fibres are all elliptic curves. If S Spec R is affine, we will often refer to E as an
elliptic curve over R. The addition law on the fibres gives E the structure of a
commutative group scheme over S [KM, 2.1].

Let N > 1 be an integer, and let EN be the kernel of multiplication by N on E.
Then EN is a finite fiat group scheme of rank N2 over S; ifN is invertible on S, then
EN is an 6tale group scheme locally isomorphic to (Z/NZ)2 [KM, 2.3]. There is a
canonical, strictly alternating pairing [KM, 2.8]

(1.1) eN" EN x EN - #N

where #N is the group scheme ofNth roots of unity. The eN pairing is non-degenerate,
in the sense that the map

(1.2)
fN: EN tEN Hom(EN,

a (fl- eN(a, fl))

defines an isomorphism between EN and its Cartier dual tEN.
The invertible sheaf file,is on E has degree zero on each fibre, and the trace map

of Serre-Grothendieck duality defines an isomorphism Rlrc,/s
_

(-9s. Hence

(1.3) a)_n fr,ls

is an invertible sheaf on S, whose formation commutes with change of base
[KM, 2.2]. Its dual is the invertible sheafRIn,(9n/s, which is isomorphic to the sheaf
Lie(E) of Lie algebras on S. Since n is smooth, fl/s I"reo

’r,/S and one also has a
canonical isomorphism _n e*f/s [D3, 1-1.
The first deRham cohomology sheaf of E is defined by

(1.4) HR(E
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It is locally free of rank 2 on S, and the spectral sequence of hypercohomology gives
an exact sequence of sheaves on S I-K2, A 1.2]

(1.5)

The cup-product on deRham cohomology defines an alternating pairing of sheaves:

as _/-/o2R(E) RXz./s, which is isomorphic to Los by the trace map. This pairing
induces the duality of -e and Lie(E). If S is smooth over T, there is a canonical
integrable connection (the Gauss-Manin connection [K2, A1.3-1)

Using this connection, and the cup product, we may define a morphism of sheaves
on S:

(1.6)
>DR"

Let p be a prime, and let S be a scheme over 7//p7/. If E is an elliptic curve over
S, its Hasse invariant A(E) is a section of the invertible sheaf o_p-x [KM, 12.4]. If
co is a non-vanishing section of _e over the open set U and C is the (p-l-linear)
Cartier operator on differentials, then the restriction of A(E) to U is given by the
formula C(co)p. co-x. The geometric fibers over which A(Es) 0 are called super-
singular, and the fibres where A(Es) # 0 are called ordinary.
We illustrate these general notions with a consideration of the Tate curve E

Gm/qZ, which is an elliptic curve over the ring Z((q)) 7/[[q]] [q-X ] [DR, VII 1].
Here we have an exact sequence of group schemes [KM, 8.8]

0 N EN Z/NZ 0
ldN

where #N is the N-torsion in Gin. The pairing eN of(1.1) is determined by the formula

(1.8) eN(( qX/N)

where ( is any section of #N and ql/N is any Nth root of q, i.e., qX/N is any point in EN
mapping to 1 (mod N) in Z/NZ. Hence the isomorphism fN of (1.2) induces the
identity maps on #N Hom(Z/NZ, Gin) and Z/NZ Hom(tN, Gin) in (1.7). Con-
cerning the invertible sheaf -COE, we have

PROPOSITION 1.9.
parameter on Gin.

a) The sheaf _E has a non-vanishing section dt/t, where is the
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b) In the map defined by (1.6) the image of the section (dt/t)(R)2 of_E 2 is the section
(dq/q) of z((q))l Z.

c) Over the base Z/pT/((q)) the Hasse invariant ofE is riven by A(E) (dt/t)(R)p-I.

Part a) is proved in [DR, VII, 1.16.2], part b) is proved in [K2, A 1.3.18], and
part c) is proved in [KM, 12.4.2]. In the last two references, the differential (dt/t) is
called Ogcan.

A generalized elliptic curve E over the base S [DR, II 1.12] is a scheme of curves
r’E S whose geometric fibres are either elliptic curves or N6ron polygons,
together with a morphism +: Ere Xs E E whose restriction to Ere (the union of
smooth points in the fibres) makes Ere into a commutative group scheme over S.
One insists that the morphism + defines an action of the group scheme Ere on E,
and that on the fibres Es with singular points the translations by Erseo act by rotations
on the graph of irreducible components. One can define the invertible sheaf _e on
S, for a generalized elliptic curve, as the dual of the sheaf of Lie algebras Lie(Ere).
The Tate curve E Gm/qZ is a generalized elliptic curve over the base ;[[q]]
[DR, VII, 1]; the line bundle

_
again has a non-vanishing section dt/t and for

N > 1 there is again a canonical homomorphism of group schemes IdN: lN
lYi’regEN -ef N

2. Modular forms. This section contains a brief review of the geometric theory
of holomorphic modular forms for the group F(N). We refer to the papers of
Deligne-Rapoport [DR-] and Katz [K2] for the proofs.

Let k and N be integers > 1, and let R be a commutative ring in which N is
invertible. A holomorphic modular form f of weight k for F(N), defined over R, is
a law which assigns to every pair (E, )--consisting of a generalized elliptic curve
E over an R-algebra A and an embedding of group schemes : #N EN over A
whose image meets every irreducible component in each geometric fibre of E--an
element f(E, ) _Ek [DS, 2.1"!. This law must be compatible with isomorphisms
and extension of scalars. Since all of our modular forms will be holomorphic, we
will refer to f simply as a modular form. Let Mk(R) denote the R-module of all
modular forms of weight k for F (N).
We reinterpret this definition using the following.

PROPOSITION 2.1. The functor which assigns to each 77 [l/N-I-scheme S the set of
isomorphism classes of pairs (E, ), where E is a generalized elliptic curve over S and
: #N - EN an embedding of group schemes whose image meets every irreducible
component in each geometric fibre, is represented by an algebraic stack which is proper
and smooth over 77[1/N]. When N > 4 this functor is represented by an algebraic
curve X(N), which is proper, smooth, and geometrically connected over 77[1/N].

Proof. LetHbethesubgroupof GL2(7//N77)consistingofmatrices(ac bd)with
c 0(mod N) and d 1 (mod N), and let /[H[1/N] and ’H[1/N] be the algebraic
stacks over 77[1/N] defined in [DR, IV.3]. By definition, ’H[1/N] classifies triples
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(E, C, fl), where E is an elliptic curve over S, C a subgroup scheme of EN which i
locally isomorphic to Z/NZ, and fl is an isomorphism fl: Z/NZ EN/C. Let/(1) be
any section ofEs which maps to (1) in E/C. By the non-degeneracy of the pairing
defined in (1.1), there is a unique isomorphism of group schemes : #t C such
that es(((), fl(1)) ( for all sections ( of #N. Hence the data (E, C, fl) is equivalent
to the data (E, ), and the stack ,0[1/N-! classifies these pairs (when E is a genuine
elliptic curve). The argument of [DR, IV, 3.5.1] shows that the stack #n[1/N]
represents this functor for generalized curves.
When N > 4 the objects (E, ) classified by ’n[1/N] have no automorphisms

[KM, 2.7.4], so the stack /n[1/N] is a projective and smooth scheme over 7/[1/N]
[DR, III 2.9]. We denote this scheme by X1 (N), the complex theory [DR, III 5]
then shows that X1(N) is a geometrically connected curve.

We will henceforth assume that N > 4, so that the stack classifying pairs (E, ct) is
a scheme, and will treat the cases when N < 4 in 10. Let _E be the universal family
of generalized elliptic curves over X(N) (with fixed embedding _:/ts --_Es) and
let 09_ _oge be the line bundle on the curve XI(N) defined at the end of 1 (09_ is the
dual of the Lie algebra bundle Lie(_E’e)).

PROPOSITION 2.2. The space of modular forms of wei#ht k for F(N) defined over
R is equal to H(X(N), _(R)k (R) R).

Proof. This is simply a restatement of our definition, using the existence of a
universal curve _E on X1 (N).

We now investigate the line bundle _((R)2, using the map defined in (1.6). Let cusps
denote the divisor on the curve XI(N) over which the fibres of_E are N6ron polygons,
and let X(N) denote the open curve obtained by removing the divisor cusps.

PROPOSITION 2.3. On the curve X(N), the map (1.6) of sheaves i: 03_ (R)2’’’

fclco/ztml is an isomorphism. This extends to an isomorphism of sheaves

(2.4) 03__(R)2 ’ "(,(N)(cusps) on X (N).

Proof. The two statements are proved in I-K2, A 1.3.17-1 for any universal family
_E of elliptic curves. The first is a consequence of the Kodaria-Spencer theory
of deformations, and the second follows from a calculation on Tate curves (cf.
Proposition 1.9, b).

Let /be the genus of the (geometrically connected) curve X1 (N). Formula (2.4)
shows that deg(o2(R)k) > 2# 1 for k > 2, so H(X(N), o9_(R)k) 0 for all k > 2 by
Serre duality. As a corollary of this fact, one obtains

PROPOSITION 2.5. (cf. [K2, 1.7.1])
For k > 2, the natural map H(X:(N), o)_ (R)k) (R) R - H(X:(N), o)_ (R)k (R) R) is an

isomorphism.

Note. The map of (2.5) need not be an isomorphism when k 1 and R 7//p7/
IS9].
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We end by defining the Fourier expansion of a modular form f defined over R
at the cusp ofX (N). Recall that the Tate curve E G/qZ is a generalized elliptic
curve over Z[[q]], which has a canonical differential dt/t as well as a natural
embedding IdN: # En over Z[1/N][[q-I]. We define the Fourier expansion
f(q) E.>o anq off in the ring R[[q]] by the formula

f(G/q, Id2v) f(q)" (dt/t)(R)k.

Since XI(N) represents the functor of pairs (E, a), there is a unique morphism
Spec 7/[1/N][[q]] Xx(N) over 7/[1/N] such that (G,/qZ, Ids) arises from
pull-back of the universal pair (_E, _). The image of the prime ideal where q 0
defines the section of X(N), and q is a uniformizing parameter in the
neighborhood of this cusp. Hence the Fourier expansion f(q) describes the
holomorphic section f of _(R)k in the neighborhood of . Since Xx(N) is
geometrically connected, we find:

PROPOSITION 2.7. (cf. [K2, 1.6.1, 1.6.2])
a) The map H(Xx(N), O)(R)k( R)--, R[[q]] taking f to f(q) is an injection of

R-modules.
b) If Ro is a sub 7/[1/N]-algebra of R, the modular form f is defined over Ro if

and only iff(q) go[[q]].

Using the isomorphism (2.4), we may identify a modular form f of weight 2 with
a meromorphic differential COy on XI(N), which is regular outside cusps and has
poles of order < 1 along each cuspidal section.

PROPOSITION 2.8. The expansion of coy in a neiohborhood of the cusp is given
by f(q)dq/q.

Proof. This follows from part b) of (1.9), which shows that the local section
(dt/t)(R)2 of _09

(R)2 is mapped to the local differential dq/q of 7/((q)).

[}3. Hecke operators. In this section we define certain endomorphisms--the
Hecke operators T and U and the automorphisms (d)--of the space of modular
forms of weight k for F(N) over R. We also discuss their action as correspondences
of the curve X(N) over 7/[l/N].

Let d be a class in (7//N7/) , and define the automorphism (d) of X(N) over
Z[1/N] by:

(3.1) (d)(E, a) (E, d).

Here, as usual, E is a generalized elliptic curve over a scheme S where N is invertible
and : #s EN is an embedding of group schemes whose image meets every
irreducible component in each geometric fibre of E. The embedding d maps the
section of # to d’a(O in E. The automorphism (d) induces an R-linear
automorphism f-fl(d) of the space of modular forms of weight k for F(N) over
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R; we have

(3.2) fl(d) (E, a) f(E, da) in k.

If e" (7//N7/) - R is a group homomorphism with e(-1)- (-1)k and f is a
modular form of weight k over R, we say f has type (k, e) if fl(d) e(d).f for all
,t (_IN_).
Lt b a prim with N, and lt fb a modular form of weight k for F (N) over

Z[1/N]. We first define f[ T as a modular form of weight k over Q, the algebraic
closure of Q. IfE is an elliptic curve over Q and " # Es is an embedding, define

(3.3)
1

fl T (E, ) (p*(f(tpE, qo)),

where the sum is taken over the (1 + 1) isogenies qg" E tpE of degree with source
E. A calculation on the Tate curve [cf. K2, 1.11-1 shows that the law flT extends
uniquely to generalized elliptic curves, so defines a modular form of weight k over
Q. Iff and fl(l) have Fourier expansions

f(q) ., a,,q"
fl(l)(q) b,,q"

at o, then fl T has the Fourier expansion [K2, 1.11.2]:

(3.5) fl Tt(q) Z a,,q" + k-1 Z b,q’a"

Since f and fl(/) are defined over 7/[l/N], the coefficients of flTt belong to the
subring 7/[1/N] of Q. Hence fl T is a modular form of weight k over 7/[I/N], by
Proposition 2.7 b). If is a prime dividing N, we define fl Ut as a modular form of
weight k over Q by the formula

(3.6)
1

fl Ut (E, ) -i q*(f(tpE, qa))

where E is an elliptic curve and the sum is now taken over the isogenies qg: E qgE
of degree l, whose kernel has trivial intersection with the image of in EN. Again
this law extends uniquely to generalized curves, and has Fourier expansion

(3.7) fl Ut(q) a,aq".

Proposition 2.7 b) again shows that fl U is defined over 7/I-I/N].
Let R be a 7/[1/N]-algebra. For k > 2 we have an isomorphism:

H(X(N), _(R)k) (R) R H(X(N), _(R)k (R) R)
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by Proposition 2.5. Hence the operators T and Ut define (by extension of scalars)
endomorphisms of the R-module of modular forms of weight k > 2 for F (N) over
R (cf. [K2, 1.11.4]). When k 1 this argument does not apply. Nevertheless, the
proof sketched above for R Z[1/N] works for weight k 1 over any subring R
of . We will treat the operators Tt and Ut on modular forms of weight 1 over
R 7//pZ in the next section.
The endomorphisms T (for l N), Ut (for IIN), and (d) (for d e (7//N7/)) of the

space of modular forms of weight k over R all commute with each other. If f has
type (k, e) then formula (3.5) simplifies to:

(3.8) fl T(q) Z antqn + e(1)lk- E anqn,"

We say f is a normalized eigenform of type (k, e) if it is a simultaneous eigenvector
for the operators T and Ut, for all primes l, and satisfies a 1. We then have the
following formula for the higher Fourier coefficients of a normalized eigenform:

flT at’f all l)[N

f Ut a" f allllN

(3.9) ann-= I-I (1 -a,l-)- I-I (1 -a,l + e(/)/k--2)-.
n> tin IN

We say f is a cusp form if, as a section of O)_(R)k over Xt (N), it vanishes along the
divisor cusps. In particular, this implies that f vanishes at and ao 0. By (3.9)
the entire Fourier expansion of a normalized cuspidal eigenform f is determined by
its character e and its set of eigenvalues (at). We say f is a "new form" for Fx (N) over
R if f is a normalized cuspidal eigenform of weight k whose set of eigenvalues
{at: I’ N} does not occur for an eigenform of weight k for F(M) over R, for any
proper divisor M of N. When R C, this is equivalent to the definition of [AL].

We now define the Hecke correspondences T and Ut of the curve X(N) over
7/[1/N]. First assume that l’ N, and let XI(N; l) be the fine moduli scheme over

7/l-l/N] which represents the functor of triples (E, , C), where E is a generalized
elliptic curve, : #N EN an embedding, and C a locally free subgroup scheme of
rank in El. One insists further that the finite group scheme Image x C meets
every irreducible component in each geometric fibre of E [DR, V 1.6]. If E is a
genuine elliptic curve, let E’ E/C and let p: E E’ be the associated/-isogeny.
We define morphisms n and n2 of schemes over 7/[1/N]:

(3.10)

z" X(N; l) Xt (N)
(/, , c)(:, )

r2: XI(N; l) Xt(N)
(E, , C) (E’, ’
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Strictly speaking, these maps are only defined on the non-cuspidal points, but they
extend uniquely to X1(N; l). They are both finite coverings of degree + 1, and are
6tale coverings of XI(N) over _[1/Nl]. We define the correspondence T (cf.
[Sh2, 7.3]) as the image ofX(N; l) in X:(N) x zt.1/Nj X(N) under the map nl x n2.
The correspondence Tt acts on divisors d of X(N) by the formula: T(d)=

pr2(T’(d x X(N)). If P (E, ) is a non-cuspidal point, we find

(3.11) T(E,

where the sum is taken over the l-isogenies with source E. The action on divisors
preserves the subgroup of principal divisors, so induces an endomorphism (also
denoted by T) of the Jacobian Jx(N) over Z[1/N]. If we extend the formula (3.11)
to divisors of degree zero modular linear equivalence, this is the action on Jx (N)
induced by Albanese functorality. Since ’ N we may consider the action on X1 (N)
or J (N)over 7//IZ.

PROPOSITION 3.12. (cf. [E-I, [Shl], [Sh2, Thm. 7.9] Let Frs be the Frobenius cor-
respondence of XI(N) over Z/17/ and let Vers tFrl be its transpose. Then Tt
Vers + (l)Frt in the ring of correspondences of the curve X(N) over Z/IZ, and in the
endomorphism rin# of the Jacobian J1 (N) over Z/lZ.

Proof. If (E, ) is an ordinary point on Xt (N) in characteristic l, one checks
that (E, ) Ver(E, ) + Frs(E, l). Since the ordinary points are dense, this veri-
fies the claim.

We warn the reader that many authors [e.g., MW] prefer to work with the curve

X(N)’, which classifies pairs (E, a) where a: Z/N7/ EN is an embedding. On the
curve XI(N)’, the congruence in Proposition 3.12 becomes Tt’= Fr[ + (1)’Ver[
(mod l).
For llN we may define Us as a correspondence on X(N) over Z[1/N] by

considering the fine moduli scheme XI(N; l) over Z[1/N] which classifies triples
(E, , C) as before, with the extra condition that C c Im O. (This is the stack

associatedto thesubgroupHofGL2(Z/NT/)ofmatrices ( ) with c 0(mod N),

d 1 (mod N), and b 0 (mod 1).) Again there are two natural coverings
n, n2: X(N; l) X(N) and we define Ut as the image of nl x n2 in the product
X1(N) x Ztlmj X(N). The action of Us on a point (E, ) ofX(N) is given by

(3.13) Us(E,

where the sum is taken over the/-isogenies cp with source E such that qgct:/s qE
is an embedding.
The correspondences Tt and Us act on the holomorphic differentials co on XI(N)

by the formula col T (1), o nco, where is the pull-back and (n). is the trace
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map associated to a finite covering ofproper curves. Ifwe identify H(X1(N), fX(N)
with the invariant differentials on JI(N), the action of Tt and Ut on holomorphic
differentials is the one induced from their action as endomorphisms of the Albanese
variety (cf. the discussion, without proofs, in I-MW Ch. 2, 5.4, 5.8]). At the point
(E, g) of Xt (N) we find

(3.14) col T(E, ) co(cpE, cp)

where the sum is over the l-isogenies of source E and the fibres of fc,Ov)Ztl/NO at E
and cpE are identified using the maps n and n2.

Recall the isomorphism i: c_2 fCl(N) (cusps) of invertible sheaves on XI(N)
which was defined in (2.4). This induces an isomorphism of global sections, and
hence an isomorphism from the space H(X. (N), (R)2)o of cusp forms of weight 2
over Z[1/N] to the space H(XI(N),FCI(N)) of holomorphic differentials over
7/[1/N]. We have defined endomorphisms Tt, Ut and (d) of both 7/[1/N]-modules;
it remains to check the following.

PROPOSITION 3.15. (cf. [Sh2, 7.2.6])
The map i: H(X(N), _O)(R)2)0

_
H(X(N),c,(m) is an isomorphism of Hecke

modules: it commutes with the action of Tt, Ut, and (d).

Proof. Let v (R) v’ be a local section of _(.(R)2 on the set U c X1 (N), where v and
v’ are relative differentials on the universal curve over U. Then i(v (R) v’) (v, Vv’)OR
as a regular differential on U over 7/[l/N]. Assume that the point (E, ) and its
translates (qgE, cp) by Tt are contained in U. By the definition (3.3) of the endomor-
phism T acting on forms of weight 2:

1
(v (R) v’)l r,(e, 7 (R)

1
qqg*v*E @ *

Hence the image of (v (R) v’)l Tt under is equal to the differential

(3.16)
1

where, as usual, the fibres of fX(N) at (E, ) and (cpE, cp) have been identified.
But if qg: E F is an isogeny and v and v’ are invariant differentials on F, we have

VEqg*V’ cP*VFV’ in _HDa(E)

(cp*v, cp*Vv’)noR deg cp (v, VV’)DR.F
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The first follows from the naturality of the Gauss-Manin connection and the second
from the fact that the adjoint of the isogeny q with respect to the pairing ( )oR
is the isogeny tqg, which satisfies tq o q9 deg qg. Since all the isogenies q9 in the sum
of (3.16) have deg q9 l, we find that

This differential is equal to i(v (R) v’)l T, under the action (3.14) of T on the space
of holomorphic differentials on XI(N). Hence i(v (R) v’)l T i(v (R) v’l Tt). A similar
proof works for Ut and (d).

Note. R. Coleman has observed that Proposition 3.15 also follows from the
formulas: i(rcf) rc(if), i(nf) I. n(/f) where re1 and 72 are the maps defined
in (3.10).

