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A TAMENESS CRITERION FOR GALOIS
REPRESENTATIONS ASSOCIATED TO MODULAR
FORMS (MoD p)

BENEDICT H. GROSS

We begin by recalling some results on the 2-dimensional Galois representations
which are associated to modular forms (mod p). If f = X a,q" is a normalized
cuspidal eigenform of weight k and character ¢ for I'; (N), with coefficients in a finite
field E of characteristic p, there is a continuous semi-simple Galois representation

ps: Gal(@/Q) - GL,(E)

which is characterized as follows. The representation p, is unramified for all primes
I} Np, and the matrix p,(Frob,) has characteristic polynomial x? —ax + e()I* .
The representation p, was conjectured to exist by Serre (cf. [S2], [S6]) and its
existence was proved by Deligne (cf. [D1] for the case N = 1, and [C] for more
general levels). When k > 2 and a,, # 0, Deligne [D2] also proved that the restric-
tion of p, to a decomposition group at p in Gal(Q/Q) has image contained in a
Borel subgroup of GL,(E). Up to conjugation, this restriction has the form

x1AMe(p)a,)  *
@0 < 0 z(a,,))

where  is the character of Gal(Q,/Q,) giving its action on p, and, for any o € E*,
A(e) is the unramified character taking Frob, to .

In this paper, we will establish a modular criterion conjectured by Serre
[S7, pg. 18] for the representation p, to be tamely ramified at p, or more precisely,
for x =0 in (0.1). Assume that f has weight 2 <k <p and a, # 0; when k =p
assume further that a2 # &(p), so the two characters x*~'i(e(p)/a,) and A(a,) are
distinct. The criterion says that p, is completely reducible when restricted to
Gal(Q,/Q),) if and only if there is a normalized eigenform g = £b,q" of weight
k' = p + 1 — k and character ¢ for I'; (N) over E, whose Fourier coefficients satisfy
n*b, = na, foralln > 1.

The relationship between f and g is symmetric (for example, the relation between
Fourier coefficients may be written nb, = n*a,), and Serre calls the pair (f, g) of
normalized eigenforms “companions”. An equivalent formulation of companion-
ship is that the Galois representations p, and p, satisfy: p, ® x ~ p, ® x*. Using this,
it is easy to show that the existence of a companion forces p, to be completely
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reducible when restricted to Gal(@,,/@,,): one finds that the character A(a,) occurs
as a direct summand in p, ~ p, ® x*~1. The converse is more difficult, and provides
an excellent test case for Serre’s general conjectures ([S8], [S9]) on the weight of a
“modular” Galois representation. We note that the case when k = p and af, = &(p)
is still open, and seems to require new methods.

We begin by recalling the geometric theory of modular forms, due to Deligne-
Rapoport [DR] and Katz [K2]. We then consider the case of modular forms
(mod p), which is due to Serre and Swinnerton-Dyer [S4], [Sw]. Our approach
stresses the Igusa coverings of modular curves in characteristic p, and we prove a
theorem of Serre on the differentials of the Igusa curve which frequently allows one
to reduce questions on forms of weight k < p + 1 on I';(N) (mod p) to forms of
weight 2 on I';(Np). The construction of the representation p, when k < p + 1 is
accomplished using the p-torsion in the Jacobian of the curve X,(Np); this con-
struction is based on ideas of Fontaine and Serre [F3], [S7] and is well-suited to
the study of the local behavior of p, at p. We have also followed Mazur’s approach
[M], using ideals in the Hecke algebra, fairly closely. The restriction of p, to a
decomposition group at p is determined, when a,, # 0, using the theory of ordinary
p-divisible groups.

The proof of Serre’s conjecture on companion forms uses p-adic techniques,
and specifically the different p-adic cohomology theories (de Rham, crystalline,
Washnitzer-Monsky) of modular curves and their Jacobians. Here we confess that
we have occasionally used rather artificial methods for defining the action of Hecke
operators on these cohomology groups, and have not always checked that the
actions are compatible with isomorphisms between the theories. In particular, the
assertions preceding (15.4), (15.7), and (16.7) depend on an unchecked compatibility.