COROLLARY 3.17. If 09 Y’n> anqdq/q is the formal expansion of the holomor-
phic differential 09 in a neiIhborhood of the cusp and ol(l) E> b.qdq/q, then

oglUt an,qndq/q.
n>

Proof. This follows from a combination of Proposition 3.15, Proposition 2.8
(which relates the local expansion of 09 o9, with the Fourier expansion of the cusp
form f of weight 2) and formulas (3.5) and (3.7) (which give the action of Tt and U
on q-expansions).
We remark that the first formula in (3.17) can be used to give a different proof of

the Eichler-Shimura congruence in Proposition 3.12.

4. Modular forms (mod p). We henceforth fix a prime p which does not divide
N (and recall that N > 4). For k > 1 we let Mk denote the vector space of modular
forms of weight k for F(N) over Z/pZ, and let M denote the space of cusp forms.
If R is a field of characteristic p, then the space of modular forms of weight k over
R is Mk ( R. We let tr denote the Frobenius endomorphism ofR over 7//pZ: tr(x)
x’. Iff in Mk (R) R has Fourier expansion Z anq, then f’(q) E aq E aq.

In the previous section, we defined linear endomorphisms T, U, and (d) of Mk
and M, provided that k > 2. In this case it is customary to denote the operator
Tp by U,mthis makes little difference as the formulae (3.5) and (3.7) agree on
q-expansions. We now consider the case when k 1. For - p, formula (3.3) defines
an endomorphism of the space of forms over an algebraic closure of 7//p7/, and the
q-expansion (3.5) shows that Tt gives an endomorphism of Mk stabilizing Mk. A
similar argument, using (3.6) and the q-expansion (3.7) gives the existence of Ut, for
llN. The only difficulty remaining is to define the operator T.
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PROPOSITION 4.1. There is a unique endomorphism T: M - MI which has the
followin9 effect on q-expansions: iff M andf(q) Y, a,qn,fl(p)(q) X b,q, then

fl T(q)= ant,q + bnqnt’.

Proof. By part a) of Proposition 2.7, the form fl T (if it exists) of weight 1 is
completely determined by its Fourier expansion at . Hence we are reduced to
proving that E apq + E bq’ is the Fourier expansion of a holomorphic form # of
weight 1 over 7//p7/.
The curve X(N) X(N) cusps is affine, so H(XI(N), ) 0. Hence the

natural map H(X(N), _) (R) 7/p7/- H(X(N), co_ (R) Z/pZ) is an isomorphism,
and we may lift f to a section F of

_
on X(N) over 7/[1/N]. F is then a

meromorphic modular form of weight 1 for F (N) over 7[1/N] with singularities
along the divisor cusps. Similarly FI(p) is a meromorphic form, which reduces
(mod p) to fl(P).
The definition of Fourier expansions at , using the Tate curve Gm/qZ over

7/[1/N]((q)) as in (2.6), extends to meromorphic modular forms. We have F(q)
E Aq and Fl(p)(q) E Bq with A. B 0 for n << 0. Since the map taking a
meromorphic form to its Fourier expansion commutes with reduction (mod p), we
have the congruences: A a (mod p) for all n > 0, A B. 0 (mod p) for all
n<0.
The definition of T in (3.3), and the Fourier expansion (3.5) of FI T also works

for meromorphic forms F. Hence FI T(q) ,Aq + EBq is the Fourier expan-
sion of a meromorphic form of weight 1 over Z[1/N]. Let # be the reduction of
fl T, which is a priori a meromorphic form of weight 1 for F1 (N) over 7//p7/. Since
the negative Fourier coefficients of FI T are all 0 (mod p), the Fourier expansion
of # at is equal to E>oaq + .>o b,q. Hence # is regular at . A similar
argument (using the p-divisibility of the negative coefficients of F at all cusps of
X(N), and the formula for the expansion of FITp at other cusps (cf. [K2, 1.11.1]))
shows that # is regular at all cusps of X(N) over 7//p7/, so is a holomorphic form
of weight 1.

Beyond the Hecke operators on Mk, there are additional linear maps between the
spaces which exist only in characteristic p. First there is the map:

(4.2)

The linear extension of V to Mk (R) R satisfies

(4.3) (Vf) V(f) f’,

and the effect of Vp on Fourier expansions is given by

(4.4) fl V,(q)- a,,q"’.
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Next, there is the derivation:

(4.5) 0: Mk Mk+tp+l)

which is characterized by its action on Fourier expansions:

(4.6) Of (q)= , na,,q".

The existence of 0 is proved as in Katz [K3, where 0 is denoted AO]; our hypothesis
that N > 4 insures the existence of a universal curve _E over X1 (N). The map 0 is
injective if k is prime to p, and the kernel of 0 on Mpk is equal to the image of V
[K3, II].
The Hasse invariant A(E) H(XI(N), _(R)P-X) defined in 1 gives a canonical

holomorphic modular form A of weight p 1 for F1 (N) over 7//pZ. By Proposition
1.9 part c) the Fourier expansion ofA at the cusp oz is given by A(q) 1. The section
A vanishes to order 1 at each super-singular point of Xx (N) [KM, 12.4.3]. Multipli-
cation by A gives an injective linear map f-- Af from Mk to Mk+(p_X) whose image
consists of the sections of o9

(R)k+tp-) which vanish along the divisor of supersingular
points on X(N).
The endomorphisms T, U, T (= Up for k > 2), and (d) of Mk all commute. They

also commute with multiplication by A’Mk Mk+tp-), except in the case when
k 1, where:

(4.7) A(f] T,) (Af)l U, + (fl<p>)l g.

(This identity suggests a different proof of Proposition 4.1, which does not involve
lifting to meromorphic forms in characteristic zero. Namely, for f Mx the right
hand side of (4.7) defines an element of Mp with the correct Fourier expansion at
oz. A detailed analysis of this section of og_(R)p shows that it vanishes at each super-
singular point, so has the form A9 for 9 M, and we define 9 flTp.) The
operators T and Uz commute with V: Mk Mpk and (f[ Vp)] Up Akf. Their com-
mutation relations with 0 are:

(0f)l Tt 1. O(fl T)

(4.8) (0f)l Uz 1. O(fl Ut)

(Of)l Up O(fl Vp) O.

All this can be checked on Fourier expansions, using part a) of Proposition 2.7.
LetM k>O Mk, where Mo Z/pZ. ThenM is a graded 7//pZ-algebra of Krull

dimension 2.
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PROPOSITION 4.9. (cf. [Sw], [S4, Thm. 1]) The kernel of the ring homomorphism
M - 7//pT/[[q]], taking f Mk to its Fourier expansion f(q) at , is equal to the
principal ideal (A 1)M.

Proof. The kernel clearly contains (A 1)M. This is a prime ideal p of M, as
A has simple zeroes at the supersingular points. Since the image M is not finite, it
has dimension 1 and the kernel cannot properly contain p for dimension reasons.

By Proposition 4.9 the image M M/(A- 1)M in Z/pT/[[q]] is graded by
7/_/(p 1)7/: we write r )r with in 7//(p 1)7/. We say the series E a.q" in
M has filtration k > 0 if it is the image of an element f Mk which does not vanish
at at least one supersingular point of X1 (N). Equivalently, E a.q has filtration k if
it is the Fourier expansion f(q) off Mk which is not divisible by A in M. One has
k (mod p 1), by the definition of the grading on M.

PROPOSITION 4.10. (cf. [Sw, Lemma 5], [J, 7])
a) Iff(q) E a,q has filtration k and (k, p) 1, then Of(q) E na,q has filtra-

tion k + p + 1.
b) Assume f(q) E a,q has filtration k, with 2 < k < p. Define k’ p + 1 k,

so 1 < k’ < p 1. Then Ok’f(q) has filtration <p + 1 + k’, with equality holding if
and only iffl Up v O.

Proof. a) is proved for N 1 in [Sw], and in [K3] a proof is given for modular
forms on the curve X(N) for N > 3. The latter proofgeneralizes to X1 (N) for N > 4,
using the universal elliptic curve over X1 (N) and the Gauss-Manin connection on
its deRham cohomology.
To prove b), we first note that Ok’-If(q) has filtration pk’; this follows from succes-

sive applications of a). Indeed, for < k’- 1, Of(q) has filtration k + i(p + 1)
prime to p, and k + (k’ 1)(p + 1) pk’. To determine the filtration of ok’f(q), we
use the formula [K3, pg. 8]:

(4.11) Of AOf + kBf

for f e M. Here Ofe Mk+2, a e Mp_l, and B e Mp+x is a canonical form (the
negative of the form denoted B in [K3]) which is non-zero at all supersingular
points. We have the identities: OA B and OB -QA where Q is the normalized
Eisenstein series of weight 4 and level I [$4, Thm. 5]. If we recursively define
fro) f, ftx)= Of, ftv) Of(v-) (k + v 2)(v 1)Q’ft-2), then ft)(q) has fil-
tration < k + 2v. By induction on n, one proves the formula l-Sw, pg. 31]:

n! (k+n-1)!
O"f

=o (n v)! (k + v 1)!
ABn-f<v)

for all n > 0, starting with (4.11)--which is the case n 1. When k < p and n k’
p + 1 k, we have (k + n- 1) p and the only nonzero term in the above sum
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occurs when v.= n: Ok’f ak’f(k’). Hence the filtration of Ok’f(q) is equal to the
filtration of ftk’)(q), which is < k + 2(k’) k’ + p + 1.

Using a) we now observe that the filtration of Ok’f(q) is equal to k’ + p + 1 if and
only if the filtration of OP-lf(q) is equal to pk. But

OP-y(q) Z aq f(q) fl Upl V(q).
(n, p)

If fl Up 0, it has filtration k, and fl Upl V(q) has filtration pk (as V is essentially
the pth power map). If fl Up 0, the right hand side has filtration k, so Ok’f(q) has
filtration < k’ + 2.

Iff(q) 53 anq is an element of 7//pZ[[q]] we define f(q)l Up E anpqn. The next
result gives a useful criterion for an element in M to have low filtration.

PROPOSITION 4.12. (cf. [$5, Thm. 6]) Iff(q) ]la satisfies f(q)] Up 2"f(q) with
2 O, then f(q) has filtration k with 2 < k < p + 1.

Proof. Let k be the filtration of f(q), and let f Mk be a form with this Fourier
expansion. Then

(fl U,)I Vp(q) a,,pqnp f(q) OP-lf(q).

The left hand side is the Fourier expansion of 2"fp, which lies in Mpk and, by
hypothesis, has filtration pk. The right hand side has filtration <k + (p 1)(p + 1).
Hence pk < k + (p 1)(p + 1), which implies that k < p + 1. Iff has weight k 1,
so does t fl(P) and fl Tp fl Up + #l Vp. Since 01Vp has filtration p, so does fl Up
and we cannot have fl Up 2f. Hence k > 2.

The results in Propositions 4.9, 4.10, and 4.12 also hold for modular forms
f Mk (R) R and for Fourier expansions f(q) M (R) R R[[q]-I, where R is any
field of characteristic p. The proofs are essentially the same.

[}5. Igusa curves. Let X (N)h be the affine curve over Z/pZ obtained by removing
the supersingular points (the support of the divisor of the section A of _o9(R)p-l)
[DR, V, pg. 101]. We define the affine Igusa curve I1 (N)h as the fine moduli space
of triples (E, a, fl), where E is a generalized elliptic curve over a scheme of character-
istic p, a: #N EN is an embedding whose image meets every irreducible com-
ponent in each geometric fibre of E, and/3" #v Ev is an embedding of group
schemes.
The group (7//p7/) acts freely on II(N)h. If d is a non-zero class (mod p) the

automorphism (d)p is defined by the formula:

(5.1) <d>p(E, , fl) (E, , dfl).

The quotient of I1 (N)h by this action is the affine curve X1 (N)h.
Let _E be the universal curve over I1 (N)h, and let _h be the dual of the invertible

sheaf Lie(_Ereg ). Then _o9h t*(_), where " I1(N)h X1 (N)h is the covering map.
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There is a unique morphism Spec 7//pZ[[q]] Ix (N)h over 7//pZ such that the triple
(G/qZ, ldN, Idp) arises via pull-back from the universal curve. The image of the
point q 0 is the cusp o of Ix (N), and q gives a uniformizing parameter in the
neighborhood of this cusp. Hence sections of _wh have a Fourier expansion at , as
in (2.6).
The Igusa curve Ix(N) is defined as the smooth compaetification of Ix(N)

over Z/pZ. The 6tale covering rt: I (N)h Xa (N)h extends to a ramified covering
r: Ix (N) Xx (N), and the line bundle _h extends to lx (N) by

_
r*(_x,tm).

PROPOSITION 5.2. The line bundle co_ of Ix(N) has a canonical section a which
satisfies:

1) a is nonvanishin9 on I (N)h,
2) ap-x A as sections of
3) a(G,,/q, Ids, Ida) dt/t, so a(q) 1,
4) a has a simple zero at each supersingular point x in Ix (N) Ix (N),
5) al(d) d-a for all d (Z/pZ).
Proof. Let (E, , fl) be a noncuspidal point of Ix (N)h. There is a unique point P

in E E/(#) such that f,(e): E,--, G,, is the identity map on #, (where
f: Ep Hom(Ep, G,,) is the duality of (1.2)). In other words, for all sections
of/ we have the formula e(P, fl())= . Let 9 be a function on E with

div(9) p" {(P) (0)}; the holomorphic differential d9/9 in coE depends only on fl
and we define:

(5.3) (E, 0, fl) d9/9.

This gives a non-vanishing section of COb on Ix (N), once we check that the definition
(5.3) extends to the cusps. In fact, the identity a- A shows that a extends to a
holomorphic section of

_
on Ix (N). To prove it, we recall that the Hasse invariant

is given by the formula A (Cco). co-x, where co is a nonvanishing section of coE
and C is the Cartier operator. Applying this to co dO/O, which satisfies
C(do/o) do we find A a’-x over the ordinary points of lx (N). Since this is an
identity between meromorphic sections of co(R),-x which holds on an open subset of
I (N), it holds on the entire curve. Since A has a simple zero at each supersingular
point ofXx (N), the covering Ix (N) Xx (N) is totally ramified at each supersingular
point (of degree p 1) and a has a simple zero at each supersingular point x of
Ix (N). This proves 1), 2), and 4).
To calculate the Fourier expansion of the section a in a neighborhood of

(G,,/q, Ida, Ida), we remark that in the definition (5.3) we may take P q-X/,
(as we have the formula ep(q x/p, ) -x on the Tate curve) and the function 9 may
be taken to be

o(t) (-t)
O(qX/Pt)

O(t)"
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where O(t)= (1- t)l-ln>X(1- q"t)(1- qn/t) is the standard Jacobi-Tate theta
series. Hence do/o dt/t and a(q) 1 as claimed in 3).
By the definition of the action of (d)p on sections of _e), we have al(d)p(E, , fl)

a(E, , dfl) at ordinary points. But the point P’ associated to/3’ dfl" lp E is
equal to d-xP. Hence d9’/9’ d-Xdo/9 and a(E, , dfl) d-Xa(E, , fl). Since the
identity al(d)p d-Xa holds above all ordinary points, it is true on all Ix(N). This
proves 5).

Note 5.4. Since the covering Ix(N)--, Xx(N) is totally ramified at the super-
singular points, the curve 11 (N) is geometrically connected.

Let S be the affine coordinate ring of Ix (N) over 7//p7/. Then S ), S, is graded
by e Z/(p 1)7/, where S, consists of functions 9 satisfying 91(d)p d"o for all
d (Z/pT/). For any O S we let

9oo ’ anq
n> O

be its local expansion in a neighborhood of the cusp oz of Ix (N), with respect to the
uniformizing parameter q.

PRO’OSITION 5.5. The map 9 -*9 #ires an isomorphism of 9faded rinos S M,
where M

_
7//p7/[[q]] is the rin9 of Fourier expansions of modular forms for Fx (N)

(mod p).
The Fourier expansion , a,q" in M, associated to the function 9 S, has filtration

k if and only if ordx(9) > -k at every supersingular point x of I (N), with equality
holdin9 for at least one x.

Proof. We may assume that 9 S,. Let k be an integer with k (mod p l)
and such that ordx(9) > -k at every supersingular point x of 11 (N). Then by 4) of
Proposition 5.2, the element f 9" ak is a holomorphic section of _(_(R)k on Ix (N). By
5) of Proposition 5.2, this section is fixed by the Galois group of Ix (N) over Xx (N),
so f is a modular form of weight k for F1 (N). Since a(9) 1 by 3) of Proposition
5.2, the Fourier expansion f(q) of f at is given by 900 E a,q. Hence 9oo is an
element of M,.
The _map S, - M, is clearly injective. To prove surjectivity we lift an expansion

f(q) M to a modular form f Mk and set 9 f/ak in S,. Then 9oo f(q); the
filtration of f(q) is the minimal value of k for which a lifting to Mk exists. In this
case, the poles of 9 at supersingular points x have order < k, with equality at one
or more x.

Let us also recall the relation between holomorphic differentials on the curve

Ix (N) and the spaces of cusp forms Mk of weight k < p for Fx (N) (rood p). Recall
the isomorphism of line bundles on Xx (N)

_(R) L~ f,()(cusps)
defined in (2.4). Since the map re" lx(N) Xx(N) is totally ramified of degree
e p 1 at the supersingular points, Hurwitz’s theorem on computing the canon-
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ical bundle for ramified coverings [H, Ch. IV, 2] gives an isomorphism of line
bundles on I (N):

fltN - r*fx,tN((P- 2)s_s).

Here s_s denotes the divisor of supersingular points on I (N), and the multiplicity
p 2 e 1 occurs as the ramification is tame. Since on I(N) is simply the
pull-back r*() from X(N), we obtain an isomorphism

(5.6) w_(R)2((p 2)s_s)
_
fts(cusps)

of line bundles on I (N). Hence a meromorphic section h of o(R)2 on I(N) gives a
holomorphic differential on I (N) if and only if h is regular at each ordinary point,
vanishes at each cusp, and satisfies ord,,(h) > -(p 2) at each supersingular point
x. If f Mk with k < p, the section h f/ak-2 satisfies the above conditions, so
corresponds to a holomorphic differential Oy on I (N). The Galois group of I (N)
over Xx(N) acts on Ogy by: ayl(d)p dk-2"fDf. Indeed, f is fixed and the group acts
on a by d-, by 5) of Proposition 5.2.

PRO’OSIXIO 5.7. (Serre, cf. [$7], [KM; 12.8]) Assume that 2 < k < p. Then the
map f-- o9 f/ak-2 identifies M with the subspace of holomorphic differentials
H(I1 (N), ,ts))(k 2) on which the Galois group acts by the character (d) -. dk-2.

The expansion of the differential o)y at the cusp oo is equal to f(q) dq/q.

Proof. Since a(q) 1, the argument in Proposition 2.8 shows that ogy f(q)dq/q
in a neighborhood of oo. Since the Fourier expansion off e Mk determines the form
f, this shows that the map M - H(I1 (N), f,ts)(k 2) is an injection. To show
it is surjective, we observe that any holomorphic differential v in this eigenspace
corresponds, by (5.6), to a meromorphic section h of _e)(R)2. The section h vanishes at
the cusps and satisfies ordx(h) > -(p 2) at all supersingular points. In fact, since
h is in the(k 2) eigenspace for the Galois action, we must have ordx(h) -(k 2)
(mod p 1) (or else the section ak-2h would have a fractional order pole at the
supersingular point n(x) of X (N)). Hence ord(h) > -(k 2) at all supersingular
points, and f ak-2h is an element ofM with o)y v.

Arbitrary graded elements of the ring/ (/r of Fourier expansions give
rise to meromorphic differentials on 11 (N), in the following manner.

PROPOSITION 5.8. Iff(q) , anq is an element of M, then oy , anqndq/q is
the expansion at the cusp oo of a meromorphic differential on 11 (N), which is regular
outside the cusps and supersingular points, and satisfies toyl(d), de-2cof for all
d e (/p).
At the cusps the poles of ogy have order < 1, and coy is regular at all cusps if and

only iff(q) is the expansion of a cusp form. At each supersingular point x we have
ord,(coy) (p a) (mod p 1). The expansion f(q) has filtration k if and only if
ord,(coy) > (p k) at all supersingular points x, with equality holding for at least
one x.
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If h(q) e M corresponds to the function g e S, then f(q) Oh(q) e M+2 corre-
sponds to the exact differential of =dg on 11 (N).

Proof. Assume f(q) has filtration k . Then 09: is the expansion at c of the
meromorphic section f/ak-2 of 09(R)2 fl (cusps + 2 p)ss). As a section of 0(R)2

It(N)
it is regular at the cusps and satisfies ord(f/a-2) > (2 k) at each supersingular
point, with equality holding for at least one x. The corresponding statements for
as a meromorphic section of() follow immediately.
The fact that Oh corresponds to de follows from a comparison ofexpansions at

D. Ulmer has remarked that the differential oz dq/q associated to the modular
function 1 Mo classifies the extension of group schemes

0 - #p Ep - 7//pZ 0

over II(N)h- cusps. We also mention the fact (implicit in 5.7 and 5.8) that the
automorphism (d)p acts by multiplication by d-1 on the tangent space of each
supersingular point x on 11 (N). (The action is defined by transport of structure.)

The operators (d)N, for d e (Z/N7/), T, and U (for # p) define correspondences
on the curve I1 (N) over 7]/pZ, using the formulae (3.1), (3.1 1), and (3.13). Hence they
define endomorphisms of the space of holomorphic differential forms on II(N),
which preserve the eigencomponents for the action of the Galois group (Z/pZ).