It is a pleasure to thank O. Atkin, R. Coleman, N. Elkies, N. Katz, and B. Mazur
for their help. Special thanks go to J.-P. Serre, whose beautiful conjectures stimu-
lated my interest in this subject, and who provided invaluable assistance in the
writing of this paper.
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§1. Elliptic curves. This section contains a brief review of the theory of elliptic
curves, and generalized elliptic curves, over an arbitrary base scheme S. We refer to
the papers of Deligne [D3], Deligne-Rapoport [DR], and Katz-Mazur [KM] for
the proofs.

An elliptic curve over a field F is a complete, nonsingular curve of genus 1 over
F, furnished with an F-rational point. An elliptic curve E over a scheme S is a proper
and smooth morphism n: E — S, furnished with a section e: § — E, whose geometric
fibres are all elliptic curves. If S = Spec R is affine, we will often refer to E as an
elliptic curve over R. The addition law on the fibres gives E the structure of a
commutative group scheme over § [KM, 2.1].

Let N > 1 be an integer, and let E be the kernel of multiplication by N on E.
Then Ey is a finite flat group scheme of rank N2 over S; if N is invertible on S, then
Ey is an étale group scheme locally isomorphic to (Z/NZ)? [KM, 2.3]. There is a
canonical, strictly alternating pairing [KM, 2.8]

(L.1) ex: Ex X Ey— uy

where uy is the group scheme of N* roots of unity. The ey pairing is non-degenerate,
in the sense that the map

fat Ey—'Ey = Hom(Ey, G,,)
1.2)
ar> (B> ey(a, B))

defines an isomorphism between Ey and its Cartier dual ‘Ey.
The invertible sheaf Qs on E has degree zero on each fibre, and the trace map
of Serre-Grothendieck duality defines an isomorphism R'7, Qs ~ Os. Hence

(1.3) Qp = “*Qtls/s

is an invertible sheaf on S, whose formation commutes with change of base
[KM, 2.2]. Its dual is the invertible sheaf R' 7, 0,5, which is isomorphic to the sheaf
Lie(E) of Lie algebras on S. Since n is smooth, Qps = Q% and one also has a
canonical isomorphism w; 2 e*Q}E/S [D3, §1].

The first deRham cohomology sheaf of E is defined by

(1.4) Hjr(E) = RIW*QE/S .
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It is locally free of rank 2 on S, and the spectral sequence of hypercohomology gives
an exact sequence of sheaves on S [K2, A 1.2]

(1.5) 0 — wg — Hpg(E) - Lie(E) > 0.
The cup-product on deRham cohomology defines an alternating pairing of sheaves:
<> Dpr: Hpr(E) x Hpgr(E) = Os

as H}g(E) = R'n,Qj s, which is isomorphic to 05 by the trace map. This pairing
induces the duality of wg and Lie(E). If S is smooth over T, there is a canonical
integrable connection (the Gauss-Manin connection [K2, A1.3])

V: Hjr(E) > Hpr(E) ® Qé/T .

Using this connection, and the cup product, we may define a morphism of sheaves
on S:

i wp® g~ Qé/r
(1.6)
o ® v {w, VV)pg.

Let p be a prime, and let S be a scheme over Z/pZ. If E is an elliptic curve over
S, its Hasse invariant A(E) is a section of the invertible sheaf @®7™! [KM, 12.4]. If
w is a non-vanishing section of w; over the open set U and C is the (p~!-linear)
Cartier operator on differentials, then the restriction of A(E) to U is given by the
formula C(w)”-w™. The geometric fibers over which A(E;) = 0 are called super-
singular, and the fibres where A(E,) # O are called ordinary.