PROPOSITION 5.9. The isomorphism Mk f11tN))(k- 2) of Proposi-
tion 5.7 commutes with the action of (d)s, Tt, and U on differentials and modular
forms. It transforms the endomorphism Up ofM to the endomorphism Verp (Frp)
of the holomorphic differentials.

Proof. The claim for (d) is clear, as 09:l<d>N(E, , fl) hl(d)(E, z, fl) where
h f/ak-2 is the corresponding meromorphic section of (R)2. But hl(d)n
fl(d)l/ak-2 as the section a of 09_ does not depend on , so is fixed by (d)s. Hence
co:l<a>,
Now suppose f e M has Fourier expansion Zn>lanqn, and for 1) Np, fl<l)

has expansion En>l b.qn. Then F[ T(q) : antq + - E b,q"t. On the other hand,
hi Tt(q) Z antq + %(1)" 1E bnqnt, as h has weight 2 and character % for the group
(7//p7/) . Since %(1) -2, we see that c0tr, o9:1T as claimed. A similar argument,
using Fourier expansions at , works for Ut and U.
When k p + 1, the argument of Propositions 5.7 and 5.9 gives the following

(whose proof we omit).

PROPOSITION 5.10. The map f a: f/A identifies oMp+l with the space
H(X1 (N), flx,s)(ss)) of differentials of the third kind on X1 (N) over 7//p7/with simple
poles at the supersingular points. This isomorphism commutes with the action of the
Hecke operators, and the expansion of o9: at the cusp 03 is equal to f(q)dq/q. The
differential o9 is holomorphic on X1 (N) if and only iff AM.
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6. The curve X(Np) over 7/[llNp][v]. We now consider the curve XI(Np)
in more detail, where N > 4 and p is prime to N. By the results of 2, this curve is
smooth and proper over 7/[1/Np]. We now consider certain automorphisms w; of
X1 (Np), associated to primitive pth roots of unity (, which are rational over the 6tale
extension Z[1/Np] [(] 7/[1/Np] [v]" These automorphisms were studied, in the
case where N 1, by Mazur and Tate [MT, 5] and Wiles [Wi].
The noncuspidal points of XI (Np) correspond to triples (E, , fl), where E is an

elliptic curve over a 7/[1/Np]-algebra and and fl are embeddings ofgroup schemes
or: 1 EN, : #v Ev" (We may separate and fl as p is prime to N.) For
d (Z/NZ) we have the automorphism

(6.1) (d>,,(E, , ) (, d, ),

and for d e (Z/pZ) we have the automorphism

(6.2) (d)(E, , ) (E, , d).

If d is prime to Np, and (d) is the automorphism ofXx (Np) defined in (3.1), we have
(d) (d)N. (d)p. Similarly, we have defined Hecke correspondences Tt (for 1X Np),
Ut (for tiN), and U, on Xx(Np) over 7/[1/Np].
Now let ( be a primitive pth root of unity: this gives an isomorphism

(6.3)
k: #p Z/pZ

of finite groups schemes over Z[1/Np][(p]. Let (E, , fl) be a noncuspidal point
of Xx(Np) over Z[1/Np][(p]. Let E’= E/fl(#p) be the p-isogenous curve, and
qg: E E’ the corresponding p-isogeny. Let ’ (p: # E’; this is an embedding
as N is prime to p. If ep: E, x Ep tp is the pairing defined in (1.1), there is a unique
class Pa in Ep/fl(#p) such that ep(fl(z), Pa) z for all z #p. Let P q)(Pa), which is
well defined in E. Finally, let fl"/, E be the embedding of group schemes
defined by fl’() P. We define

(6.4) w(e, ,/) (E’, ,/’)

as an automorphism of Xx(Np) over 7/[1/Np] [(p].
Note that the choice of ( appears only in the final definition of embedding ft. If

we let b" Z/pZ E, be the embedding of group schemes with b(1) Pa, then the
map

(6.5) v(E, , fl) (E’, ’, b’)

gives an isomorphism from XI(Np) to the curve XI(Np)* which classifies triples
(E, , b) where b: Z/pT/ E. The choice of ( gives an isomorphism from X1 (Np)*
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to X1 (Np):

(6.6) u(E’, o, (E’, o, o i;)

and we have w u o v.

PROI’OSITION 6.7. 1) w(G,,/qZ, IdN, Ida,) (Gm/qpz, p IdN, - q).
2) For d
3) Let w w for any primitive pth root of unity (. Then

w (p).(- 1).

for all d (Z/NZ)

w" Tt (1); Tt" w for all ) Np

w" U (1); U" w for all llN.

Proof. 1) We calculate over 7/[1/Np] [(p-I((q)), where G,,/q E is an elliptic
curve. The isogeny

q)" Gm/q 7z Gm/qt’Tz
p

has kernel fl(#,) ld,(#,), so E’= Gm/q and ’= q) p" Ids. The point Pa is
equal to q/P, by formula (1.8), so P q in Gm/q. Hence fl’: #, E is the map
taking ( to q.

2) Since i;d i; o (d, (di, this follows from the formula: wd u o v.
3) Let w2(E, , fl) (E", ", fl"). Since tqg: E’ E is the p-isogeny with kernel

ff(#p), we have E" E. Since tip o 99 p, we have " p. . As the Weil pairing ep
is alternating, fl" -ft. Hence w2

The fact that w commutes with (d)N is clear. To derive the commutation laws
with T and Ut, we use the identity

%,(,pfl(z), CPa)= zd ’
where : E F is any isogeny of degree prime to p. Hence Pa (deg.P, in
Fp/d/fl(#p). The rest is a consequence of the definitions of Tt and U, and we leave
the proof to the reader.

The automorphism w of XI (Np) acts on the space of holomorphic differentials,
by pull-back. Via the isomorphism (2.4) this induces an action of we on the space of
cusp forms of weight 2 for F(Np) over 7/[1/Np] [(p]. One can verify, using the
method of Proposition 3.15, that the action is given by

1
(6.8) flw (E, , fl) E’-(p*(f( a, if))

P
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where (E’, a’, is defined in (6.4), q E E’ is the associated p-isogeny, and
qg*" co,2 co2 the pull-back.

If we conjugate the correspondence Ut, by the automorphism w, we obtain a new
correspondence (cf. [$7], [Wi, 2-1):

(6.9) U;, w-1U,w

on X: (Np) over 7/[1/Np] [(t,]" By part 2) of Proposition 6.7, the correspondence U
is independent of the choice of primitive pth root of unity (as Up commutes with
(d)t,). Hence U is defined over Z[1/Np]. Using (6.8), we get an action of U on the
space of modular forms of weight 2 for FI(Np) over Z[1/Np], and this action is
compatible with its natural action as a correspondence on holomorphic differentials
on XI (Np). By part 3) the operator U commutes with the action of the operators
(d)N, (d)t,, Tt and Ut on the space offorms ofweight 2. It usually does not commute
with
We now determine the action of U on Fourier expansions.

PROPOSITION 6.10. Let f be a modular form of weieht 2 for F(Np). Then

fl U(q) flw(q(a) +
d Z/p T/)

Proof. We recall that, by definition of the Fourier expansion in (2.6):

fl U(m/q, Ids, Idt, fl U(q)" (dt/t)(R)2

Since w(Cm/q, Ids, Idt, (Gm/qt’Z, pldn, q) and the p-isogeny is cp" m/q "-
Gm/qt’ we have

t,

fl U(m/q, Ida, Idt, flwf Ut,wg(m/q, Idzv, Idt,)

1
qg*(flw-x Ut,(Gm/qt’, pld, q)).

P

By the definition of Ut, in (3.13), we have

Ut,(m/qt’Z, plds, - q)

(m/(qa), pldu, w- -a) + (m/qt,Zz, p2Id, w- qt,)
d (Z/pZ)*

as the isogenies ffd: Gm/qt’ ’ Gm/(qCl) for d (7//p7/) and q/: Cm/qt’ m/qt’2’

are those isogenies ofdegree p whose kernel does not meet the subgroup (q). Letting
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9 flw1, we have

1
(6.11) fl U(Cm/q7/, Ids, Ida,) - (l(m/(q(d)7/, pldN, -a))

1
+ __-**9(m/qt’27/, p2IdN, --q’).
W

But w <p>s" <- l>v so 9 flw flwc <P>ff" <- 1>-1. Hence

](m/(q(Cl) 7/, plds, ( v- (-a)

flw(Gm/(q(a) 7/, Id2v, ’*)

flw<d>,(Gm/(q(a) 7/, Idt, Ida,)

flw(Gm/(q(a) 7/, Ids, Ida,).

Since tp*((dt/t)(R)2) p2(dt/t)(R)2 and ((dt/t)(R)2) (dt/t)(R)2, the first sum in (6.11)
gives a contribution of

flw,(q(a)
d 7//p T/)

to the Fourier expansion of fl U. The second term in (6.11) corresponds to

l(Gm/qp2z, p2Ids, - q’) flw(Gm/q7/, plds, q-’)

1
p*f(Gm/q’7/, pldv, )

P

as the relevant p-isogeny for computing we is p" Gm/q27/-- Gm/q7/, and P ( by
(1.8). Since *((dt/t)(R)2) p2(dt/t)(R)2 and p*(dt/t)(R)2= (dt/t)(R)2, the second term
contributes p .fl(p>(q) to the Fourier expression offl U. This completes the proof.

PROPOSITION 6.12. Let f be a modular form of weight 2 for Ft (Np) which satisfies
Eafl<d>p O. Then fl U;,U, P" fI<P>.

Proof. Let E a,q be the Fourier expansion of fl<P>. Then by the previous
proposition

fl U;,(q) flw.(qa) -t- p Y anqnt’

d (’/p 7/)

The coefficient of qn in the sum is equal to zero. Indeed, this is equal to the
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coefficient of q"P in Eaflw,(q as ((a)p 1 for all p. But Eaflw, (Edfl(d-1))lw
and Eafl(d-1) 0 by hypothesis.
Hence the coefficients ofq"P infl U;,(q) is equal to pa,, and fl U;, Up(q) p E a,q"

P’fI(P)N(q). Therefore fl U;,Up P’fI(P)N by the q-expansion principle.

The space of modular forms of weight 2 for Fx (Np) over Q is the direct sum of
subspaces M’ M", where M’ consists of forms f satisfying fl(d)p f for all
d e (Z/pZ) and M" consists offorms f satisfying Eafl(d)p 0. Both subspaces are
stable under the operators (d)u, T, Ut, Up, and U, as these operators commute with
the (d)p.
COROLLARY 6.13. On the subspace M" the operators Up and U commute. They

are invertible, and satisfy U;, Up p. (p).

Proof. The relation U;,Up p(p) on M" follows from Proposition 6.12.
Hence U and Up are invertible. Since p. (p) commutes with Up, so does
U;,=p" (P)I" U;.

Note. On the subspace of M’ consisting of forms which are new at p, the
operators Up and U also commute. In fact, one has U Up -w on M’new, so

U Up (P)s (cf. [Li]). The failure of Up and U to commute on M is therefore due
to the presence of forms in M’ which are old at p.

PROPOSITION 6.14. Let F , Anq be a newform (= normalized cuspidal eigen-
form) of weight 2 and character e es ep for F(Np) with coefficients in an extension

of O. Then Flw; c. F’, where F’ E A’nq is a newform of weight 2 and character
e’ es.e; for FI (Np) and c is a nonzero constant. We have

(6.15) A’, A,/ep(n) for all n prime to p.

If ep 1 then F’ F, A2p es(p), and c -Ap. If ep v 1 then

(6.16) A’p. Ap pev(p)

and the constant c is given by the formula:

ep(-- 1)es(p) d(6.17) c Ap

Proof. By Proposition 6.7 it follows that F[w is a form with character e’=
es" e which satisfies

(flw)l Tt At/ep(1)’(FIw)

(FIw)l U a,/ep(l).(FIw)

for - p. To show FIw c. F’, where F’ is a newform, it suffices to show FIw is
an eigenvector for U. We will prove this when e, : 1; a proofwhen e 1 (assuming
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F is new at p) is given in [ALi], which also gives the formulae for A], and c; in this
case.

If ev : 1 then F lies in the extension of scalars of the subspace M", as Ed Fl(d)v., ev(d F O. Hence

(Flw)l U FI U,lw

p’eN(p)
hp

as U p(p)NU on M". This shows FIw- cF’, where F’ has pth coefficient
A’v pes(p)/Av. The constant c; is equal to the coefficient of q in FIw;(q), which we
may determine as follows.

First, observe that FIw Fl(d-)w ev(d-).FIw by Prop. 6.10. By Proposi-
tion 6.12, the coefficient of q in FI U(q) is equal to:

d

But by Corollary 6.13, this coefficient is equal to pe(p)/Av. Hence

p es(p)
c= (cl_)(" a

Since (E ev(d)a) (E ev(d-)(a) p. ev(_ 1) [L, Ch. I], we obtain formula (6.17).

7. A model for X(Np) over 7/[I/N] [v]" We now describe a stable model X
for the curve X(Np)over the base 7/[1/N] [(v], which was introduced by Deligne
and Rapoport [DR, V, 2]. To be completely accurate, we note that the scheme
X’= /’rootS)ro(v) defined by Deligne and Rapoport is actually a model for the
curve X(Np)’, which classifies triples (E, a,/3) with a: Z/NT/ EN. However, the
schemes X and X’ become isomorphic over 7/[1/N] [(v, (s], and one can obtain X
over the base Z[1/N] [(v] by Galois descent.
To define X, we let (Np) be the projective scheme over Z[1/N] which represents

the functor of generalized elliptic curves E together with a "Drinfeld basis" of Esv
[KM, 5.1.1]. This is a regular scheme of dimension 2, with a natural action of
the group GL2(Z/NZ) x GL2(Z/pZ). We let X be the quotient of this scheme by

thefinitegroupHxHv, whereH={(: bd)GL2(7//NT):c=O(N)andd=l
(modN)} and Hv={(10 bl)GL2(Z/pT/)}. This quotient is defined over

Z[1/N] [(v-I and has the following properties.

PROPOSITION 7.1. 1) X is a regular scheme of dimension 2, and the morphism
X - Spec 7/[1/N] [(] has only ordinary double points as singularities.
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2) X is smooth over Spec 7/[1/Np] [(p]. The special fibre Xo ofX in characteristic
p is a reduced curve over 7//pZ, consisting of two smooth projective curves I and I’
crossing transversally at a finite set Z of double points.

3) The component I is canonically isomorphic to the Igusa curve 11 (N), and Z, is
the set of supersingular points on 11 (N). The component I’ is the smooth compactifi-
cation of the moduli of triples (E, , b), where b: 7lipS’ - Ep.

Proof. This is a restatement of Th6or6me 2.12 in [DR, V, 2].

The sections of X which do not meet E correspond to triples (E, , fl) or to
triples (E, , b) over Z[1/N] [(]-algebras, where fl: # E and b: 7//p7 -E are
embeddings of group schemes. The sections of the type (E, , fl) meet the component
I and those of the type (E, , b) meet the component I’. The map v defined in (6.5)
gives a canonical automorphism of X over Z[1/N] [(,] which interchanges these
two types of sections and induces an isomorphism I I’ in characteristic p.

Fix a primitive pth root of unity (, and let i: #, Z/pZ be defined as in (6.3). We
then have an isomorphism from X to X:(Np) over the base 7/[1/N][(,]. The
sections (E, , fl) of X are mapped to the corresponding points of X1 (Np), and the
sections (E, , b) are mapped to the points (E, , fl b o i). The automorphism v of
X then induces the automorphism w of XI(Np). We henceforth identify XI(Np)
with the "general fibre" of X over Z[1/N]
The automorphisms (d)s and (d), of XI(Np) extend to X, and induce the

automorphisms with the same name on the component 11 (N) I of Xo. Since the
generic fibre X (Np) ofX can be defined over 7/[1/Np], there is a semi-linear action
of the Galois group F of the covering Z[1/Np] [(] over Z[1/Np] on X. Since this
covering is totally ramified at p, this action induces a geometric action of F on the
special fibre Xo (of. [ST, pg. 483]). We may identify F with (Z/pZ) by letting ad be
the automorphism with ad(()

PROPOSITION 7.2. The element aa of
oflxI’.

Proof. For sections of X meeting I- E, we have the formula a(E, , fl)=
(E, , fl) for any a e F. Since F acts trivially on the residue field at p, this gives
the trivial automorphism of I.
For sections of X meeting I’ E, we have the formula

(7.3) an(E, t, b) (E,, d-l’b).

Indeed, (E, , b) corresponds to the point (E, , fl b o i) in the general fibre, so its
conjugate by a e F is the point (E, , fl). Write fl b’ o i; for tr tra we must
show that b’ d-1" b. But

b’(d) fl(()= fl(() if tr rd

=b(1).
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This proves (7.3); since F acts trivially on the residue field at p we have tra (d)
on I’. (We note that the action of F on Xo is independent of the choice of ( used to
define it.)
The correspondences Tt and Ut ofX1(Np) (for : p) preserve the sections reducing

to I E or I’- E (modulo p) on X, and their induced action on I 11 (N) is the
one described in 5. The correspondence Up preserves the sections reducing to I E,
and induces the correspondence Up Verp on I 11 (N). The correspondence Up
does not preserve the sections meeting I’- E, and hence the correspondence U
does not preserve the sections meeting I. From Proposition 6.10 one can derive the
formula (cf. [Wi, 5]):

(7.4) U wa + (p>NFrv on I II(N).
de(Z/pZ)*

The automorphism w w preserves the set E of supersingular points on 11 (N),
and its action on E is independent of the choice of ( (as (d)v fixes each supersingular
point). If x E covers the supersingular point (E, ) on X1 (N), then w(x) covers the
supersingular point (E’, ’), where E’ Et), tp Fr: E Etv) is the associated
p-isogeny, and ’ 0. Hence ’(z) (z)v tV)(z) for all z e tN, and w(x) covers
the point Frp(E, p) of X1 (N). Consequently:

w Frv. (ps (p)s. Frv(7.5)
U P’(P)s" Fry

on E.

8. Regular differentials. Let ( be a primitive pth root of unity in an algebraic
closure ofv. We now consider the scheme X over the base 0 Z,[(-I, and identify
its general fibre with X1(Np) over the field K Qv(() (using the isomorphism i; as
in 7). The element zr 1 ( is a uniformizing parameter for the discrete valuation
ring (.0, and (9/7(.0

_
7//pZ.

Since X --, Spec is a morphism which is purely of dimension 1 and is locally a
complete intersection, the dualizing sheaffix/ of"regular differentials" is invertible
on X [DR, 1.2: in this reference the dualizing sheaf is denoted by ogx/]. Let
L H(X, Dx/); we call elements of the finitely generated -module L regular
differentials on X.

If R is flat over (.0, pull-back gives an isomorphism

L @oR H(X/R, fix/a).

In particular, this holds for R K where X XI(Np) is smooth and tx/r
fcltsv/r. Hence elements of L (R) K correspond to holomorphic differentials on
X1(Np) over K, and hence to cusp forms of weight 2 for F1 (Np) over K. We again
emphasize that this identification requires the choice of a pn root of unity .

In fact, L is torsion-free and defines an 60-lattice in the space of cusp forms of
weight 2. This follows from the argument in l-M, II, 3-1, which also shows that
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pull-back gives an isomorphism

(8.2) L/rL H(Xo, fXo/CZ/,z)) Lo.

The right hand side consists of the regular differentials on Xo, the special fibre. This
space can be identified with a subspace of the differentials of the third kind on the
normalization Xo I H I’ IS 1, Ch. IV, 3]: a pair (v, v’) of differentials of the third
kind on I H I’ corresponds to a regular differential 09 on Xo if and only if v and v’
are regular outside E I c I’ and satisfy

(8.3) Resx(v) + Resx(v’) 0

for all x E. This follows from the fact that Xo has only ordinary double points as
singularities.
For 09 L we write 09 (v, v’) (mod rL) if v and v’ are the differentials of the third

kind on I and I’ which correspond to the image of o in Xo.
PROPOSITION 8.4. (cf. [$7]) Let F be a cusp form of weioht 2 for F (Np) with

coefficients in a finite extension Kr of K p(). Let (9r denote the ring of integers
ofKr, and let o9 F(q)dq/q be the corresponding holomorphic differential on X (Np)
over Kr. Then o is a regular differential on X over (9 if and only if the Fourier
expansions

(8.5)

F(q) A.q" and
n>

FIw(q) B,q
n>

both lie in (9r[[q]]. In this case, let nr be a uniformizin# parameter in (9r and let a,
and b, be the imaoes of A, and B, in the residue field (_9/n(9. Then 09r (v, v’)
(rood nrLI) where

(8.6)

v(q) a.q"dq/q and
n>

v’ w(q) b,q"dq/q

in a neiohborhood of the cusp of I Ix(N).

Proof. Let 09 be a regular differential on X. Since is a smooth section of X
and q is a local parameter there, the pull-back of o to Spec (9[[q]] is a regular
differential, so the expansion o(q) E A.q"dq/q must be integral. Since the auto-
morphism w ofX preserves L, the expansion ofolw(q) E B.q"dq/q along oz must
also be integral.
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Conversely, assume o9r is a holomorphic differential on X1 (Np), and that the
expansions F(q) and FIw(q) are both integral. Then o9e is a meromorphic section
of fix/o, which is an invertible sheaf on X. Hence the points where o9r is not regular
form a divisor D contained in the special fibre Xo. The integrality of the A, shows
that D does not intersect the section 0, so D does not contain the component I.
The integrality of the B, shows that D does not intersect the section w(), so D
does not contain I’. Hence o9 is a regular section of fx/.
The reduction of o9 has the Fourier expansions v E aqdq/q, v’lw Z bqdq/q

at , as the Fourier expansion of the reduction ofa differential at oo is the reduction
of the original Fourier expansion.

PROPOSITION 8.7. The endomorphisms (d)p, (d)N, Tt, Ut, Up, and U of the
space of cusp forms of weight 2 for F(Np) over K preserve the (9-lattice of regular
differentials on X.

Proof. This is clear for (d)p and (d)N, which give automorphisms ofX over (9.

Let T/or Ut with : p, and assume o9 e L, so by Proposition 8.4 the Fourier
coefficients of F and FIw lie in (9. By formulae (3.4), (3.5) and (3.7) the form Fit
has integral Fourier coefficients. By Proposition 6.7 Fltw- Fl(l)pwt; the same
formulae now show that Fltw has integral Fourier coefficients. Hence o)rlt lies in L.
The Fourier expansions of FI Up and FI U have integral coefficients, by (3.7)

and Proposition 6.10. (We recall that w w" (d)p.) Since FI Upw FlwU;, and
FIU;,w; FIwUp, the same argument shows that the expansions of FIUw and
FI U;,w are integral. Hence o91 Up and o9rl U both lie in L.

Let ;t: (7//pZ) Zff be the Teichmiiller character. The lattice L decomposes as
a direct sum of (9-modues

p-1

(8.8) L ( L(j)
j=l

where

(8.9) L(j) {o9 e L: ol(d)p ;(J(d)" o9 for all d (7//p7/) }.

Since the automorphisms (d)p commute with (d)u, T, U, Up, and U, the latter
endomorphisms of L preserve each eigenspace L(j).

PROPOSITION 8.10. 1) UpU UUp p(p)u on @p-1 L(j).
2) If o9 jp_x L(j) then o9 (v, v’) (rood rcL) where v and v’ are holomorphic

differentials on I and I’, respectively.

Proof. 1) This follows from Proposition 6.12, as the submodule @p-x L(j)
consists of the regular differentials o9 such that Eatz/pz) Fl(d)p 0.

2) Since v and v’ are meromorphic, with poles of order < 1 at each supersingular
point x, and Resx(v) + Resx(v’) 0 it suffices to prove that Resx(v) 0 for all x e E.
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But the group {(d)p" d (Z/pT/) } fixes each supersingular point x on 11 (N), as
the Galois covering 11 (N)--. X1 (N) over 7//pZ is totally ramified at supersingular
points. Hence Resx(vl(d),) Resx(v) for all d. Since o ogr lies in ),-1L(j), we
have Ea Fl(d)p 0. Hence

0 Resx(vl(d)p)= (p- 1)Res,v -Resv
d

and v is regular at each supersingular point x E.
We now consider the corresponding eigenspaces of

with

(8.11) L(j) {09 ,L" o[(d), dog} L(j)/rcL(j).

Each L(j) is a finite dimensional vector space over /r(9 Z/pZ, with a commuting
family of endomorphisms given by the Hecke operators (d)N, T, Us, and Up. We
wish to identify the Hecke module L(j) in terms of cusp forms for F1 (N) over Z/pZ
of weights k =j + 2 andp + 3 k p + 1 -j.

First assume that j - (p 1), so k j + 2 satisfies 3 < k < p. Any o L(j)
satisfies 09 (v, v’) mod nL(j), where v and v’ are holomorphic differentials on 1
and I’ by part 2) of Proposition 8.10. We have v H(II(N), )t,ov))(k- 2) and
v’[w n(II(N), f,,tm)(2- k). By Proposition 5.7, there are cusp forms f Mk
and Mp+3_k such that

(8.11)
v f(q)dq/q

v’ w g(q)dq/q

in a neighborhood of the cusp c on 11 (N). We define a map of Z/pZ-vector spaces
(for 3 < k < p)

(8.12)
Pk" L(k- 2) Mk O) M+3-k

(f,g).

This is clearly an isomorphism, as 09 (mod rcL(k 2)) is completely determined by
(v, v’), which may be arbitrary holomorphic differentials in the (k 2) eigenspace
(by our description of L, the regular differentials on Xo). If 09 o with F as in
Proposition 8.4, the Fourier expansion off and g at are given by f(q) Y aq
and g(q) Z b.q".

0We define a new action of the Hecke operators on M’,+3-k by having (d)s act as
usual, and having Tt, Us, and Up acts as k-2 T, k-2 Us, and pk-2up 0, respectively.
Denote this twisted Hecke module by 0 [k 2].
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PROPOSITION 8.13. (cf. [$7]) Assume that 3 < k < p. Then the map & defined in
(8.11-8.12) 9ires an isomorphism of Hecke modules"

Pk" (k 2) M Mt,+a_k[k 23.

Proof. We have observed that Pk is an isomorphism ofvector spaces. Let co cot
and suppose Pk(co) (f, 9). We must prove that

(8.14)

These all follow from a calculation of the Fourier expansions and the fact that
zk-2(1) /k-2(mod p). We will only prove the final formula, and leave the other
calculations to the reader.
The reduction of FI U,(q) is clearly fl U,(q), so the first component of Pk(coelvp) is

correct. We must prove that the Fourier expansion of F[ U,w lies in rr(9[[q]], so
the second component of Pk(coFIU,) is equal to zero. But F[ U,wg FlwU, G[ U,
where G(q) (9[[q]-i. We now appeal to the formula in Proposition 6.10, which
shows that

G[ U(q) =- Glw,,(q(a) (mod p)
d

GIw(q) (mod )
d

as (= 1 (mod rr(9) for all d. But ZaGIw.,- Z Gl<d-X>,lw 0 as G lies in an
eigenspace for the group {(d>p: d (7//pZ) } with nontrivial character. Hence
El U,w(q) GI U,(q) 0 (mod n(9[[q-l]). A similar argument shows that:

(8.15) p(oo) (0, ol v.).

We observe that the map Pk depends on the choice of primitive pth root of unity
( used to identify the general fibre of X with X1 (Np) (and so to identify L with an
(9-lattice in the space of cusp forms of weight 2 for F1 (Np) over F). If Pk(coe) (f, 9)
and p, is the isomorphism associated to (’ (a, we have P;,(cov) (f, d2-kg)" This
follows from the identity w <d>-Xw w<d>p proved in (6.7). In particular, the
surjeetion of Hecke modules

p" (k 2)--* Mk
(8.16)

cot --f
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is independent of the choice of (. The kernel of p may be canonically identified with
the Hecke module o #k-2,Mp+3-k (R) where T and U act on/p by (l)p and U,
acts as zero, via the map (0 (R) ((R)k-2) -* 0, volw).
We now consider the case whenj=p-l, sok=p+l andp+3-k=2. If

09 c L(p 1) we have a (v, v’), where v is a meromorphic differential on X1 (N)
with poles of order < 1 at the supersingular points. By Proposition 5.10, there is a

0unique cusp form f M’p+l such that v f(q)dq/q in a neighborhood of the cusp. We define the map

(8.17)
p" (p 1)-- M+x

The kernel ofp consists of the differentials 09 (0, v’) with v’ holomorphic onX(N).
Hence v’lw o(q)dq/q for a unique cusp form 9 e M2; in this case, 9 is independent
of the choice of (. We define the map #" M L(p 1) by #(9) (0, v’).

PROPOSITION 8.18. There is an exact sequence of Hecke modules

OM[p 13 L(p 1) oM’.+ -o0.

Proof. The maps and p commute with the usual actions of (d)N, T, and U,
by a computation of Fourier expansions at o. But on L(p 1) we have the formula

(v. v’)l v. (vl v.,. vlw)

where w w for any d (Z/pZ). This follows from the Fourier expansion of U
in Proposition 6.10 and the fact that w w w on L(p 1). Hence Up annihilates
the image of #; since it also acts trivially on M2[p- 1], this shows # is a homo-
morphism of Hecke modules.
We note that, unlike 8.13, there are cases when the sequence of Hecke modules

in Proposition 8.18 does not split. The case when N 11 and p 3 gives a nonsplit
example.

9. Lifting eigenforms to weight 2 in characteristic zero. Let f Y,anq be a
normalized cuspidal eigenform, which is a newform of type (k, e) for F: (N) (mod p).
Since the Hecke module Mk has finite dimension over 2;’/p7/, the Fourier coefficients
a of f and the values of the character e generate a finite extension field E of
7//p7/.

Let R be the integral closure of Zp in an algebraic closure of p; let mR be the
maximal ideal of R and fix an embedding of E into the residue field R/mR (which
is an algebraic closure of Z/pZ). We say a newform F EA,,q on F(N) or F1 (Np)
over R is a lifting off if the Fourier coefficients A, of F satisfy the congruence

(9.1) A =- an (mod mR)
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for all n > 1. We also insist that the character er eN’ep associated to F satisfies
the congruence

(9.2) eN(d) e(d) (mod

for all d (7//N7). The next Proposition shows that iff has weight k and 2 < k <
p + 1, it has a lifting to a newform F of weight 2 over R. In this way, many questions
on modular forms (mod p) can be reduced to the study of forms of weight 2 in
characteristic zero (as was noted by Shimura [Sh3-1).

PROPOSITION 9.3. 1) Let f be a newform of weight 2 for F1 (N) over E. Then there
is a lifting off to a newform F of weight 2 for FI (N) over R.

2) Let f be a newform of weight k for Ft(N) over E, with 3 < k < p + 1. If
k p + 1 we assume further that the expansion f(q) has filtration p + 1. Then there
is a lifting off to a newform F of weight 2 for Ft (Np) over R with ep Zk-2, where
Z: (7//p7/) _, 7/ is the Teichmiiller character.

Before giving the proofof Proposition 9.3, we make a few remarks. Since z(d) -= d
(mod p)we have the congruence

(9.4) e(d) =- dk-2 (mod ms)

for all d (’/p7/). When p > 5, Serre I-$9] has shown that one can first specify a
lifting es: (Z/NT/) R of the character e, and then find a lifting F of f of type
(2, eu;tk-2). In particular, one can show there is a lifting F off with character ev of
order prime to p. This statement is false for p 2 and 3: the space of cusp forms of
weight 2 for F(13) has dimension 2, and the characters of both eigenforms have
order 6 in characteristic zero (so have order 3 (mod 2) and 2 (mod 3)). For more
details on this example, see 17. This is the reason why Serre modified his conjectures
in [$8] to use Katz’s definition of modular forms (mod p).
We emphasize that there is no unicity of the lifting F, even if the character

e e" e, is fixed. For example, the space of cusp forms of weight 2 for F (23) with
e 1 has dimension 2; the two eigenforms F and F’ in characteristic zero are
conjugate over Q(x/-) and have the same reduction f (mod 5).

Proof. 1) We consider the curve X1 (N) over Z, where it is smooth. Let L be
the free Z,-module of cusp forms of weight 2 for F(N) over Zp; by (2.4) we have an
isomorphism L H(Xx(N), xltu)/zp). In particular, the quotient L/pL is canoni-
cally identified with M, the space of cusp forms of weight 2 for Fx (N) over ZipS_.

Let H be the commutative 7/-algebra ofendomorphisms ofL which is generated
by the automorphisms (d)N and the correspondences T and U ofX1(N) (including
T, as p ’ N). The H/pH acts on L/pL, and by hypothesis has the eigenvector
vs f(q)dq/q on L/pL (R) E. Let rn be the maximal ideal of H which annihilates v.;
then rn contains pH and Him E.

Since H is a free 7/-algebra of finite rank, we may choose a minimal prime
ideal p of H which is contained in m and satisfies p 7/ 0. The quotient Hip is
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then a local integral domain (of finite rank over Zp) with maximal ideal m/p and
residue field E. Choose an embedding i: Hip R which gives the fixed embedding
E R/mR of residue fields, and define eN(d)= i((d)N) in R , At i(Tt) in R for

’ N, and At i(Ut) in R for llN. By the definition of m, we have es(d) =_ e(d), and
At at (mod mR).
The ideal (R) Qp of H (R) p is in the support of the module L (R) Qp (on which

H (R) _p has a faithful representation). Hence there is a nonzero eigenvector or in
L (R) p annihilated by p. Here F is cusp form of weight 2 for F1 (N) over )p, which
satisfies Fl(d)s es(d), El Tt At" F and FI Ut At" F. By (3.7) and (3.8) the first
Fourier coefficient A of F must be nonzero (or else the entire Fourier expansion
of F is zero, hence F 0). If we normalize our eigenvector by the condition that
A 1, all of its Fourier coefficients lie in R (and are given by (3.9)). In particular,
F is a lifting of f. Since f is a newform of level N, the same holds for F.

2) We consider the curve X1 (Np) over p((), where ( is a primitive pth root of
unity, and let X be the regular model over 7/p[(] discussed in 7. Let L be the
7p[(]-module of regular differentials on X, and let H be the commutative
algebra of endomorphisms of L which is generated by the automorphisms (d)s,
(d)p and the correspondences T, Ut, and Up of X1 (Np). (These endomorphisms of
the space of cusp forms of weight 2 over p(() preserve the lattice L by Proposition
8.7.) Then the algebra HI(1 ()H acts as endomorphisms of L L/(1 ()L, the
space of regular differentials on the special fibre Xo.
Assume first that 3 < k < p. By Proposition 8.13 the eigenform f in M gives

an eigenvector (vy, 0) for HI(1 ()H acting on the space L(k 2)(R) E. Let m be
the maximal ideal of H which annihilates this eigenvector, and choose a minimal
prime p of H contained in m and satisfying p ;p[(-I 0. Choose an embedding
i: Hip --R which gives the fixed embedding E R/mR of residue fields, and
define eN(d)= i((d>s), ep(d)= i((d>p), At i(Tt) for 1)? N, At i(Ut) for tiN, and
Ap i(Up). Since the eigenvector (vy, 0) occurs in the subspace L(k 2) we have
ep(d) dk-2 (mod mR), so ep Zk-2. By the definition of m we have es(d) e(d),
At at, Ap ap (mod
The existence of a cusp form F over p with these eigenvalues for H (R) p then

follows as in 1). (F is an eigenvector annihilated by p in L(R) Qp.) If we normalize F
by the condition A 1, it gives a newform of weight 2 on F1 (Np) over R which
reduces to f (mod mR). The level of F is divisible by N as f was assumed to be a
newform, and is divisible by p as ep 1.

Finally, assume that f has weight k p + 1 and f(q) has filtration p + 1. Define
H and L as above; by Proposition 8.18 there is an eigenvector (vy, v’) in L(p 1)
which maps to the eigenvector f for HI(1 ()H in oMp+l. Indeed, since the filtration
of f(q) is p + 1, the eigenvalues of Tt and Ut on f do not occur in the submodule
M2 [p 1]. The construction of a lifting F, with ep 1, proceeds as above; we note
that F is new at p (or else f(q) would have filtration 2).
The ambiguity in the lifting off to F results from the choice of a minimal prime
ofH contained in m, as well as the choice of an embedding ofHIp into R extending

the fixed embedding of residue fields.
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For the rest of this , we assume that the weight k of the newform f E a.q"
satisfies 2 < k < p and that ap v O. Define the integer k’ by

(9.6) k + k’= p + 1,

so 1 < k’ < p 1. By Proposition 4.10, the series

(9.7) f’(q) Ok’f(q)= Enk’a.q"

has filtration k’+ p + 1 in Jk’+2 ]/lk+2k" (If ap 0, this series has filtration
k’ + 2 when k # 2, and filtration 2 when k 2.) If 0’ Ok’-if, then 0’ has filtration
pk’ in Mpk,, and

(9.8) f’(q) 09’(q).

PROPOSITION 9.9. 1) The differential vf f(q)dq/q is holomorphic on 11 (N). It has
an expansion of the form

lf"-(xxZp-k-" n>p-lE OnZn) dZ
n=_p-k (mod p-l)

at each supersingular point x, where z is a local parameter at x. The constant ax is
nonzero for at least one x E.

2) The differential vf, f’(q)dq/q is meromorphic and exact on 11 (N). It is regular
outside , and has an expansion of the form

-1 -k’ (mod p-l)
n -1 (mod p)

at each supersingular point x. The constant fix is nonzero for at least one x E.

Proof. This follows from Proposition 5.8, given the filtrations off(q) and f’(q),
and identity (9.8) which shows that vf, do’ is exact. We note that the product axflx
is independent of the choice of uniformizing parameter z at x.

Now let F Z,Anqn be a lifting of f to a newform of weight 2 and character
ev eN" Zk-2 on F1 (N) (when k 2) or on F (Np) (when 3 < k < p). Since a, # 0,
the lifted coefficient Ap is a unit in R. We will describe a cusp form F’ ZA’.q of
weight 2 and character ev, N" Zk, on F1 (Np), which is a normalized eigenvector
for the operators Tt, Ut, and Up and reduces (mod mR) to f’(q).
When k 2, let u denote the unique unit root of the quadratic equation

X2 Apx + peN(p) 0
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in R, and define

(9.10) F’(q) .,Anq UXAnqnp.

This is the expansion of the "old form" F(z) uF(pz) on F1 (Np). When 3 < k < p
we define F’ by

(9.11) FIw c" F’.

In this case, F’ is a newform by Proposition 6.14. When k 2, F’ is a normalized
eigenform for T, Ut, and Uv with eigenvalue A, peN(p)/u but is not an eigenvector
for U. Indeed, on the 2-dimensional space with basis (F(z), F(pz)) the operators
Tt and Ut act via the scalars At, and

(9.12)
--PeN(P)

l Ow= PeN(P)

PROPOSITION 9.13.
congruence

1) The Fourier coefficients A’ of F’ lie in R, and satisfy the

F’(q) =- f’(q) Ok’f(q) (mod mR).

2) The differential F’(q)dq/q is formally exact: there is a series G(q) R[[q-I] such
that dG(q) F’(q)dq/q.

3) The differential (1 ()k’o& on XI (Np) is a regular differential on the model X
over R.

Proof. When k 2 part 1) follows directly from formula (9.10). Indeed, F’(q)
Etn, v)_-t anq n, as u av. When 3 < k < p, the coefficients of F’ for (n, p) 1 are
given by (6.15): A’n An/Z(n)k-2 annk’. Since A, peN(p)/A, O, we have F’(q) =--
Enk’anq as claimed.
To prove 2), we must check that A’n 0 (mod nR) for all n > 1 (as we may then

define G(q)= En> (A’n/n)qn). Since R is n-divisible when (n, p) 1, we need only
consider the case when n is divisible by p. Write n pr’m where rn is prime to p.
Since F’ is an eigenvector for Tt, Ut and U, we have A’n A’m’(A’)r, so it suffices to
check that A, 0 (mod pR). When k 2 this follows from (9.10), as Av A, u
peN(p)/u. When k > 2 this follows from (6.16), which shows that A peN(p)/A.
To prove 3), we will use the criterion of Proposition 8.4. Clearly the" expansion

(1 ()k"F’(q) lies in R[[q-l] and reduces to zero (mod mR). We must also verify
that the expansion (1 -()k’F’lwg(q) is integral. When k 2 we use (9.12), which
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shows that F’lw peN(p)F(pz) p-luF(z). If we multiply this series by (1 ()k’,
which has the same valuation as p, it becomes integral. When 3 < k < p we have
F’lw c1" FIw2= c .eN(p)e,(-1). F. But the constant c; has the same p-adic
valuation as the Gauss sum E;t(d)-k’(d, by formula (6.17). This sum has the same
valuation as (1 ()k’, by Stickelberger’s theorem [L, Ch. I]. Hence, the differential
(1 ()k’ogr is regular, with nonzero reduction on I’, in all cases.

10. The eases when N < 4. In 2 we made the hypothesis that N > 4, so that
the objects (E, ) being classified have no automorphisms. When N < 4 there are
automorphisms of the following type (cf. [D3]). Any pair (E, ) has the auto-
morphism 1 for N 1 and N 2. IfE3 is an elliptic curve with an automorphism
(3 of order 3 and 3:#3 ker(1- (3) is an embedding, then (E3, 3) has an
automorphism by (3, as does (E3) in level 1. If E4 is an elliptic curve with an
automorphism (4 of order 4 and 4" #2 ker(1- (4) is an embedding, then
(E4, 4) has an automorphism by (4, as does (E4) in level 1. Finally, one of the cusps
on X1 (4) has an automorphism of order 2.
When N < 4 we define XI(N) over Z[1/N] as the coarse moduli scheme asso-

ciated to the stack /n[1/N] [DR, 234-243]. The line bundle _(R)2 can be defined
on X1 (4), _(R)3 can be defined on X1 (3), _09

(R)4 can be defined on X1 (2), and (R)12 on

X1 (1) [K2, 1.10-1. For weights k divisible by 2 (respectively 3, 4, and 12) we can define
holomorphic modular forms for F1 (N) as sections of o9_ (R)k. For other weights, we
must use the definition at the beginning of 2. However, if we remove the points
with extra automorphisms, we can define on the open curves of level N 3 and
N 4 and 09_(R)2 on the open curves of level N 2 and N 1. Modular forms give
holomorphic sections ofan appropriate power, with possibly a fractional order zero
at the deleted points.