We illustrate these general notions with a consideration of the Tate curve E =
G,./q%, which is an elliptic curve over the ring Z((q)) = Z[[q]]1[q~*] [DR, VII §1].
Here we have an exact sequence of group schemes [KM, 8.8]

0"""MNTEN"'“’Z/NZ——’0
where py is the N-torsion in G,,. The pairing ey of (1.1) is determined by the formula

(1.8) en(l, a") =¢

where { is any section of uy and g*/¥ is any N root of g, i.e., ¢*/~ is any point in Ey
mapping to 1 (mod N) in Z/NZ. Hence the isomorphism fy of (1.2) induces the
identity maps on uy = Hom(Z/NZ, G,,) and Z/NZ = Hom(uy, G,,) in (1.7). Con-
cerning the invertible sheaf wg, we have

PROPOSITION 1.9.  a) The sheaf wg has a non-vanishing section dt/t, where t is the
parameter on G,,.
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b) Inthe map idefined by (1.6) the image of the section (dt/t)®? of ©®? is the section

(d4/q) of Qiayz-
¢) Over the base Z/pZ((q)) the Hasse invariant of E is given by A(E) = (dt/t)®P 1.

Part a) is proved in [DR, VII, 1.16.2], part b) is proved in [K2, A 1.3.18], and
part ¢) is proved in [KM, 12.4.2]. In the last two references, the differential (dt/t) is
called w,,,-.

A generalized elliptic curve E over the base S [DR, II 1.12] is a scheme of curves
n: E—» S whose geometric fibres are either elliptic curves or Néron polygons,
together with a morphism +: E™ x4 E — E whose restriction to E™? (the union of
smooth points in the fibres) makes E™ into a commutative group scheme over S.
One insists that the morphism + defines an action of the group scheme E™ on E,
and that on the fibres E; with singular points the translations by E* act by rotations
on the graph of irreducible components. One can define the invertible sheaf @ on
S, for a generalized elliptic curve, as the dual of the sheaf of Lie algebras Lie(E"?).
The Tate curve E = G, /q% is a generalized elliptic curve over the base Z[[4]]
[DR, VII, §1]; the line bundle w; again has a non-vanishing section dt/t and for
N > 1 there is again a canonical homomorphism of group schemes Idy: py —
Ey = Ey.

def

§2. Modular forms. This section contains a brief review of the geometric theory
of holomorphic modular forms for the group I';(N). We refer to the papers of
Deligne-Rapoport [DR] and Katz [K2] for the proofs.

Let k and N be integers >1, and let R be a commutative ring in which N is
invertible. A holomorphic modular form f of weight k for I'; (N), defined over R, is
a law which assigns to every pair (E, )—consisting of a generalized elliptic curve
E over an R-algebra 4 and an embedding of group schemes a: uy < Ey over A
whose image meets every irreducible component in each geometric fibre of E—an
element f(E, a) € ®* [DS, §2.1]. This law must be compatible with isomorphisms
and extension of scalars. Since all of our modular forms will be holomorphic, we
will refer to f simply as a modular form. Let M,(R) denote the R-module of all
modular forms of weight k for I (N).

We reinterpret this definition using the following.

PROPOSITION 2.1.  The functor which assigns to each Z[1/N]-scheme S the set of
isomorphism classes of pairs (E, o), where E is a generalized elliptic curve over S and
o: uy < Ey an embedding of group schemes whose image meets every irreducible
component in each geometric fibre, is represented by an algebraic stack which is proper
and smooth over Z[1/N]. When N > 4 this functor is represented by an algebraic
curve X,(N), which is proper, smooth, and geometrically connected over Z[1/N].

b
Proof. Let H be the subgroup of GL,(Z/NZ) consisting of matrices <‘cl d) with

¢ =0(mod N)and d = 1 (mod N),and let #,[1/N] and .#3[1/N] be the algebraic
stacks over Z[1/N7] defined in [DR, IV.3]. By definition, .#5[1/N] classifies triples
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(E, C, B), where E is an elliptic curve over S, C a subgroup scheme of Ey which is
locally isomorphic to Z/NZ, and f is an isomorphism #: Z/NZ 2 E/C. Let B(1) be
any section of Ey which maps to f(1)in Ey/C. By the non-degeneracy of the pairing
defined in (1.1), there is a unique isomorphism of group schemes a: uy = C such
that ey(a(¢), (1)) = ¢ for all sections { of uy. Hence the data (E, C, B) is equivalent
to the data (E, «), and the stack .#3[1/N] classifies these pairs (when E is a genuine
elliptic curve). The argument of [DR, IV, 3.5.1] shows that the stack .#y[1/N]
represents this functor for generalized curves.