Proposition 2.5, which studies the base change ofmodular forms of weight k over
7/[1/N]-algebras R, remains true for N > 2. It only holds for level N 1 when 2
and 3 are invertible in R; the q-expansion principal of Proposition 2.7 holds in all
cases [K2, 1.8-1.9].
The results of3 go through for N < 4 without change. In4 we used the universal

curve _E over X1 (N) to show that the derivation 0 exists. A different construction of
0 for level N 1 is given in [$4], and the remaining results in this section were
proved for level N 1 in [Sw].
The results in 5 are all valid for N 3 and N 4; they must be modified for

N 1 and N 2, as the Igusa covering 11 (N) has degree (p 1)/2 for p odd and
Galois group (Z/pZ)*/(_ 1). Over X1 (N)h the cover is ramified only at ordinary
points with Aut(E, t) # ( 1). The line bundle o_(R)2 can always be defined on 11 (N);
it has a canonical section "a2’’ which vanishes to order 1 at each s_upersingular point
and whose ((p 1)/2)-power is the Hasse invariant A. The ring M is graded by even
integers (mod p 1) and the isomorphism of (5.6) becomes

2
ss t)lts(cusps).
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Proposition 5.7 holds for even k with 2 < k < p 1. In Proposition 5.8 we find that
f(q) has filtration k if and only if ordx(ogs)> (p- 1 -k)/2 at all supersingular
points x, with equality holding for at least one x. The case when N 1 is treated
briefly in [$4, 1.3] and in more detail in [$7].
The results of6 remain valid for N < 4. In 7 all results remain valid provided

Np > 4 (i.e., p > 3 when N 1). When N 1 and N 2 the results in 8 and 9
hold for k even and 2 < k < p + 1.

11. Galois representations associated to eigenforms (mod p). Let Q be an alge-
braic closure of Q, and let f Gal(Q/Q). Let be a rational prime, 2 a place of Q
dividing l, and (9 the corresponding decomposition subgroup in c. Let tr be a
Frobenius element in ca, which satisfies tra() t (mod 2). Then tra is well defined
modulo the inertia subgroup of f#.

If p: (# GLn(E) is a linear representation of f#, we say p is unramified at if p is
trivial on the inertia subgroup of (#. (This condition is independent of 2 dividing l,
as the inertia subgroups of different factors are conjugate in f#.) In this case, the
element p(tr) is well-defined in GLn(E), and its conjugacy class p(trt) depends only
on p and l.

PROPOSITION 11.1. (DeliTne) Let f Eanq be a normalized eigenform of type
(k, e) for F (N), which is defined over the finite field E of characteristic p. Then there
is a continuous, semi-simple Galois representation

p pj,: f# --, GL2(E), where (# Gal(/)

which is unramified for all primes Np and where

(11.2) Tr p(trt) at det p(trt) e(l)lk-

for all X Np.
Before giving the proofof this Proposition, we make two remarks. It follows from

the tebotarev density theorem that a semi-simple continuous representation of
c Gal(Q/Q) is determined, up to isomorphism, by the characteristic polynomials
of Frobenius elements on a set of primes of density 1. Hence the representation
is determined up to isomorphism by (11.2). Also, since the cyclotomic character
;t: Gal(/) Aut(#p)

_
(7//p7/) is unramified for p and satisfies ;t(trt) l, we

have:

(11.3) det pf --/. k-1.

Here we have identified e with a character ofGal(/Q) via the surjective homomor-
phism Gal(/)--* Aut(#N) - (_/N_).

Proof. When f is an Eisenstein series, the representation py is reducible, and its
existence follows from the theory of cyclotomic fields. Hence we may assume that
f is a cusp form, of weight k > 1.
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If g has weight k 1, we may find a normalized eigenform f of weight k p with
a(f) a(g) for all - p. Indeed, take f to be an eigenvector for Up in the span of
Ag and Vg. The existence ofthe representation Ps implies the existence ofPo(= Ps)"

If g has weight k > 2, there is an eigenform f of weight k in the range 2 < k <
p + 1 such that Of(q) g(q) for some 0 < < p 1. This is a result due to Tate
when N 1 (cf. [J, 7]); a prooffor arbitrary N can be found in [AS, Thm. 3.4, 3.5].
The existence of the representation py implies the existence of p0 (=py (R) :ti). Con-
sequently, to prove Proposition 11.1 it suffices to demonstrate the existence of py
for f a cusp form of weight k, with 2 < k < p + 1. If k p + 1 we may assume that
f(q) has filtration p + 1, for if f A.q then 0 has weight 2 and py po. Also, it
is no loss of generality to assume that f is a newform on F1 (N).

Let F EA,q" be a lifting of the eigenform f to a newform of weight 2 on F1 (N)
(when k 2) or on Fx (Np) (when 3 < k < p + 1). This lifting is guaranteed by
Proposition 9.3. Let ev eN" :tk-2 be the character of F. We recall that the Fourier
coefficients A, of F, as well as the values of the character ev, lie in a finite integral
extension (9r of Zp, with residue field E and quotient field K of finite degree over
Qp. We now recall a standard construction of a continuous Galois representation
p: Gal(/) GL2(K), using the p-power division points in the Jacobian.

PROPOSITION 11.4. Let F EA,q" be a newform of weight 2 and character er for
(M), which is defined over a finite extension K of ,. Then there is a continuous

Galois representation

py" Gal(Q/Q) GL2(K)

which is unramified for all primes Mp, and where

Tr pv(a) A det pr(tr) er(1)"

for all X Mp.

Proof. Let J be the Jacobian of Xx(M) over Q; this abelian variety has good
reduction at all primes l’ M. The Hecke correspondences Tt, for l M, induce
endomorphisms of J over Q (viewing J as the Albanese variety of X1 (M)) and the
congruence of Proposition 3.12 shows that Tt Ver + (/)tFr in Endz/z(J). We
also have the identity Ver. Fr Frt. Vert in the endomorphism ring of J over
7//17/.

Let H be the commutative subring of End(J) which is generated over 7/by the
operators Tt, for prime to M and the automorphisms (d)t for d (7//M7/)*. The
canonical polarization of J induces an anti-involution - t* of End(J) (the Rosati
involution). On the subring H, we have t* wttWl, where wt w, is the involu-
tion of X1 (M) over Q((t) defined as in (6.4), using a primitive Mth root of unity
[MW, Ch. 2, {}5]. If tr tr in Gal(Q((t)/Q) - (7//M7/)*, we have wt (a)twt
wt" (a)u as in part 2) of Proposition 6.7.
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Let TpJ li__m J[p"] (Q) be the Tate module of or, and let V TpJ (R)z,, K, which

is a module for the K-algebra H (R) K. The newform F gives a character of H (R) K;
we let W c V be the subspace on which H (R) K acts via the character associated to
F. It is well known that W has dimension 2 over K: this follows from the fact that
the F-eigencomponent in the space of holomorphic differentials has dimension 1
(as F is a newform) and the representation of H (R) K on V is (via a comparison
theorem in 6tale cohomology) the direct sum of its action on differentials and the
dual representation [D1].
The group f9 Gal(Q/Q) also acts K-linearly on V, and this representation is

unramified outside Mp. The Galois action commutes with the action of H (R) K, as
the endomorphisms generating H are defined over Q. Hence ( acts on W, and this
gives a continuous representation

rr: ff Autr(W) GL2(K)

unramified outside Mp. We claim that the characteristic polynomial of re(at), for
X Mp, is equal to

(11.5) x At/ee(l)x + lice(1).

Indeed, on W the operator Tt At and (l)M er(/). By the Eichler-Shimura con-
gruence, At l/rv(at) + er(l)rv(at) in Endr(W). Hence re(at) satisfies (11.5). To prove
this is its characteristic polynomial, it suffices to show that

(11.6) det(atl W) lice(l).

To prove (11.6), we consider the Weil pairing [W]:

): TpJ X TpJ Tp(m Zp(1).

This is strictly alternating, and satisfies(a’, b’) (a, b)" for all r ef, (ta, b) (a, t’b)
for all t e End(J). Define another alternating form on TpJ by:

(a, b) (a, wMb).

Then (ta, b) (a, tb) for all e H, so ( ) induces a nondegenerate alternating
pairing

( ):Wx WK

which can be used to compute the Galois representation det re. If a, b W and
a=a, we have (a, b)’=(a, wub)’=(a’, wtb’)=(a’, wu.
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ee(l)(a, b’). On the other hand, (a, b)" =(a, wub)’=l’(a, wub) I. (a, b), so

(a", b) (a, b)" l/ee(l)

and det(thl W) l/ee(1) as claimed in (11.6).
We now define the representation Pe by

(11.7)

Since the characteristic polynomial of re(try) is given by (11.5), the characteristic
polynomial of pe(tr) is equal to

X2 Ax + lee(l).

This completes the proof of Proposition 11.4.

We now apply Proposition 11.4 (with M N or Np) to the lifting F of our
eigenform f. Since the representation Pe is continuous, and f9 Gal()/) is com-
pact, the image of Pe stabilizes an (gr-lattice of rank 2. Hence Pe can be reduced
modulo the maximal ideal mr of (gr, and we define Ps as the semi-simplification of
this reduction. Then ps is independent of the lattice chosen, by the Brauer-Nesbitt
theorem. Since

At=at (modmr)

ee(l)" eN(1)7.k-2(1) e(1)lk-1 (mod mr)

the characteristic polynomial of py(trt) is as claimed in (11.2).

Let f E anq" be a normalized eigenform of type (k, e) for F1 (N) with coefficients
in the finite field E of characteristic p. Assume the weight k of f satisfies 2 < k <
p + 1, and that when k p + 1, f(q) has filtration p + 1. When k 2, let V Vy
be the subspace ofJI(N) [p] (Q) (R) E on which T acts by multiplication by the scalar
at, for all I) Np, and (d)N acts by multiplication by e(d). When 2 < k < p + 1, let
V Vy be the subspace of J1 (Np) [p] (Q) (R) E on which T acts as multiplication by
at, for all ) Np, (d)s acts by multiplication by e(d), and (d)v acts by multiplication
by dk-2. It follows from the proof of (11.2) that V is a non-trivial E-subspace of the
p-torsion in the Jacobian; it affords a representation of the group ( Gal(Q/Q).

PROPOSITION 11.8. Assume that the representation P:r" f9 - GL2(E is irreducible.
k-2Then dim Vy 2r is even, and the semi-simplification of the representation Vy (R) eZ

is isomorphic to r copies of pf.

Proof. The Eichler-Shimura congruence shows that the Frobenius element at
satisfies the quadratic polynomial x2 (at/e(1)lk-2)x + l/e(l)lk-2 in Endg(V). Hence
at satisfies x2 atx + e(l)lk- in the endomorphism ring of V’ V (R) eT.k-2. Let oq
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and fit be the roots of this polynomial, and assume occurs with multiplicity s and
fl occurs with multiplicity in the semi-simplification of V’.

Let V* Hom(V, E) be the dual representation of c. Then the eigenvalues of trt
on the semi-simplification of V"= V*(R) :t are with multiplicity and fl with
multiplicity s. Hence the characteristic polynomial of at on V’ V" is equal to
(X2 atx + e,(l)lk-1)dim V. Since this is true for all 1) Np, the semi-simplification of
V’ @ V" is isomorphic to dim V copies ofthe representation Ps (where the character-
istic polynomial of at is equal to x2 atx + e(1)lk-l). Since ps is irreducible, V’ has
semi-simplification isomorphic to r (dim V)/2 copies of p..

Note. In the next section we will show, following Mazur, that r 1 in most
cases.

{}12. The local Galois representation at p (ordinary case). Let f E anq be a
normalized eigenform of type (k, e), which is a newform for F(N) and is defined
over the finite field E of characteristic p. Let py: f# Gal(/)--, GL2(E) be the
associated semi-simple Galois representation, which was constructed in the proof
of Proposition 11.1. In this section we will study the restriction of py to a decom-
position group f#, at p, in the "ordinary case" when a, (the eigenvalue of U, acting
on f) is nonzero. By Proposition 4.12, it is no loss of generality to assume that f
has weight k, with 2 < k < p + 1.
The character Z: Gal(/)-*_Aut(#,)= (7//p7/) restricts to a character of a

decomposition group f#, - Gal(,/,) at p, which has order (p 1) on the inertia
subgroup. For any =/= 0 in E, we let 2() denote the unramified character of
Gal(,/p) which maps a Frobenius element Fr, (in the sense of Artin) to .

PROPOSITION 12.1. Let f Y anq be a normalized ei#enform of type (k, ) for
FI (N) over E, with 2 < k < p + 1 and a, = O. Let W be the 2-dimensional E-vector
space underlyin# the representation py of c Gal(/). There is an exact sequence
of f#, - Gal(,/C,)-modules

(12.2) 0 --, L --, W --, L’ 0 with dim L dim L’ 1.

The 7roup Gal(p/,) acts on L by the character k-’2(e(p)/at,) and on L’ by the
unramified character 2(a,).

In terms of matrices, Proposition 12.1 states that there is a basis for W such that
the subgroup f, acts via upper triangular matrices:

(12.3) (Zk-’’(e(p)/at’) * )0 2(ap)

We remark that the line L where f#, acts by the character 7,k-X’2(e(p)a,) is unique,
2except in the case when k p, ap e(p), and the representation Wis unramified at p.

Proposition 12.1 was first proved by Deligne i-D2] in a letter to Serre; the proof
uses the 6tale cohomology of nontrivial sheaves on the modular curve and works
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for all k > 2. We will give a different proof for weights 2 < k < p, using the realiza-
tion of Ps in the p-torsion of the Jacobian of X1 (Np). This proof is modeled on an
argument due to Serre and Fontaine, who also treated the case when ap 0 (at least
for N 1) in an exchange of letters IF3, $7]. In our proof, we will assume f is a
newform of level N and that the representation ps is irreducible over E. When py is
reducible, (12.1) follows from work of Swinnerton-Dyer [Sw].

A further question, posed by Serre, is whether or not the sequence of fqp-modules
in (12.2) is split. Iff has filtration p + 1, this sequence is always nonsplit" results

2of Mazur JR, 6] show that ap e(p) and that p, is "tr6s ramifi6" in the sense of
Serre i-$8, pg. 186]. When f has weight k, with 2 < k < p, the splitting of (12.2) is a
subtle question, intimately related to Serre’s general conjectures on Galois repre-
sentations and modular forms (mod p), which we will pursue in the next four
sections.

Before beginning the proof of Proposition 12.1, we recall some basic results from
the theory of p-divisible groups. (We refer to the papers of Tate [T-I and Fontaine
IF2] for the proofs.) Let G lim Gn be a p-divisible group of height h over the ring

R. Let tG be its Cartier dual: lim Hom(Gn, Gin), which is also p-divisible of height
h over R.

If R K is a field of characteristic zero, with algebraic closure K, the group G
is 6tale and is completely determined by the Galois module TG li_m G(K)=
Homg(Qp/7/p, G). This module is free of rank h over Zp, and the Galois group
Gal(K/K) acts continuously and Zp-linearly on TpG. Conversely, any such Galois
module determines a p-divisible group G over K. There is a canonical, nondegen-
erate Z,-linear pairing: TpG x T,tG Tp( Z,(1).

If R L is a perfect field of characteristic p, the group G splits as the product
GO x G of its connected and 6tale subgroups. The subgroup GO is also a product
G x G of its subgroups of multiplicative and local-local type: G is the largest
subgroup of G whose dual G is 6tale. We let D(G) be the contravariant Dieudonn6
module of G, defined as in Fontaine IF1], IF2]. Then D(G) is a free module of rank
h over W, the Witt vectors of L; it has semi-linear endomorphisms F and V which
satisfy FV VF p. A group G is 6tale if F acts invertibly on D(G), and is multi-
plicative if V acts invertibly on D(G). In general, we have D(Ge) Hom.(T,G, W)
and D(Gm) T,tG (R) W [Br].

Finally, assume that R is a complete discrete valuation ring with quotient field
K of characteristic zero and residue field L perfect of characteristic p. Let G be a
p-divisible group over R and let G be the corresponding p-divisible group over L.
The splitting ( (70 x t is reflected in an exact sequence:

O G G " G "- 0

of p-divisible groups_ over R. This gives an exact sequence 0 T,G T,G
TG 0 of Gal(K/K)-modules, where the Galois action on the quotient Tt,G is
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unramified. If Gr is a p-divisible group over K, we say that Gr has good reduction
over R if it is the general fibre of a p-divisible group G over R. Tate’s fundamental
theorem: HomR(G, G’) Homr(Gr, G) shows that G is uniquely determined by
Gr, if it exists IT].
We begin the proof of Proposition 12.1 by defining a p-divisible group G over

attached to a normalized eigenform f (mod p). When f has weight k 2, we let J
be the Jacobian ofthe curve XI(N) and let H be the commutative subring ofEnd(J)
which is generated over 7/by the Hecke operators T for ’ N, U for llN, and
for d (Z/N7/). Whenf has weight k satisfying 3 < k < p, we let J be the Jacobian
of X (Np) and H the commutative subring of End(J) generated by the operators
T for l N, U for tiN, Uv, (d)s for d (7//N7/), and (d)v for d (7//pZ).

PROPOSITION 12.4. There is a maximal ideal m =my of H with residue field
Him E such that the followin9 congruences hold:

Tl =-- al

Ul =-- al

(d) =- e(d) (modulo m)

when k v 2
(d) =-- dk-2 (modulo m).

Proof. Let F be a lifting off to a newform of weight 2 on F: (N) or FI(Np), as
guaranteed by Proposition 9.3. Then F gives a ring homomorphism H R, where
R is the integral closure of Zv. The resulting homomorphism H R R/mR has
kernel m, and is independent of the choice of lifting F.

Since H is free of finite rank over Z, the ring Hp 1Lm H/p"H H (R) 7/ is a
complete semi-local 7/p-algebra of finite rank. Similarly, the ring Hm li_m H/m"H
is complete and local, with residue field Hm/mHm Him E. The maximal ideals
of Hp correspond bijectively to the maximal ideals of the finite ring H/pH. In
particular, m is a maximal ideal of Hp; by the theory of complete, semi-local rings
Hm is a direct factor of Hp. This splitting gives an idempotent decomposition of the
identity:

1 8 -{- a

which may be used to decompose any Hp-module (cf. [M, II 7]).
The structure of Hm is somewhat clarified by considering the set of all liftings F

of f to R, the integral closure of 7/p. (We recall that an identification of E with a
subfield of R/mR has been fixed.) Associated to the lifting Fi we have the order
Ri 7 generated by its Fourier coefficients, with residue field R/m E,
together with a surjective homomorphism Hm R taking T to A, etc. The inertia
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group of p acts on the set of liftings {F} by conjugation of coefficients, and we
have an injective homomorphism

(12.6) H.-- 1--[ R,
orbits

whose image is contained, with finit index, in th subring of elements (r, r)
with r =_ r in E (the index reflects higher congruences among the orbits of liftings).
In particular, the artinian D-algebra Hm (R) is a product of fields, and the
newform F lifting f in Proposition 9.3 is unique if and only if Hs is unramifiCd over. We define

(12.7) h rank(Hm) dima(Hm (R) ).
We note that T is a unit in Hm, when k 2, as T a - 0 (modulo m). Similarly,
U is a unit in Hm when 3 < k < p.

Let TJ li_m J[p] () be the Tate module of the Jacobian, which is a module

for H. The 7/-module 8m TpJ (where 8m is the idCmpotnt for Hm defined in (12.5))
is free over 7/, and is stable under the action of ( Gal(Q/Q). It therefore defines
a p-divisible group G over with TG esTJ. This is the p-divisible group
associated to the eigenform f (mod p); we note that G has Cndomorphisms by Hm
over . The rpresntation of ( on G[m]() is given by the Galois action on

TG/mTG. W will prove that TG is a free Hm-module of rank 2 (in most cases)
and that the representation of ( on TG/mTG is isomorphic to the representation
p (R) (e. tk-2)-. The structure ofG over will allow us to determine the restriction
ofp to (. We begin with the case when f has weight 2.

PROPOSITION 12.8. Assume that the newform f has weilht k 2.
1) The p-divisible roup G has height 2h and is isomorphic to tG over (1). It has

tood reduction over 7/.
2) Let G be the reduction of G over Z/pT/, and D(G) its Dieudonnd module. The

endomorphism F of D(G) is 7/-linear, commutes with Hm, and satisfies the quadratic
polynomial (Pt" x2 Tx + p 0 in End(D(t)).

3) G - G x G, where the multiplicative and dtale components of G each have
height h over 7//p7/. The endomorphism F of D(G) acts via multiplication by a unit u
in Hm which satisfies u =- a/e(p) (modulo m). The endomorphism V of D(Gm) acts via
multiplication by the unit u. (pn in Hm.

4) There is an exact sequence of p-divisible troups 0 - GO G G - 0 over 7/,
where GO is of multiplicative type and both GO and G have heilht h. The Galois #roup
(, Gal(p/) acts on TG by the character/(u-1. (p).X (where X is the
p-adic cyclotomic character ivin the action on TGm) and acts on TpG by the
unramified character 2(u).

5) There is an exact sequence of E-vector space schemes

0 - l-m] - l-m] - Gl-m] - 0

over 7/. The connected component GO [m] has dimension do > 1 and the dtale compo-
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nent Ge[m] has dimension d 1. The Galois group p acts on the semi-simplification
of G[m] via the character 2(1/ap)’Z (with multiplicity d) and on Ge[m] via the
character 2(ap/e(p)).

Proof. 1) The height of G is equal to the dimension of the -vector space
VpG TG (R) Qp era" VJ. But VpG is a free H, (R) Q module of rank 2, by
the theorem of multiplicity 1 for GL2, as every lifting F of f is a newform
(cf. [M, II 6-7]). Hence it has Q-dimension 2h.
The alternating form ( ) defined in the proof of (11.6) introduces a nondegen-

erate pairing of Z-modules TG x TG - TpG. If tr tr with 1 (mod N),
we have (a, b) l(a, b) for all a, b TpG. Since such elements are dense in
Gal(Q/Q(#N)), G is isomorphic to tG over ((#N).