When N > 4 the objects (E, «) classified by .#z[1/N] have no automorphisms
[KM, 2.7.4], so the stack .#,[1/N] is a projective and smooth scheme over Z[1/N]
[DR, III 2.9]. We denote this scheme by X, (N), the complex theory [DR, III §5]
then shows that X, (N) is a geometrically connected curve.

We will henceforth assume that N > 4, so that the stack classifying pairs (E, «) is
a scheme, and will treat the cases when N < 4 in §10. Let E be the universal family
of generalized elliptic curves over X,(N) (with fixed embedding a: uy < Ey) and
let @ = wy be the line bundle on the curve X, (N) defined at the end of §1 (w is the
dual of the Lie algebra bundle Lie(E™)).

PRrROPOSITION 2.2.  The space of modular forms of weight k for I'(N) defined over
R is equal to H°(X,(N), ©®* ® R).

Proof. This is simply a restatement of our definition, using the existence of a
universal curve E on X, (N).

We now investigate the line bundle @®?, using the map defined in (1.6). Let cusps
denote the divisor on the curve X, (N) over which the fibres of E are Néron polygons,
and let X, (N)° denote the open curve obtained by removing the divisor cusps.

PROPOSITION 2.3. On the curve X,(N)°, the map (1.6) of sheaves i: @®* —
Q}I(N,o, 21wy i an isomorphism. This extends to an isomorphism of sheaves

2.4) @B O} wlcusps) on X, (N).

Proof. The two statements are proved in [K2, A 1.3.17] for any universal family
E of elliptic curves. The first is a consequence of the Kodaria-Spencer theory
of deformations, and the second follows from a calculation on Tate curves (cf.
Proposition 1.9, b).

Let g be the genus of the (geometrically connected) curve X, (N). Formula (2.4)
shows that deg(w®*) > 2g — 1 for k > 2, so H'(X,(N), @®*) = 0 for all k > 2 by
Serre duality. As a corollary of this fact, one obtains

ProposiTION 2.5.  (¢f. [K2, 1.7.1])
For k =2, the natural map H°(X,(N), ®®*) ® R - H°(X,(N), ®* ® R) is an
isomorphism.

Note. The map of (2.5) need not be an isomorphism when k = 1 and R = Z/pZ
[S91.
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We end by defining the Fourier expansion of a modular form f defined over R
at the cusp oo of X, (N). Recall that the Tate curve E = G,,/q” is a generalized elliptic
curve over Z[[¢]], which has a canonical differential dt/t as well as a natural
embedding Idy: uy < Ey over Z[1/N]1[[q]]. We define the Fourier expansion
f(@) =Z,.50a,q" of fin the ring R[[q]] by the formula

f(Gn/q? Idy) = f(q)- (dt/1)®*.

Since X;(N) represents the functor of pairs (E, «), there is a unique morphism
Spec Z[1/N1[[q]1] — X,(N) over Z[1/N] such that (G,/q%, Idy) arises from
pull-back of the universal pair (E, ). The image of the prime ideal where ¢ =0
defines the section oo of X,(N), and g is a uniformizing parameter in the
neighborhood of this cusp. Hence the Fourier expansion f(q) describes the
holomorphic section f of @w®* in the neighborhood of co. Since X,(N) is
geometrically connected, we find:

ProrosiTiON 2.7.  (c¢f. [K2, 1.6.1, 1.6.2])

a) The map H°(X,(N), o®* ® R) - R[[q]] taking f to f(q) is an injection of
R-modules.

b) If R, is a sub Z[1/N]-algebra of R, the modular form f is defined over R, if
and only if f(q) € Ro[[4]]-

Using the isomorphism (2.4), we may identify a modular form f of weight 2 with
a meromorphic differential w, on X (N), which is regular outside cusps and has
poles of order <1 along each cuspidal section.

PROPOSITION 2.8.  The expansion of w; in a neighborhood of the cusp oo is given
by f(q)dq/q.