Since J is an abelian scheme over 7/[1/N], the p-divisible group li_m J[-pn] has
good reduction over Z. The same holds for its subgroup G, which is the limit of
finite group-schemes li_.m Jim] over Z.

2) By part 1), D(G) is a free 7/,-module of rank 2h, with endomorphisms by H,,
and D(G)(R) Qp is free of rank 2 over H, (R) Q,. The endomorphisms F and V
are Zp-linear, as t is defined over 7//pZ where pth-power is the identity. The
Eichler-Shimura congruence: T, (p)sF + V shows that F satisfies (p)NX2-

Tpx + p 0 in End(D(G)).
3) Since T a 4:0 (modulo m), Tp is a unit in H, and the quadratic polynomial

satisfies by F factors over H,,: (X2 (p)XTx + (p)p) (x u)(x u’), where
u is a unit in H,. We have u a/e(p) (modulo m) and u’= p/u. (p_)s. Hence the
eigenvalues of F on D(G) are either units or divisible by p, and G has no local-
local part. Since G is self-dual over 7//pZ[#s] by 1), we must have height(G)
height(Ge) h. Hence F acts on D(Ge) by multiplication by u, and V acts on D(G)
by multiplication by p/u’ u(p)N.

4) The exact sequence of groups over 7/ follows immediately from 3), and the
general theory of p-divisible groups. The characters of f, on T(G) and Tt,(Ge)
follow from the eigenvalues of F on D(G) and D(Ge) respectively.

5) Everything is an immediate consequence of 4), except that we may only
conclude that do and d are > 1. (The Hm-modules T(G) and T(Ge) are nontrivial,
as they become free H, (R) Q, modules when tensored with Q.) To show that d 1,
we follow the method of Mazur [M, pg. 118-119]. The E-vector space Ge(m) is a
subgroup of the p-torsion of Ja (N) over the algebraic closure of Z/pZ, on which the
algebra H acts via the eigenvalues of the form f. We will bound this subgroup, by
studying its image in the differentials of the first kind.

Recall that there is a natural injection 6 from the p-torsion in Pic(Xt (N)) to the
space H(X(N), fx,N)) over an algebraic closure of Z/p7/: if D is a divisor with
pD (f) we have di(D)= df/f. The map is a twisted homomorphism of Hecke
modules [Wi, Prop. 6.5], namely 6(tD) t*6(D) for all H, where t* wstws.
(This twist arises from the fact that we have defined the action of the Hecke
correspondences of X(N) on the Jacobian J J(N) by considering J as the
Albanese (not the Picard) variety of the curve.) Hence the image of t(Ge(m)) lies in
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the space of holomorphic differentials where wNtwN t* acts by the eigenvalue of
on oI, for all e H. This space is 1-dimensional over E, and spanned by oiiwN, by

the q-expansion principle. Hence d < 1.
The analogous results whenf has weight k with 3 < k < p are obtained using the

geometry of X1 (Np), instead of the curve X1 (N).

PROPOSITION 12.9. Assume that f has weioht k with 3 < k < p.
1) The p-divisible 9roup G has height 2h and is isomorphic to tG over Q(/Np). It

has good reduction over the extension 7]p[(p] of 7/p.
2) Let G be the reduction of G over 7/e[(p]/(1 (p)Zp[(p] Z/pZ, and D(G) its

Dieudonnd module. Then G G x Ge, where the multiplicative and dtale compo-
nents of G each have height h over Z/pT/. The endomorphism F of D(G) is Zp-linear
and commutes with the action of Hm. F acts on D(Ge) via multiplication by the unit
Up" (p) of H, and V acts on D(m) via multiplication by the unit Up of Hm.

3) The exact sequence 0- Go G- G - 0 of p-divisible groups over Zp[(p]
gives a filtration 0 --, TpGO TpG TpG - 0 of TpG which is stable under the group
ffp Gal(Qp/Qp). The Galois group p acts on TpG by the character 2(U-1)
Zp, where 7.p is the p-adic cyclotomic character, and on TpG by the character
,,],(Up (p)ffx)" Z2-k.

4) There is an exact sequence ofE-vector space schemes

0 --. GO [m] G[m] Ge[m] 0

over Qp, with flat extensions to Zp[(,]. The connected component G[m] has dimen-
sion do > 1 and the .tale component has dimension d 1. The Galois 9roup rp acts
on the semi-simplification of G[m] via the character 2(1/ap).X (with multiplicity dg)
and on Ge[m] via the character 2(a,/e(p)). 7.2-k.

Proof. 1) The height and duality statements are proved exactly as in Proposition
12.8. In this case, however, G does not have good reduction over Zp, but has
potentially good reduction (over the ramified extension Z[(p] it achieves good
reduction). Indeed, the Jacobian J ofX(Np) is isogenous to the product of abelian
varieties A x B, where A is the connected component of the subgroup of points P
in J with Zdz/) (d)pP 0, and B is the connected component of the subgroup
ofpoints fied by the group { (d)p: d (7//p7/) }. The isogeny q: J A x B defined
by q(P)= ((p- 1)P- E(d)pP, E(d)pP) has degree prime to p (so induces an
isomorphism of p-divisible groups), as the composite of q with the canonical
inclusion is multiplication by (p- 1) on J. The group G is a subgroup of the
p-divisible group of A, as (d)p (k-Z(d) in End(G). In fact, the Hecke algebra H
stabilizes A, and TpG eTpA where em is the idempotent of Hm defined in (12.5).
An important result of Deligne and Rapoport [DR, V, Thm. 3.2] shows that the
abelian variety A (and hence the p-divisible group G) has good reduction over
7/[].

2) Let I and I’ be the components of the special fibre Xo of the model X for
XI(Np) over 7/p[(p] described in 7. A result of Raynaud IRa, Thm. 12.1] gives an
isomorphism from Pic(X/7/p[(p]) to the connected component ofthe N6ron model
of J J(Np) over 7/p[(p] (which is isogenous to the product of the N6ron models
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of A and B). Standard arguments (cf. [MW, pg. 268-269]) then show that the
reduction G is isomorphic to the p-divisible group li__m Jac(I) x Jac(I’)[m"] over
/p.

This group splits as a product of G lim Jac(I) [m"] by G lim Jac(I’) [m"].

Indeed, the m-torsion in Jac(I) is clearly a subgroup (as H acts on I); since
Up ap 0 is a unit in H,, and Up Verp on I, this subgroup is of multiplicative
type (as V is a unit on its Dieudonn6 module). The element Up in H does not act on
I’, but it acts on the subgroup of Jac(I’) where Z(d)p 0 by formula (7.4). Hence
it makes sense to speak of the m-torsion in Jac(I’); since Up is a unit in H, and acts
on the Dieudonn6 module of this subgroup by (P)N" F, it must be 6tale. Both
subgroups have height h, as G is self dual over 7//p7/[#] by 1).

3) The filtration 0 TpGO TpG TpG 0 is clearly stable under the normal
subgroup Gal(p/,(#p)) of (#p, which acts via the characters 2(U1). Zp on TpG
and 2(Up. (p)ffl) on TpGe. Since these characters are nonconjugate (one is unrami-
fled, and the other an unramified twist of ;tp), the filtration is stable under the action
of f#p on TpG. To determine the characters of f#p on TpGO and Tp G_e, we recall that
the inertia group Gal(Qp(t)/p) acts trivially on ! (and hence on Gm) and by (d)-on I’ (and hence by (;tk-2)- on Ge): this is the content of Proposition 7.2. This gives
the claim.

4) This follows from 3), which gives d, d > 1. To show d 1 we argue exactly
as in the proof of Proposition 2.8. We leave the details to the reader.

PROPOSITION 12.10. (of [M, II {}15]) Assume that the newform f Ea.q" is an

eioenform of weioht 2 < k < p with ap :/: O, and that the representation p’(
2 :/: e(p). ThenGal(Q/Q) GL2(E) is irreducible. When k p assumefurther that ap

1) We have do dimr G[m] 1 and the representation of f on G[m] is isomor-
phic to pf (R) (e" zk-2)-1.

2) TpG is a free Hm-module of rank 2.
3) Hm is a Gorenstein ring.

Proof. 1) By Proposition 12.8 and 12.9 we know that the characters of f#p
on the semi-simplification of G[m] are 2(1/ap)-Z, with multiplicity d, and

22(ap/,(p))z2-k, with multiplicity d 1. Our hypothesis that ap v e(p) when k p
implies that these two characters of f#p are distinct. But Proposition 11.8 implies
that the semi-simplification of G[m] as a f#-module is isomorphic to r copies of
the representation Pl (R) (e" k-2)-l. Hence each character of ffp occurs with multi-
plicity divisible by r. Since d 1 this implies r 1. Hence G[m] is isomorphic to

pf ( (g," zR-2)-1 and do 1.
2) Since VpG TpG (R) Qp is free of rank 2 over Hm (R) Qp, the H,,-module TpG is

free (of rank 2) if and only if TpG/mTG G[m] has dimension 2 over E, by
Nakayama’s lemma. But dim G[m] d + d, so this follows from 1).

3) The ring Hm is local, of dimension 1. It is therefore Gorenstein if and only if
the module Hm Hom(H,., Zp) is free of rank 1 [B]. The H,,-module TpG is free
of rank 1 over E. Likewise TGO is free ofrank 1, as do 1 by part 1). Hence TGo

Hom(TpGe, Zp)
_
Hom(Hm, 7/p) is free of rank 1, and H,. is Gorenstein.
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Note. We do not know if the three equivalent statements in Proposition 12.10
2 e(p). The argument using Proposition 11.8continue to hold when k p and ap

only shows that do is odd.

Using the results in the previous three propositions, we can now complete
2the proof of Proposition 12.1. If k- p and a, e(p), these results show that

the only character of lap which occurs in p. is 2(e(p)/ap)= 2(a), which is the
content of 12.1. In all other eases, the filtration 0 G[m] G[m] Ge[m] 0
of fa-modules gives (after twisting by e. k-2) a filtration 0 L W L’ 0
on the representation space W of Ps, where ff, acts on the line L by the char-
aeter 2(1/a,). ;(. 2(e(p)). ;tk-2 2(e(p)/a). 7.k-1 and on the line L’ by the character
2(a/e(p)). z2-k’,(e(p)) k-2 2(ap).

{}13. Extension classes and companion forms. In this section, we assume that
f Y.a,q" is a normalized eigenform of type (k, e) for F1 (N) with coefficients in the
finite field E of characteristic p. We assume the weight k off satisfies 2 < k < p and
define k’ p + 1 k, so 1 < k’ < p 1. We always assume that a, # 0; in the case

2when k p, we will also assume that a, # e(p). Finally, we assume that the repre-
sentation ps: Gal(Q/Q)--, GL2(E) associated to f is irreducible; when p # 2 this
implies that p. is absolutely irreducible [$8].
By the results of the previous section, we have a realization of the Galois

representation p, (R) (e;tk-2)- on the m-torsion G[m] of the p-divisible group asso-
ciated to f in the Jacobian. The finite group scheme G[m] over Q has the structure
of an E-vector space scheme of dimension 2; over Q, it lies in an exact sequence

(13.1) 0 GO [m] G[m] Ge[m] 0

of E-vector space schemes, where the E-vector spaces G[m] and Ge[m] each have
dimension 1. This sequence was the key to our understanding of the restriction of
the representation p. to a decomposition group at p in Gal(Q/Q). The E-vector
spaces in (13.1) all have canonical flat extensions over 7/, [(p]. We are now concerned
with when the exact sequence in (13.1) is split, and in determining its extension class.

PROPOSITION 13.2. The following are equivalent:
1) The sequence of E-vector space schemes in (13.1) is uniquely split over
2) The sequence of E-vector space schemes over 7/[(] which extends (13.1) is

uniquely split over Z[(,].
3) The restriction of p to f#, Gal(Q,/Q,) is diagonalizable, and is the sum of

the distinct characters 7.k-2(e(p)/a) and 2(a,).
Proof. The equivalence of 1) and 3) follows from the fact that the representation

py occurs in G[m] (R) ek-2. The two characters k-12(e(p)/a) and 2(a) of ffp on the
semi-simplification of ps are given by Proposition 12.1. They are distinct as ;tk- 1

2implies that k p, where we have assumed a v e(p). Hence if (13.1) splits, it splits
uniquely.
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Part 1) is equivalent to assuming that the sequence (13.1) is uniquely split over
the extension p(p), which has degree prime to p over ,. This is clearly implied
by 2), but it also implies a spliting over 7/,[,-1. To show this, we may base change
to any 6tale extension R of degree prime to p of Z,[,], and show that a splitting
of (13.1) over the quotient field L of R implies a splitting over R.
Choose R so that the characters 2(1/a,) and 2(a/e(p)) are trivial on Gal(ffL).

The E-vector space scheme Ge[m-I is isomorphic to the 6tale vector space scheme
E E (R) 7//pZ with trivial Galois action over R, and G[m] is isomorphic to the
Cartier dual tE E (R)/z over R, where E Hom(E, 7//p7/). The existence of
such isomorphisms follows from Propositions 12.8, 12.9. Since Kummer theory
gives an isomorphism of Z/pT/-vector spaces Ext(Z/pZ, #) Ha(R, #) R*/R*p
for any local ring R, where Ext classifies extensions of finite fiat group schemes,
we obtain a canonical isomorphism of E vector spaces

(13.3) ExtR(E, E (R) #) R*/R* (R) E

Here ExtR classifies extensions in the category of E-vector space schemes: it is the
sub-module of the E-bimodule

Ext,(E, E (R) #,)

R*/R*" (R) (E (R) E)

of extensions of group schemes where the two E actions are the same. Hence the
sequence (13.1) over R gives a class in R*/R* (R) E, which is zero iff the sequence
is split. Since R*/R* injects into L*/L*, a splitting over L implies one over R.

We now consider the extension class defined by (13.1) in more detail. By Pro-
positions 12.8 and 12.9 the vector space schemes G[m] and Ge[m] are twists of
E (R) #, and E over Q,, by the characters o 2(1/a,) and e z2-kA(an/e.(P))
zk’2(an/e(p)), respectively. In other words, we have isomorphisms io" E (R)/z,
G[m] and ie" E Ge[m] over L such that ig io’ffo(tr), i ie’e(a), for all
a Gal(L/n). Let : G[m] E (R)/, and fl" E --. Ge[m] be homomorphisms of
fiat E-vector space schemes over R. Via push-out and pull-back we obtain a homo-
morphism .fl*" Exts(G[m-i, G[m]) Exts(E, E" (R) #). By (13.3), the extension
G[m] defines a class

(13.4) qm(o, fl) in R*/R* (R) E

We will write the value group R*/R* (R) E multiplicatively, for reasons that will
become clear in the next section.

PROPOSITION 13.5. 1) For s and in E, we have the formula qm(SO, tfl) qm(o,
Hence the classes qm(t, fl) all lie in an E-subspace (qm) of dimension <_1 in
R*/R* (R) E.
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2) For tr Gal(L/C)p), we have the formula qm(O, fl)a qm(a, fl)’t’), where is
the character zk" 2(a2p/e(p)). Hence (qm) is contained in the -eitenspace of
R*/R*p (R) E v.

3) We have (qm) 1 (i.e., qm(a, fl) 1 (mod R*’))/f and only if the exact sequence
of E-vector space schemes in (13.1) is split.

Proof. 1) is clear, as is the formula qm(a, fl)" qm(a’, fl’). Taking a i and
fl ie shows that (qm) lies in the ff e/o-eigenspace, which proves 2), and 3) is
a tautology from the definition of Ext groups.

The ring R is an unramified extension of Zp[(p], so n (1- p) is a uni-
formizing parameter in R. Since R*/(1 / rR) has order prime to p, R*/R*P=
(1 + rR)/(1 + nR)p. Since (1 + ira)p 1 + prra + ""+ rrPap, and 7gp-1 has the same
valuation as p, we see that (1 + rR)p is contained in the subgroup (1 + prR)=
1 + rrPR. Hence for 1, 2, 3,..., p we have the quotient 1 + riR/(1 + nR)p Ui,
and a descending filtration

(13.6) R*/R* UI = U2 = Ua =’"= Up O.

The subgroups U are all stable under the action of Gal(L/p), where L is the
quotient field of R. The group Up is isomorphic to 7//pZ and Gal(L/p) acts via the
character ;t- For 1, 2, p- 1 the representation of Gal(L/p) on U/Ui/
is induced from the character of the inertia subgroup. In particular, the

2k’.2(a2/e(p))-eigenspace of R*/R* (R) E has dimension 1 over E, since ap v e(p)
when k p.

PROr’OSITION 13.7. The three conditions of Proposition 13.2 are equivalent to the
following:

1) When f has weight 2 < k < p 1, the representation py is tamely ramified at p.
2) When f has weight k p, the representation py is unramified at p.

Proof. Clearly part 3) of Proposition 13.2 implies that Pl is tamely ramified at
p when 2 < k < p 1, and unramified at p when k p. Conversely, the restriction
of py to the inertia subgroup of Gal(p/Qp(p)) has matrix form:

where r/is a character with values in E. If p. is tamely ramified or unramified at p,
the character r/is trivial and the sequence (13.1) is split over the maximal unramified
extension of Qp((p). Hence the extension class (q,) lies in the subspace Up (R) E of
R*/R* (R) E. But it lies in the eigenspace with character zk"2(a2/e(p)) 7., so
(q,) 1 and the extension (13.1) is split over Qp.
The following modular criterion for the restriction of pj. to f#p to be diagonalizable

was noted by Serre [$7, pg. 18-1.
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PROPOSITION 13.8. Iff Eanq has weight k with 2 < k < p- 1, assume that
there is a cusp form g Ebnq of weight k’ p + 1 k and character e for F (N)
over E which satisfies: Og ok’f in k’+p+l and glUp &’g. Iff has weight k p
assume that there is a cusp form g of weight p and character e for FI (N) over E which

satisfies" Og Of in Mp+2, g f, and g Up 2a. Then
1) The cusp form g is a normalized eigenform for F(N), and the eigenvalues bt for

Tt and Ut satisfy b at" k’-.
2) The eigenvalue 2 bp of Up is nonzero, and is given by the formula bp e(p)/ap.
3) The representation pf is diagonalizable when restricted to (gp: all the equivalent

conditions in Propositions 13.2 and 13.7 hold.

Proof. 1) The identity Og Ok’f shows that b 1. To show that glTt
a lk’-g, we use formula (4.8):

1.O(glT)--- OglT (0ky)] T l’Ok’(flT).

But f] Tt atf, so O(g] Tt) O(at" lk’-Ig). Since the kernel of 0 is the image of Vp, we
have

(13.9) gl Tt at" lk’-g hi Vp.

When k # p this forces h 0, as the left hand side of (13.9) has weight k’ < p.
When k p, h is a form ofweight 1. But the left hand side of(13.9) is, by hypothesis,
an eigenvector for U with eigenvalue 2. Since (hlVp)lU--h, this shows that
h 2"(hi Vp) which forces h 0. A similar proof works for

2) If k # p and 2 0, we have g ok’-g in k’ by part 1). This contradicts the
fact that Ok’-f has filtration pk’, which was noted in the proof of Proposition 4.10.
If k p and 2 0, we have g OP-f in ]t, by part 1). This contradicts the fact
that O-If has filtration p2, which was proved in Proposition 4.10, part 2).

Let pg be the Galois representation associated to the normalized eigenform g; by
Proposition 12.1 there is a line in the semi-simplification of pgiCp where the local
Galois group acts by the character 2(bp). But part 1) implies that pg pf () (k’-I as
representations off9 Gal(Q/Q), and the characters of (gp in the semi-simplification
of pf (R) Zk’-t are ;(k’-t’2(ap) and 2(e(p)/ap), respectively. When k #- p the first char-
acter 7.k’-2(ap) is ramified, so we must have bp e(p)/ap. When k p, both char-
acter are unramified, but the hypothesis g : f means that bp v ap. Hence bp
e(p)/ap as claimed.

3) By Proposition 12.1 the representation space W of pf -pg (R) zk- has the
fgp-stable lines Lf and Lg with characters zk-l,(e.(p)/ap)and )(,k-l(zk’-l’,(e,(p)/bp))

22(ap), respectively. Since ap v e(p) when k p, these two lines are distinct and
W Lf Lg is semi-simple as a fgp-module.

Serre calls the modular form g (when it exists) a companion form off. This relation
is clearly symmetric: f is a companion form of g. Proposition 13.8 asserts that forms
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f which have a companion g have locally split Galois representations at p. In the
next three sections, we will prove the following converse to Proposition 13.8, which
was conjectured by Serre [$7, pg. 18-1.

THEOREM 13.10. Letf Z, anq be a normalized eigenform of type (k, e) for F1 (N)
2over E, with 2 < k < p and ap : O. When k p we assume further that ap v e(p).

If the restriction of the Galois representation py: aj
_

GLE(E) to ajp is diago-
nalizable, then a companion form g E bnq exists, satisfying the hypotheses of
Proposition 13.8.