Proof. This follows from part b) of (1.9), which shows that the local section
(dt/1)®? of ©®? is mapped to the local differential dg/q of Z((q)).

§3. Hecke operators. In this section we define certain endomorphisms—the
Hecke operators T; and U, and the automorphisms {(d)—of the space of modular
forms of weight k for I'; (N) over R. We also discuss their action as correspondences
of the curve X,(N) over Z[1/N].

Let d be a class in (Z/NZ)*, and define the automorphism (d) of X,(N) over
Z[1/N] by:

3.1 (d)(E, a) = (E, da).

Here, as usual, E is a generalized elliptic curve over a scheme S where N is invertible
and a: uy s Ey is an embedding of group schemes whose image meets every
irreducible component in each geometric fibre of E. The embedding da maps the
section { of uy to d-a({) in Ey. The automorphism {d) induces an R-linear
automorphism f+ f|<{d) of the space of modular forms of weight k for I'; (N) over
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R; we have
(3.2) fKKd) (E, o) = f(E, do) in @F*.

If &:(Z/NZ)* - R* is a group homomorphism with &(—1) = (—1)* and f is a
modular form of weight k over R, we say f has type (k, &) if f|<{d)> = &(d)- f for all
de(Z/Nz)*.

Let I be a prime with [ f N, and let f be a modular form of weight k for T'; (N) over
Z[1/N]. We first define f|T; as a modular form of weight k over Q, the algebraic
closure of Q. If E is an elliptic curve over @ and «: uy <> Ey is an embedding, define

1
(3.3) NILE =7 2 0*(f(@E, ow)),

where the sum is taken over the (I + 1) isogenies ¢: E — @E of degree [ with source
E. A calculation on the Tate curve [cf. K2, 1.11] shows that the law f| 7, extends
uniquely to generalized elliptic curves, so defines a modular form of weight k over
Q. If f and f|<I) have Fourier expansions

{ f@=Yaq"
fKKD(g) = Y b.q"

at oo, then f|7; has the Fourier expansion [K2, 1.11.2]:

(3.5) fIT(@) = Y ang" + I*7' 3 b,q™.

Since f and f|<I) are defined over Z[1/N], the coefficients of f|T; belong to the
subring Z[1/N] of Q. Hence f|T, is a modular form of weight k over Z[1/N], by

Proposition 2.7 b). If / is a prime dividing N, we define f|U, as a modular form of
weight k over Q by the formula

(9 11U (E o) = T 0* (f(9E. o)

where E is an elliptic curve and the sum is now taken over the l isogenies ¢: E — @E
of degree I, whose kernel has trivial intersection with the image of « in E. Again
this law extends uniquely to generalized curves, and has Fourier expansion

(3.7 f1Ug) = Y auq".

Proposition 2.7 b) again shows that f|U, is defined over Z[1/N].
Let R be a Z[1/N]-algebra. For k > 2 we have an isomorphism:

H°(X,(N), @®*) ® R 2 H°(X,(N), 0®* ® R)
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by Proposition 2.5. Hence the operators T; and U, define (by extension of scalars)
endomorphisms of the R-module of modular forms of weight k > 2 for I, (N) over
R (cf. [K2, 1.11.4]). When k = 1 this argument does not apply. Nevertheless, the
proof sketched above for R = Z[1/N] works for weight k = 1 over any subring R
of Q. We will treat the operators T; and U, on modular forms of weight 1 over
R = Z/pZ in the next section.

The endomorphisms T; (for I} N), U, (for I|N), and <{d) (for d € (Z/NZ)*) of the
space of modular forms of weight k over R all commute with each other. If f has
type (k, ¢) then formula (3.5) simplifies to:

(3-8) fIT(@ =} aug" + eI 3 a,q™.