COROLLARY 13.11. Let f E anq be a normalized eigenform of type (k, ) for
FI(N) over E, with 2 < k < p and ap :/: O. When k p we assume further that
2 t: e(p). Then the following are equivalent:ap
1) The Galois representation py is tamely ramified (k :/: p) or unramified (k p) at p.
2) There is a form h Z, Cnq of type (k’, e) for Ft (N) over E, with k’ p + 1 k,

which satisfies the differential equation Oh Okf in 1Ik, +p+.
Proof of Corollary. If py is a reducible representation of (9, it is completely

reducible (as py is semi-simple). In this case, py is certainly diagonalizable when
restricted to fgp and 1) always holds. But one can show, using the theory of Eisenstein
series, that a form h satisfying 2) also exists. For example, if

is the Eisenstein series of weight 2 < k < p and character e 1, then py 1 03 eZ-and the form h is given by the Eisenstein series

of weight k’ and character 5. The general case is similar, but we do not treat it here.
Henceforth, we assume Pr is irreducible as a representation of

First assume that k # p. By Proposition 13.7 and Theorem 13.10 we have 1) = 2):
simply take h g, the companion form. Conversely, ifh exists and satisfies Oh ok’f,
the proof of 13.8 shows that h is an eigenvector for Tt and Ue. We may find an
eigenvector g for Up in the span of <h, hlUp, hlUp2...>; since this has the same
eigenvalues for Te and Ue as h, it is a normalized eigenform which satisfies 0g ok’f.
Hence g is a companion to f, and the restriction of p to fgp is diagonalizable by
Proposition 13.8.
Now assume k p. If p, is unramified at p, then by Proposition 13.7 and

Theorem 13.10 we have a companion g to f of weight p which satisfies
with bp e(p)/ap # ap. We define the form h of weight k’= 1 by the identity
(ap bp)" hi l/p f g. Conversely, if h exists, we may assume it is a normalized
eigenform of weight 1 (it is an eigenvector for Tt and Ut from Oh Of, and one can
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choose an eigenvector for T in the span of (h, hlT,, hlT2, ...)). Let 9 be the
eigenvector for U, with eigenvalue bp e,(p)/a, in the span of (hi , Ah). Then O is
a companion for f, and Ps is unramified at p by Proposition 13.8.

We note that the identity Oh Ok’f f’ of part 2) of Corollary 13.11 can be
verified by a finite amount of computation. It suffices to check that nc. nk’a. for
all n < 2-N2 Hqlv(1- q-2)’(k’ + p + 1), as any form of weight (k’ + p + 1) on

F1 (N) which vanishes to this order at must be identically zero.
R. Coleman has observed that the existence of a companion form for f can be

neatly expressed in terms of the vanishing of the class of the meromorphic differen-
tial v,, in the de Rham cohomology of the Igusa curve I I1 (N) [Co1]. Recall that
f’ Ok’f has filtration k’ / p + 1, so vy, f’(q)dq/q is a meromorphic exact differ-
ential on I which is regular outside E, and has poles of order < k’ + 1 of super-
singular points.
The de Rham cohomology H (I/E) of the Igusa curve I over E is defined as the

first hypercohomology group of the complex fx/E ((gxm fm). Coleman [Co2]
shows that H(I/E) is isomorphic to the quotient of the space of meromorphic
differentials v on X, with no residues and poles of order <p at all points x, by the
space of exact differentials do, where the function 9 has poles of order < (p 1) at
all points x. Hence the differentials vy and vy, define classes in Hx(I/E), where E is
the finite field generated by the coefficients off, and their cup product (v., vs,) lies
in E. Since vy is holomorphic, and the poles of vy, are contained in E, the cup product
is given by the formula

(13.12) (vy, vy,) Resx(9,’vy)

where, for each x E, g is a meromorphic function on I such that the differential
vy, dg is regular at x.
The expansions of vy and vy, at supersingular points x was determined in Pro-

position 9.9. If z is a local parameter at x we have

Hence g (- 1/k’).. z-k’ + E,,>o ),,,z" and

(13.13)
Res,(O, "vy) ---,---

in E.
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PROPOSITION 13.14. The following are equivalent:
1) The class v,, is zero in H (I/E)
2) There is a modular form h of weight k’ with Oh f’
3) The representation Ps is diagonalizable when restricted to

Assuming Hm is unramified over Zp, these three conditions are equivalent to:

4) The cup-product (vs, v,,) 0 in E.

Proof. We have v, -= 0 in H(I/E) if and only if there is a function h on I which
satisfies dh v, and h has poles of order < (p 1) at all suprsingular x. Then h
corresponds to a form of weight k’ satisfying Oh f’, so 1) 2). We hav seen that
2) 3) in Corollary 13.11. Clearly 1)= 4) in all cases. When Hs is unramified over

7/, there is a unique lifting F of f, in the sense of 9, to an eigenform of weight 2 in
characteristic zero. Hence the eigenvalues of f do not occur in the Hecke module
Mk/(f) by the multiplicity one theorem. Since the cup-product pairing induces
a non-dgenerate duality between the f- and f’-eigenspaces for the Heck algebra
on Hi(I/E), we have v., 0 if and only if (v,, v,,) 0.

Proposition 13.14 suggests that there may be a formula for (v, v,) in terms of
the invariant qm of the extension of E-vector spaces

{]14. The invariant of Serre and Tate. In this section, we refine the invariant
qm(g, fl) which classifies the extension 0 -, G[m] -, G[m] -, G[m] -, 0 of E-
vector space schemes over Q by studying the extension class of the sequence
0 -, GO G -, G --, 0 of p-divisible groups with endomorphisms by Hm.

Let R be a complete, discrete valuation ring with quotient field K ofcharacteristic
zero and perfect residue field of characteristic p. We say a p-divisible group ,4

over R is m-divisible of height 7 if/1 has endomorphisms by Hm and TA is
a free Hm-module of rank 7; the height of A as a p-divisible group is then equal
to 7" h 7" [Hm" Z]. By Tate’s theorem IT], the functor ,4 TA embeds the
category of m-divisible groups over R as a full sub-category of the category of free
Hm-modules of finite rank with a continuous, Hs-linear action of Gal(K/K). The
groups Ext,(A, B) relative to the category of m-divisible groups classify extensions
0 --, B --, C --,/1 --, 0 with C m-divisible over R; Ext,(A, B) is the subgroup of the

bi-Hm-module Ext,(A, B) which classifies extensions of p-divisible groups where
the two Hm-actions are the same. In particular, ExtR(A, B) has the natural structure
of an Hm-module.
We apply this to the p-divisible group G associated to the eigenform f Ea,q

2 e(p) when k p. By Proposition 12.10of weight 2 < k < p, with a 0 and ap
the groups G, G, and G are m-divisible over or 7/p[]. Let R be the completion
of the maximal unramified extension of Zp[(-l, and let /Zp (R) Hm be the trivial
6tale m-divisible group of height 1 over R, i.e., T(/Z (R) Hm) Hm with trivial
Galois action. The Cartier dual of the trivial 6tale m2divisible group, in the category
of p-divisible groups over R, is the multiplicative p-divisible group ;,, (R) H
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Homzp(Hm, (m)" Since H, Hom(H’.., Zp) is a free H’module of rank 1 by Pro-
position 12.10 (Hm is Gorenstein), T(G" (R)/-/) Tp(G’) (R)/-/ is free of rank 1
over H" and the group 13., (R)/-/, is also m-divisible of height 1 over R. By part 3)
of Proposition 12.9, we have isomorphism of m-divisible groups over R"

Je: p/7/p (R) H G

Jo: ;" (R) Hm Go

such thatj Je" r/e(tr), Jg Jo" r/o(tr) for all tre Gal(K/Qp). Here K is the quotient
field ofR and the characters r/e and r/o take values in Hm* and reduce to the characters
’e and ’o (modulo m), which describe the twisting ofG [m] and GO [m-I respectively.
When 3 < k < p we have r/o 2(Up-x) and r/e 2(Up" (p)X)zk’. When k 2 we
have r/o 2(u-) and r/ 2(u. (p)ff) where u is the unit root of x2- Tpx +
(p).p 0 in H,.

Since R is complete and local, we have a canonical isomorphism:

(14.1) Ext(,/7/n, ;’) li._m Ext.(7//pZ, #n.)
n

lim H(R, #.)

lim R*/R*"

l +rR

where r (1- (v) is a uniformizing parameter in R. The group (1 + rR) is a
7/v-module, and we write this action multiplicatively. From (14.1) it follows that:

(14.2) Exts(Dn/7/n (R) Hm, C:m nn) (1 -- R) ()Tr n"

Now let : p/7p ( H" -. Ge and /3: GO --, ;" (R) H be homomorphisms of
m-divisible groups over R. By push-out and pull-back they give a homomorphism
*fl, from ExtR(Ge, G) to Ext(Qp/Zp (R) Hm, m (R) H,). Applying the homomor-
phism to the class of the extension 1 GO --, G --, Ge 1 over R, and using (14.2)
gives an extension class:

(14.3) q(, fl) in (1 + rtR) (R) Hm

PROPOSITION 14.4. 1) For all s, in H" we have q(s, tfl) q(,
2) For all tr Gal(K/Qp) we have q(, fl)" q(t, fl),t.), where rl rle/qo

2(u2" (p)ffa)" Zk’ and u is a unit in H" with u =_ ap (modulo m).
3) The invariants q(, fl) of the extension defined by G lie on the H’-submodule of

(1 + nR) (R) H. where Gal(K/Qv) acts via the character rl. In particular, q(t, fl) is
contained in the Hm-submodule (1 + xk’R) (R) H..
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4) The image of q(, fl) in the quotient (1 + zrR) (R) H,/(1 + rcR) (R) mH, lies on
the E-subspace (q,,) of R*/R*p (R) E R*/R* (R) E.

Proof. This is similar to Proposition 13.5, and we leave the details to the reader.
When H, is unramified over 7/p, the quotient H,/mH, is canonically isomorphic
to E v, and the image of q(0, fl) in the quotient is equal to qm(, fl). When H, is
ramified, the isomorphism is not canonical and H,/mHn and E are simply two
1-dimensional E-vector spaces. Similarly Ge[m] is isomorphic to m-lpH/pH,
rather than to H./mH.

The choice of a homomorphism 0: Qp/Z (R) Hm G of m-divisible groups is
equivalent to the choice of an element T(Ge) T(G). Similarly, the choice of
a homomorphism fl:G (R) H is equivalent to the choice of an element

Hom(TpG, 7/(1)) Tp((’G)e) Tp(’(7). If we set q(, ) q(, fl) we obtain,
by Proposition 14.4 an H-bilinear pairing

(14.5) q: T,G x T,’G - (1 + rcR) (R) H

with image in the r/-eigenspace for Gal(K/C)p). This is the Serre-Tate invariant of
the m-divisible group G: it takes values in (1 + rk’R) (R) mH; if and only if the exact
sequence of E-vector space schemes 0 G[m] G[m] Ge[m] --, 0 is split over
R.
The usual Serre-Tate invariant (cf. [K5]) of the ordinary p-divisible group G over

R is the Z,-bilinear pairing

qb: TG x Tp’G - (1 + zR).

This satisfies qb(h, fl) qb(, hfl) for all h H,; the action of ’h on ’G is identified
with the action of h on G in the isomorphism of G with its dual (cf. the definition
of ( ) in the proof of Proposition 11.4). If tr: H Zp is the canonical Zp-linear
map tr(f) f(1), we have

(14.6) qb (1 (R) tr)q.

Indeed, tr arises from the contraction H, (R) H 7/p which forgets the m-divisible
structure on G.

Since ord(p) p 1, the ideal nR has divided powers (if x zrR then x"/n! nR)
and the p-adic logarithm defined by the series log(1 + x) x x2/2 + x3/3 x"
gives a 2p-linear continuous homomorphism log: (1 + nR) hR. Since the ideal
n2R has topologically nilpotent divided powers (x/n! 0 as n o), the p-adic
logarithm induces an isomorphism 1 + nR rrR for all > 2, its inverse is defined
by the series exp(y)= 1 + y + y2/2! + y3/3! +’". It follows that the homomor-
phism log: 1 + nR rR is surjective, with kernel the torsion subgroup /p of
1 + nR; it induces the Artin Schreier isogeny t-- p- from 1 + rR/1 + rr2R to

nR/z2R.
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We define log qo as the composite of qo with the Hm-linear map
log (R) 1"(1 + rR) (R) H --, nR (R) H.

PROPOSITION 14.7. The bilinear pairin# of R (R) Hm-modules"

log qo" (R (R) TG) x (R (R) T’G)- rR (R) H

takes values in zk’R ( Hn and takes values in the submodule k’R () mH ifand only
if the sequence of E-vector spaces 0 --. G[m] G[mi - Ge[m] - 0 is split over R.

Proof. We must verify that the r/-eigenspace of Gal(K/Q,) containing the image
of qo has no intersection with the kernel of the p-adic logarithm. But the kernel/zp

2lies in the ;t-eigenspace, and r/ ; (modulo m) (as a, v e(p) when k p).
Similarly, we define the pairing of R-modules

(14.8) log qb" (R (R) TG) x (R (R) T’G) nR

as the composite of qb with log: 1 + nR zR. Then log qb (log (R) tr)qo. In the
next section, we will present Dwork’s formula for log qb, using the action of
Frobenius on the deRham cohomology of G.

15. de Rham cohomology and Dwork’s formula. We begin with the case when
fhas weight k 2. In this case G is a p-divisible subgroup ofthe Jacobian J Ja (N)
of the curve X Xa (N) over Z. Since X and J are smooth and proper over ;,
the de Rham cohomology groups H (X) H a(X, f) and Ha(J) H (j, f.) are
free Z,-modules, and pull-back via the Albanese map X J induces an isomor-
phism H (J) H (X) [K4]. In the exact sequences

(15.1)
0 + H(X,fr)+ Ha(X)+ Ha(X, (gx)+ 0
+ o9s - Ha(J) + Lie(’J) +0

the invariant differentials oj are identified with the holomorphic differentials on X
and the Lie algebra of’J Pic(X) is identified with Ha(X, (gx).
The Hecke algebra H of Xa(N) acts Zp-linearly on Ha(X) and preserves the

sub-module H (X, fx). We define

Ha(G) e.. Ha(X)= mHa(d)
(15.2)

coo =em H(X, fa emOSj

These are both Hm-modules, and we have an exact sequence:

(15.3) 0 o9o Ha(G) - Lie(’G) 0.

Let J be the reduction of J over Z/pZ, and let D(J) be the Dieudonn6 module of
the p-divisible group ofJ, with its Z-linear action ofF Fr and V Ver. The ideal
pT/, has divided powers, so by a theorem of Grothendieck (cf. [G1], [G2]) there is
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a canonical isomorphism Ha(J)H D(J) which presumably commutes with the
action ofH,. (This may be known, but I could not find a precise reference.) Thus the
Z,-module Ha(J) has a filtration, defined by (15.1), as well as a 7/p-linear action of
Frp. It is extremely difficult to construct the action of Fr on Ha(J) directly, or
equivalently, to describe the submodule cos of D(J). (See however IF1] for the case
of the Dieudonn6 module of a formal group.) Some general references on Grothen-
dieck’s isomorphism, and its relation to crystalline cohomology, are IBM], [BBM],
[Br], [K4] and [Me]. Passing to e,,-eigencomponents, we obtain an isomorphism
of H,,-modules

(15.4) Ha(G) D(G) U P.

Here U D(Ge) is the unit root eigenspace for Frp and P D(G") is the p-root
eigenspace for Fr. Since Fr annihilates the submodule co/pco in Ha(G)/pHa(G),
the H,,-submodule co is disjoint from U. Hence, projection onto the second factor
gives an isomorphism co H P. Since U Hom(TpG, 7/) and P TptG, Proposition
12.10 shows that U, P and co are free H,,-modules of rank 1, and consequently that
Ha(G) is a free H,n-module of rank 2.
We now consider the case when f has weight 3 < k < p, where G appears as a

p-divisible subgroup of Ja (Np). Here we let X be the regular model for Xa (Np) over
Z[] studied in 7 and let J be the N6ron model of Ja (Np) over this base. We have
an isomorphism Pic(X) H tjo of smooth group schemes over 7/pimp], where U is
the connected component of the N6ron model of the dual abelian variety J IRa].
Let fx Ox/.,,g,, be the dualizing sheafon X and define H (X) H (X, (9x & fx).
Since the differentials d: Hi(X, (gx) Hi(X, fx) are all zero, the spectral sequence
for hypercohomology degenerates at the Ea term and we have an exact sequence of
free 7/[-,]-modules

0 H(X, x) Ha(X) Ha(X, (gx) O.

The lattice Ha(X) is self-dual with respect to the cup product on Ha(X) (R) Q(p),
which is the de Rham cohomology of Xa(Np). We define Ha(J) as the Lie
algebra of the smooth group scheme Extrig(J, ,,) (which represents extensions
0 -E jo 0 together with an invariant differential on E pulling back
to dt/t, el. [MM]). As Ext(J, ) ’J we have an exact sequence of Lie algebras:

0 --, cos - H (J) Lie(’J) - 0

as in (15.1). The isomorphism of de Rham cohomology

Ha(J) (R) () Ha(X) (R) ,()
induced by the Albanese map identifies the lattices H (J) and H (X), as well as the
submodules cos and H(X, x). This follows from an extension of Raynaud’s theory,
which identifies Extrig(J, G,,) with H ((9

a lo, x) [Co2, 3].
Since the Hecke operators of Xa(Np) give endomorphisms of J and jo, by

N6ron’s theory, they stabilize the lattice Ha(d) in the de Rham cohomology
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of Ja(Np) over Qp((,). Hence they stabilize the lattice Ha(X) in the de Rham
cohomology of Xa(Np). We may therefore define Ha(G)= e,nHa(X)= e.,Ha(J)
and oga e,,,H(X,fa) emOs as in (15.2), and have an exact sequence of
7/p[(p] (R) Hm-modules 0 oga Ha(G) Lie(tG) 0 as in (15.3). The question of
a crystalline structure on Ha(G) is a bit more subtle, as J is not an abelian scheme.
But, as in the proof of Proposition 12.9, we have an isogeny of abelian varieties
Ja(Np) A x B over Q which has degree prime to p. This isogeny induces a
decomposition Ha(J) Ha(A) Ha(B) in cohomology over Zp[p], defined using
rigidified extensions and the N6ron models of A and B. But A is an abelian scheme
over 7/p[(p] with special fibre A; since the ideal (1 -(p) has divided powers we
again have a canonical isomorphism of 7/p[(p]-modules Ha(A) D(A) (R)
Since Ha(A) is stable under Hp and emHa(J) emHa(A), we obtain an isomorphism
of Zp[(p] (R) H-modules (if the Hecke ,actions are compatible...)

(15.7) Ha(G) D(G)(R) Zp[(p] U @ P

as in (15.4), and hence an action ofFrp on H (G) commuting with H. We summarize
the situation in the following Proposition.

PROPOSITION 15.8. When k 2 let R Z; when 3 < k < p let R [(p].
There is an exact sequence of R (R) Hm modules

0 OG

smH(X, x)

Ha(G)

,.I-I (X)

Lie(’G) 0

as well as an action of Frobenius Fr on Ha(G) which commutes with Hm. In the
decomposition

Ha(G) U P

into unit and p-root eigenspaces for Fr the subspace U is complementary to_e9a,
and 09 projects isomorphically onto P. The R (R) Hm-modules U Hom(TG, R),
P R (R) TtG-, and o9 are all free of rank 1, and Ha(G) is free of rank 2.

Proposition 15.8 actually holds when R is a complete, local, flat extension of Zp
(or Z,[,]), defining Ha(G/R) Ha(G) (R) R, etc. We write UR, PR and oga/R for the
corresponding R (R) H submodules. As in the previous section, we now specialize
to the case where R is the completion of the maximal unramified extension of Z
(when k 2) or 7/[(p] (when 3 < k < p). The choice of
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determines an element pa PR as well as an invariant differential c% ua + pa on
G over R with this component. The choice of

R (R) TvG Hom(Ug, R)

gives an R-linear map qg" UR R. Dwork’s interpretation of the logarithm of the
Serre-Tate invariant is the following (cf. [Dw] for elliptic curves, and I-K5] in
general).

PROPOSITION 15.9. For all R (R) TpG and fl R (R) TptG we have

qg(ut log qb(a, fl) in rcR.

Note. When H,, 7/p and a is a basis of the free R-module R (R) TpG, there is a
unique element u UR with qg(u) 1. Proposition 15.9 takes the more attractive
form

(15.10) log q(0, fl)-u + p/.

In this sense, the image of qG in 1 + nR (which reflects the splitting in the sequence
0 GO --, G G 0 of p-divisible groups over R) is reflected in the divisibility of
the unit eigencomponents of invariant differentials on G over R.

Proof. Dwork’s formula actually holds over the formal coordinate ring 9 of the
formal Lie group/= Homzp(TpG (R) Tp’G, G,)ofmultiplicative type over the Witt
vectors Wofthe residue field ofR. The ring 9 is the parameter space of the universal
formal deformation (# of G, by the theory of Serre and Tate. If {at) is a 7/fbasis of
TpG and {flj} a Zfbasis of T’G, then the elements qj q(a,, fl) are 1-units in
(Here q is the pairing associated to the deformation ( over 9.) We have an
isomorphism 9 - W[[qo 1]].
The sequence of F-crystals 0 U- H1((9/) P--, 0 is split over a larger

ring t--the subring of W (R) Qp[[qo 1]] consisting of series which converge in
the open unit disc (i.e.,mwhenever qo 1 is the maximal ideal of Cp). We have the
general formula:

(15.11) qg(u) log q(a, fl) in

Since 9 is contained in the ring of divided powers of t, the specialization map
9 R induced by G gives a map 9 R and Proposition 14.12 follows.
To prove (15.11) we follow Katz [K5]. For each bilinear form e: TpG(R) TG

there is a unique continuous derivation D(d) of 9 which is W-linear. By [K5, 3.2]
we have D(e)q(, fl) e(a, fl). q(a, fl), which we may write as

(15.12) D() log q(cr, fl) f(, fl).

Let V be the Gauss-Manin connection on H1(f9/9). For fl Tp’(J, the element pa in
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HI(/) is characterized by: %- pa e U, Vpa 0. Let a e Hom(Tp(, 7/p) be
defined by ga(e) g(e, fl) and let Fix(ga) be the corresponding element in UR. By
i-K, Thm. 4.3.2] we have

(15.13) V(D(Y))o Fix(4
V(D(Y))Fix( v) 0 all v in Hom(TG, 7/p).

If {i} is a Z-basis of TpG, with dual basis {}, the element
Ei log q(i, fl)Fix() is annihilated by V, hence equal to pa. Therefore ua
Ei log q(i,/3). Fix(); formula (15.11) then follows from tp,(Fix(/)) / ().

Associated to R (R) TpG Hom(UR, R) there is a unique R (R) Hm-linear map
,: UR R (R) H Homz,,(Hm, R) defined by ,(u)(h) qg,(hu). As a corollary of
Proposition 15.9, we obtain the formula ,(ua) log qo(, fl) in rR (R) H. Indeed,
viewing log qo(, fl) in Hom(Hm, zR) we have log q(, fl)(h) log qb(h, fl)
log qb(, hfl) qg,(h.utj ,(utj). Now fix bases h and of the free Hm-modulesH
and TG of rank 1; then there is a unique element u, UR such that ,(u,) 1 (R) h
in R (R) H. Since u, is a basis of the free R (R) Hm-module UR, we may write

(15.14) o9 c(, fl)" u + pa

with c(,/3) e R (R) Hm. Applying ,, we find that

(15.15) log q(, fl) c(, fl)’(1 (R) h)

in R (R) H, which is the generalization of 15.10 (where H,, Zp and h 1).

Combining the identities (15.14-15.15) with Proposition 14.7, we obtain our final
result of this section.

PROPOSITION 15.16. Let R be.a complete local flat Zp[(p]-algebra (or Zp-aloebra,
when k 2) and let o9 be an element of o9/R. Write co u + p usin9 the decom-
position HI(G/R)= UR O)P. Then u nk’uR. If the sequence of E-vector spaces
0 G[m] G[m] Ge[m] --* 0 is split, then u (rck’R ( mHm)UR.

Proof. For R the completion of the maximal unramified extension of
this follows directly from the identities. It is therefore true over 7/[(,], by extension
of scalars. Finally, it holds for any extension R of Z,[(], as o/ o9 (R) R, and
similarly for U, PR and Ha (G/R). When k 2, the same argument works over Z,.

16. Washnitzer-Monsky classes. We begin by reinterpreting Proposition 15.16
using regular differentials on the scheme X. Let F be a lifting of f to an eigenform
of weight 2 for F (N) (when k 2) or for F (Np) (when 3 < k < p) as guaranteed by
Proposition 9.3. Let R be the complete local Z,-algebra generated by the coefficients
A, of F, and the values of e. The regular differential ogr F(q)dq/q then lies in the
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era-component ofH(X, fx/R); since gmH(X, X/R) OOtl/R is a free R (R) Hm module
of rank 1, we may write or olhe where 09 is a basis and he R (R) H,,.
The eigenform F determines a ring homomorphism oe: R (R) H,, -o R which maps

1 (R) Te to Ae, etc. Since oelh qge(h)" oe for all h e R (R) H,,, we have

(1 6.1) hr" h hr" tpr(h)

in R (R) H,,, for all h R (R) H,,. We let UF and PF denote the R-submodules of UR
and PR where the algebra R (R) H,, acts by the character qgr.

PROPOSITION 16.2. Let f Z, anq be a normalized eigenform for F (N) of weight
2 e(p). Letk satisfying 2 < k < p, and assume ap O. If k p assume further that ap

F be a lifting off to an eigenform of weight 2 for FI (N) or F(Np) with coefficients
in R, and let coe F(q)dq/q be the associated regular differential on X over R.

Thenogr ur + pein H(X/R), whereue U c UR emH(X/R)and pr e Pe
PR emH(X/R). The unit eigencomponent ur lies in 7tk’ue. If the representation
is diagonalizable when restricted to fp Gal(/Q), then ue lies in mR" zk’u, where
mR is the maximal ideal of R.

Proof. Recall that o9 is a basis for the free R (R) H,,-module e,.H(X, x/R)=
COG/R UR PR" Write o u + p with u e UR and p e PR. Then ue ulhe lies in
U by (16.1); similarly pe plhe lies in Pe and ooe ur + pF.

Since u rck’UR by Proposition 15.16, we clearly have ue rk’u. If py is com-
pletely reducible when restricted to ,, the sequence0G[m] G[m] Ge[m] -o0
of E-vector space schemes is split, and u (rk’ (R) t)Uo with mH,. and Uo
Since oe maps the ideal rck’R (R) mH,, into the ideal rk’.mR, and uolhe is contained
in Ue, this shows that ur mRrCk" Ue.
For the rest ofthis section, we will assume that Ps is diagonalizable when restricted

to fq,, so Ul mR rCk’ Ue. We now unify the cases k 2 and 3 < k < p by passing to
the eigenform F’ on F1 (Np). This is an old form, defined by (9.10) when k 2, and
a newform defined by the equation FIw c. F’ when k 2. The differential rk’. o9,
is regular on the model X of Xx (Np) over R, by Proposition 9.13, part 3).

COROLLARY 16.3. We have ff, k’’O)lZ, Ue, 21- Pe’ in H (X/R), where ue, and Pr are
in the F’-eigenspace of the unit-root and p-root eigenspaces for Fr,. Furthermore,
ur, nk" U’ with u’ e Ur and mR.

Proof. When k 4 2 this follows from the identity oovlw c’tov, proved in
Proposition 6.14 and Proposition 1 6.2. Indeed, c has the same p-adic valuation as
nk’, and w preserves the eigenspaces for Frv acting on HX(A/R) Hx(X/R).
When k 2 the matter is a bit more subtle, as the class rck’coe, lies in the summand

H (B/R) of H (X/R), where we have not yet defined a crystalline structure. But B
is isogenous, by an isogeny ofdegree prime to p, to the product J(N) x Jx (N)’ x Kx,
where K has multiplicative reduction at p. Since nk’ooe, corresponds to an invariant
differential on J(N) x JI(N)’, it lies in Hx(J(N)/R) H(J(N)’/R) which has an
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action of Frp. The corollary then follows from Proposition 16.2, using the formula

(16.4) p.o9r p. x*(ogv) ux’*(ogv).

In (16.4) u is the unit root ofx2 A,x + pen(p) 0 and n, n’: Xo(Np) - Xo(N) are
the usual coverings n(E,
the induced injection of

To exploit the extra divisibility in ur, we will consider a map q from H (X/R) to
the Washnitzer-Monsky cohomology of the affinoid subdomains V and V’ consist-
ing of points reducing to I E and I’ E, respectively (modulo mR). The scheme
X is obtained by glueing the two "wide open spaces" V and V’ with these underlying
affinoids along their intersection: the annuli reducing to points in E [Co 1]. Figure
1 illustrates the analogy of the map r/with the Mayer-Vietoris sequence for comput-
ing the de Rham cohomology of a Riemann surface.

Let V, be the reduction of V (mod m), which is an affine scheme over R/m, and
let (V) lim H(V, (9,). This is an R-algebra, with (V)(R) R/ma isomorphic to

the coordinate ring of the affine curve I E over E. Let K be the quotient field of
R; then (V)(R)R K is the algebra of rigid analytic functions on V over K. An
analytic differential . dr# on V over K is said to be over-convergent if it extends
to some neighborhood of V in V. The Washnitzer-Monsky cohomology group
H (V/K) is defined as the quotient of the space of over-convergent differentials by
the exact differentials [WM]. This K-vector space is finite dimensional and has a

FIGURE
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K-linear action of Frp" it depends functorially only on the reduced curve I E. As
such, it has an action of the Hecke algebra Hp.

Define the K-linear mapping

(16.6) rl" H (X/K) H (V/K)

on a class c by first representing c by a differential v of the second kind on X (modulo
exact differentials) whose poles reduce to points in I’ 53. Then v is analytic on V,
and we may define /(c) Vlv. I will assume that the map r/commutes with the action
of Hp and Frp on each factor. This is undoubtedly true, but I could not find it in the
literature; it would follow from a general theory of correspondences in p-adic
cohomology. Hence r/induces a map of the F’-eigenspaces: H (X/K)r H (V/K)r
which we may apply to the differential ogr.

PROPOSITION 16.7. We have q(o%,) a.q(u’) in H(V/K)v’, where u’ Ur is in
the unit eioenspace for Frp (over R) and a m.

Proof. Since ogv, a" u’ + p’ with p’ n-k’pv, by Corollary 16.3, it suffices to
show that pV, is in the kernel of q. To do this, it suffices to show that Frp is a unit
on the eigenspace H(V/K)r’. But Up Verp on I, so Verp acts as A p%(p)/Ap
on H(V/K)r’. Since A has the same p-adic valuation as p, Frp p/Verp acts as the
unit A,/%(p).

Let v’ be a differential on X over R which represents the class of u’ in Uv and has
poles reducing to points in I’-E. The following result completes the proof of
Theorem 1 3.1 1.

PROPOSITION 16.8. 1) The expansions cor, EA’nqndq/q and v’= EC.q"dq/q at
are both integral andformally exact over R" A’. =_ C. =- 0 (mod nR)for all n > 1.
2) If py is completely reducible when restricted to ce, then the reduction of the

q-expansion E(A’’/n)q" (mod ms) is the Fourier expansion of a modular for 9 for
F (N) over E. The form 9 lies in Jlk, and satisfies" 09 O’f, 91 Up 29 with 2
e(p)/ap O. It has filtration k’ (or p,/fk’ 1) and is a companion to the eioenform f.

Proof. 1) By part 2) of Proposition 9.13, the expansion Z,A’’q"dq/q is formally
exact. The expansion of v’ at c is integral, as v’ e H (X/R) and is a smooth
section ofX over R. Since v’ is an eigenvector for Frp with eigenvalue 2
we have

pYCnqnpdq/q 2" EC’q’dq/q +

with D" R for all n > 1. Hence 2C’p + npD’p pC,, for all n > 1. Since 2 is a unit,
an induction on the power of p dividing n shows that C" 0 (mod nR). For more
on the expansion of classes in the unit root eigenspace, see [K4].

2) When pj. is reducible when restricted to fqp, by Proposition 16.7 we have
cot, " v’ + d" as an equality of overconvergent differentials on V, where mR
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and is a rigid analytic function on E Take the expansions at to obtain

ZA’qdq/q . ECqdq/q + ZnBqdq/q

where EB,,q". Thus A’,, C,, + riB,,; by part 1) we have B, R for all n > 1
and hence is a rigid function in the R-algebra ’(V). Since mR we have the
congruence: A’,,/n B,, (mod mR) SO E(A’,,/n)q" (q) (modulo mR.s’(V)). But the
elements in ..I(V)/mR..I(V) are, by definition, in the affine ring of the curve I E
over E. Hence the reduction of the expansion Z(A’,,/n)q" is the Fourier expansion
of a modular form 9 for F1 (N) over E, by Proposition 5.5!

Since .,A’nq is an eigenvector for Up with eigenvalue A,, and (0H)I Up p. O(HI Up)
for any expansion with p-adic coefficients, the formal expansion H .,(A’,,/n)q" is
an eigenvector for Up with eigenvalue A/p. Indeed, O(nl Up- (a/p)n)--0 and
the kernel of 0 is characteristic zero is the constants. Since H has zero constant
term HI Up- (A/p)H 0. Hence 9(q) is an eigenvector for Up with eigenvalue

22 e(p)/ap A/p (mod mR). Since a, 4: e.(p) when k p, 9 # f. Similarly, one can
show that 9 is an eigenvector for Te acting on Mk,, for all d N.
We have 09 Oky F’ (mod mR) b~y part 1)~ of Proposition 9.13.~ Write 9 Xg,

using the direct sum decomposition M q)M,. Since 09 lies in Mk,+t,+l, we have
9, h,I Vp for all k’ (mod p 1). Apply U, and use the identity Vp Up 1 to get
20 E2O, Ok, Up + E,k, h,. Hence h, 2. h,[ Vp for all k’. Taking the q-
expansion, we find that h, 0, unless 2 1, 0 and h, constant. But even in
the latter case, we must have h, 0, as h, is an eigenvector for Te with eigenvalue
a. ek’-l. If h, 4: 0, we have ae. ek’-I 1 + e(’)ek’-I for all e Np, which implies that

Ps - e q) ;tk-x is reducible (a contradiction). So 9 9k’ lies in k"
Since El Up 29 with 2 # 0, the series 9(q) has filtration rn satisfying 2 < rn <

p + 1 by Proposition 4.12. Since 09 has filtration k’+ p + 1, we must have
rn < p + 1 and hence rn k’ (or rn p, if k’ 1). Therefore 9 is the desired com-
panion to f.

[}17. Examples. We now give some examples of cuspidal eigenforms (mod p) of
weight k < p + 1 on F1 (N), discuss thier liftings to forms of weight 2 on F1 (Np) and
their Galois representations, and describe the search for a companion form.
The cusp form

(17.1) A q I-I (1 q,)24 z(n)q"
n>l n>l

has weight 12 for 1-’1(1)= SL2(7/) and is defined over 7/. It gives an eigenform
(mod p) for all primes p, but we will assume that p > 11 so as to have the inequality
kp+l.
When p 691, A is congruent to the Eisenstein series of weight 12 for SL2(7/):

"c(n) =- tr11 (n) (mod 691). This implies that the Galois representation pa is reducible,
and isomorphic to 1 co 11. When p 23, A is equal to its own companion form:
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z(n) n lz(n) z(n) (mod 23) for all (n, 23) 1. In this case, the representa-

tion Pa has image the symmetric group on 3 letters in GL2(Z/23Z), and describes
the maximal abelian unramified extension of Q_(x/-23). In all other case (i.e.,
p > 11, p # 23 or 691) the representation PA: Gal(/) GL2(77/pZ) has image the
subgroup of invertible matrices A with det A (7//pZ).11 i-$4, 3]. In particular, Pa
determines a Galois extension ofQ(#,) which is unramified outside p and has Galois
group = SL2(Z/pZ).
For p 11 we have k p + 1. By the results of9 there is a lifting off A to a

form F of weight 2 and trivial character on FI(ll). The unique such form has
q-expansion

F q I-I (1 q)2(1 q11)2.
n>l

The representation pa occurs on the 11-division points of the elliptic curve Jo(11) (or
equivalently, on th6 11-division points of the 5-isogenous curve J1 (11)). Its restric-
tion to the inertia group at 11 is "tr6s ramifi6" in the sense of Serre [$8, pg. 186-1.
When p 13 we have k p 1. By the results of5 there is a lifting off A to

a form F of weight 2 and character o9l on F1(13). The unique such form has
q-expansion in the subring 7/[/6] of 7/la. If is the unique 6 root of 1 in 7/’a which
satisfies =- 4 (mod 13) then the Fourier expansion of F begins

F q + (-2 + z)q2 + (-2)qa + (1 x)q4 + (2z 1)q5 + (2 + 2tx)q6 +’".

The form F’ is the complex conjugate of F; it has weight 2 and character 092. The
Fourier expansion of F’ is obtained by replacing z by 1 in the above

F’ q + (- 1 0)q2 + (-2 + 20)q3 + 0q4 + (1 2ct)q5 + (4 20)q6 +....

We have Ala -4 + 3 8 (mod 13) and Aa -1 3 0 (mod 13). The
form F is congruent to the eigenform f A12 (mod 13), and F’ is congruent to the
eigenform f’ 02f A16 (mod 13), where A16 is the unique normalized cusp form
of weight 16 and level 1. The differential v., is meromorphic on the Igusa curve
I 11 (1) over 77/137/; it has a pole of order 2 at the unique supersingular point and
is exact: vs, da. Here the function # Of A26 (mod 13) has a pole of order
13 at the unique supersingular point. The representation Pa =P, occurs in the
subspace of 13-division points of J1 (13) where the Galois group (7//137/)*/( + 1)
of X1(13) over Xo(13) acts by o2. As there is no companion form, Pr gives an
SL2(Z/137/)-extension of (D(#13), which is wildly ramified at 13.
A computer search by Elkies, extended by Atkin, showed that A does not have a

companion form for p < 3,500 with p > 11 and p :# 23 or 691. Hence the representa-
tion pa gives an SL2(/p)-extension of(#,) which is ramified at p in all these cases.
The same search by Elkies and Atkin did discover companion forms for the

eigenforms of weight 16, 18, 20, and 26 for SL2(7/) with integral Fourier coefficients.
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Let E4 and E6 be the normalized Eisenstein series

E4 1 + 240tra(n)q

and define the cusp forms

E6 1 504Etrs(n)q",

A16 E4A

Ax8 E6A

A2o EA

A22 E4E6A

A26 EE6A.

The following table lists the primes p < 3,500 where the image of Ps contains
SL2(7//pZ) and f has a companion form.

Ax6
A8
A2o
A22
A26

companion p < 3,500

none
397
271
139, 379
none
107.

As an example, let us describe the companion form g of weight 82 for f A26
(mod 107), which was discovered by Elkies. (He also checked that p 107 is the
smallest prime where there are a pair of companions (f, g) of level N 1.) We have

t =- E4E6A(E5- 15EEA- 35EaA2 + 36E46A3 18E43A" + 15A5)

andan n25b,(mod 107)for(n, 107) 1. In this case, axo7 bo7 1 (mod 107).
The Fourier expansions off and 9 begin:

f= q --48q2 + 6q3 31q4 + 45q5 + 33q6 + 10q7 + 41q8 + 38q9 20qx

38qX + 28qX2 48q 3

__
9----q--20q2-3q3+34q4+ 12q5-47q6-49q7 +6q8-44q9-26q

43qxx + 5q12 q- 50q13 +...
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This is sufficient to check the identity Of 026g, which holds in the 10-dimensional
space of cusp forms of weight 134.

Next, consider the case when f Ea,q" is the reduction (mod p) of a newform
F EA,q" of weight 2 and trivial character on FI(N). Assume further that the
Fourier coefficients A, ofF are all rational integers; then F corresponds to an elliptic
curve E of conductor N over Q which occurs in the Jacobian of the curve Xo(N)
I-Sh 2, Ch. 7] and Pl occurs on the p-torsion of E. We assume pl is irreducible as
usual.
The condition that a, - 0 implies that E has ordinary reduction at p [$3, 4]. Let

Jr be the modular invariant of E in Z,, and let Jo be the "canonical lifting" of the
reduction ofjr (mod p). Thenjo is the modular invariant of the unique elliptic curve
Eo which satisfies Eo E (mod p) and Endzq(Eo) Endz/p(E). A simple argument,
along the same lines as 14-15, shows that the restriction of py to a decomposition
group at p is diagonalizable if and only if Jr Jo (mod p2) for p odd, and Jr Jo
(mod 8) for p 2. Similarly, the local action on p"-torsion is diagonalizable if and
only ifjr -= Jo (mod 2- p"+1). In these cases, we will have a companion form ofweight
k’= p- 1 on Fo(N) over Z/pZ, whose Fourier coefficients satisfy nb. a. for
(n, p) 1.

If p 2 we have Jr -= 1 (mod 2) and Jo -3353. Hence py is diagonalizable
(= trivial) on the decomposition group at 2 if and only ifjr 1 (mod 8); whenjr 1
(mod 4) one finds that p, is unramified at 2. Since Jr 26" 33 c/A and c -= 1
(mod 8), we have:

py is unramified at 2.A _= 1 (mod 4)

py is diagonalizable at 2.A ___- 1 (mod 8).

2Since we are in the case when k p and a, e(p), Theorem 13.10 does not apply.
But there is a result analogous to Corollary 13.11: when A 1 (mod 4) there is an
eigenform h Ec.q" of weight 1 on Fo(N) over 7//27/with c, a. for n odd and
2 a2 + e(2)/a2 2a2 0. Indeed, in this case pl defines a GL2(7//27/) S3 exten-
sion of Q which is unramified at 2, so yields a form of weight 1 on Fx (N) with the
desired Fourier coefficients (mod 2) [$8, 5.1]. The first examples of curves E with
A 1 (mod 4), ordinary reduction at 2, and irreducible representation on 2-torsion
occur at levels N 83, 139 where A -83, 139 respectively. A case when A --- 1
(mod 8) and the above hypotheses hold occurs at level N 431, where A -431.
When p 3 we havejr 1, 1 (mod 3) andjo -2as, 2653 respectively. Hence

p. is diagonalizable on the decomposition group at 3 if and only ifjr + 1 (mod 9).
Since Jr c,/A and c4

3 + 1 (mod 9), we have:

py is diagonalizable at 3 A

_
1 (mod 9).

In this case, Theorem 13.10 applies and there is a companion from 9 E b,q" of

weight k’ 2 on Fo(N) over T//37/ whose Fourier coefficients satisfy b. () a. for
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(n, 3) 1, and baa3 1. The first case when A 1 (9), E is ordinary at 3, and the
representation on 3-torsion is irreducible occurs at level N 89. Here we may take
the curve E 89C with A -89 and associated eigenform.

F q q2 q3 q4 q5 + q6 4q7 + 3q8 + ....
The companion g off also lifts to an eigenform with integral coefficients:

G q + q2 d- 2q3 q4 2q5 + 2q6 d- 2q7 3q8 +’".

which corresponds to the elliptic curve E’ 89A with A’ -892.
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