We say f is a normalized eigenform of type (k, ¢) if it is a simultaneous eigenvector
for the operators T, and U, for all primes [, and satisfies a;, = 1. We then have the
following formula for the higher Fourier coefficients of a normalized eigenform:

fIi=a;f alll}N
f|U,=a,‘f allllN

(3.9) Y an =[]0 = al™) [T (1 — a1 + a(f)l<1 22,
n>1 IIN N

We say f is a cusp form if, as a section of ®®* over X, (N), it vanishes along the
divisor cusps. In particular, this implies that f vanishes at co and a, = 0. By (3.9)
the entire Fourier expansion of a normalized cuspidal eigenform f is determined by
its character ¢ and its set of eigenvalues (a,). We say f is a “new form” for I'; (N) over
R if f is a normalized cuspidal eigenform of weight k whose set of eigenvalues
{a;: 1} N} does not occur for an eigenform of weight k for I';(M) over R, for any
proper divisor M of N. When R = C, this is equivalent to the definition of [AL].

We now define the Hecke correspondences T; and U, of the curve X;(N) over
Z[1/N]. First assume that [} N, and let X (N; ) be the fine moduli scheme over
Z[1/N] which represents the functor of triples (E, «, C), where E is a generalized
elliptic curve, a: uy = Ey an embedding, and C a locally free subgroup scheme of
rank [ in E,. One insists further that the finite group scheme Image a x C meets
every irreducible component in each geometric fibre of E [DR, V 1.6]. If E is a
genuine elliptic curve, let E' = E/C and let ¢: E — E' be the associated l-isogeny.
We define morphisms n; and =, of schemes over Z[1/N7]:

ny: X1(N; ) => X, (N)
(E, 0, C)—(E, o)

7yt X (N3 1) = X (N)
(E, a, C)—(E', o = o).

(3.10)
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Strictly speaking, these maps are only defined on the non-cuspidal points, but they
extend uniquely to X, (N; I). They are both finite coverings of degree [ + 1, and are
étale coverings of X,(N)° over Z[1/NI]. We define the correspondence T; (cf.
[Sh2, 7.3]) as the image of X, (N; I)in X (N) X z1;5 X{(N) under the map n; x =,.

The correspondence T, acts on divisors d of X;(N) by the formula: T;(d) =
pro(Ti-(d x X,(N)). If P = (E, o) is a non-cuspidal point, we find

(3.11) T(E, o) =}, (¢E, ¢a),

where the sum is taken over the l-isogenies with source E. The action on divisors
preserves the subgroup of principal divisors, so induces an endomorphism (also
denoted by T;) of the Jacobian J,(N) over Z[1/N]. If we extend the formula (3.11)
to divisors of degree zero modular linear equivalence, this is the action on J;(N)
induced by Albanese functorality. Since I} N we may consider the action on X, (N)
or J;(N) over Z/IZ.

ProrosiTION 3.12. (¢f. [E], [Sh1], [Sh2, Thm. 7.9] Let Fr, be the Frobenius cor-
respondence of X,(N) over Z/IZ and let Ver,='Fr, be its transpose. Then T, =
Ver, + (I>Fr,in the ring of correspondences of the curve X(N) over Z/IZ, and in the
endomorphism ring of the Jacobian J;(N) over Z/IZ.

Proof. 1f (E, «) is an ordinary point on X,(N)° in characteristic I, one checks
that T,(E, a) = Ver,(E, «) + Fr/(E, lo). Since the ordinary points are dense, this veri-
fies the claim.

We warn the reader that many authors [e.g., MW] prefer to work with the curve
X, (NY, which classifies pairs (E, a) where a: Z/NZ <» Ey is an embedding. On the
curve X,(N), the congruence in Proposition 3.12 becomes T, = Fr{ + {I)'Ver,
(mod I).

For I|N we may define U, as a correspondence on X,(N) over Z[1/N] by
considering the fine moduli scheme X, (N;[) over Z[1/N] which classifies triples
(E, o, C) as before, with the extra condition that C n Im a = 0. (This is the stack

. . b\ .
associated to the subgroup H of GL,(Z/NZ) of matrices C d> with ¢ = 0(mod N),
d=1 (mod N), and b=0 (modl)) Again there are two natural coverings
7y, Tyt X1(N; 1) = X, (N) and we define U, as the image of n, x @, in the product
X, (N) X 745 X1(N). The action of U, on a point (E, a) of X, (N)° is given by

(3.13) U(E, o) = %: (9E, ¢a)

where the sum is taken over the l-isogenies ¢ with source E such that ga: uy — ¢E
is an embedding.

The correspondences T, and U, act on the holomorphic differentials w on X, (N)
by the formula | T, = (n,), o 7w, where 7% is the pull-back and (r,), is the trace
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map associated to a finite covering of proper curves. If we identify H°(X,(N), Qk, )
with the invariant differentials on J, (N), the action of T; and U, on holomorphic
differentials is the one induced from their action as endomorphisms of the Albanese
variety (cf. the discussion, without proofs, in [MW Ch. 2, §5.4, §5.8]). At the point
(E, @) of X,(N)° we find

(3.14) o|T(E, &) = ), o(¢E, ¢u)

(4

where the sum is over the l-isogenies of source E and the fibres of Qk ) zyns at E
and @E are identified using the maps =, and =,.

Recall the isomorphism i: @’ 2 Q) v, (cusps) of invertible sheaves on X, (N)
which was defined in (2.4). This induces an isomorphism of global sections, and
hence an isomorphism from the space H°(X,(N), ®®2)° of cusp forms of weight 2
over Z[1/N] to the space H°(X;(N), Q,w)) of holomorphic differentials over
Z[1/N]. We have defined endomorphisms 7;, U, and {d) of both Z[1/N]-modules;
it remains to check the following.

ProposITION 3.15.  (cf. [Sh2, 7.2.6])
The map i: H*(X,(N), ©®%)° 5 H%(X,(N), Qx, ) is an isomorphism of Hecke
modules: it commutes with the action of T, U, and {d).

Proof. Letv® v' be a local section of @®2 on the set U = X,(N)°, where v and
v’ are relative differentials on the universal curve over U. Then i(v ® v') = {v, Vv'Dpzr
as a regular differential on U over Z[1/N]. Assume that the point (E, ) and its
translates (¢E, @a) by T, are contained in U. By the definition (3.3) of the endomor-
phism T, acting on forms of weight 2:

1
O @ VITHE @) = 1 T 0* (s ® vy

—

; O* Vg ® @* V-
Hence the image of (v ® v')| T, under i is equal to the differential
1 * *y,/
(3.16) W(E, a) = 1 Z {g VoE> Vo V¢E>DR9
3

where, as usual, the fibres of Qy v, at (E, @) and (¢E, @a) have been identified.
Butif ¢: E —» Fis anisogeny and v and v’ are invariant differentials on F, we have

Veo*V' = @*VgV'  in I_'ILI)R(E)

(@*v, p*VV )5 = deg ¢ <, VW )pp.
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The first follows from the naturality of the Gauss-Manin connection and the second
from the fact that the adjoint of the isogeny ¢ with respect to the pairing { , dpr
is the isogeny ‘@, which satisfies ‘¢ o ¢ = deg ¢. Since all the isogenies ¢ in the sum
of (3.16) have deg ¢ = I, we find that

O(E, 0) =Y Vpr, Vordpr -
L4

This differential is equal to i(v ® v')| T;, under the action (3.14) of T; on the space
of holomorphic differentials on X, (N). Hence i(v ® v')| T, = i(v ® V'| T}). A similar
proof works for U, and {d).

Note. R. Coleman has observed that Proposition 3.15 also follows from the
formulas: i(n¥ f) = n¥(if), i(n%f) = |- n¥(if ) where ©, and =, are the maps defined
in (3.10).

CoRrOLLARY 3.17. If o =X, a,q"dq/q is the formal expansion of the holomor-
phic differential w in a neighborhood of the cusp o and w|{l) =X, b,q"dq/q, then

o|T,= ( ; auq" + 1y bnq”’> dq/q

o|lU =Y ayq"dq/q.
n>1

Proof. This follows from a combination of Proposition 3.15, Proposition 2.8
(which relates the local expansion of = w, with the Fourier expansion of the cusp
form f of weight 2) and formulas (3.5) and (3.7) (which give the action of T; and U,
on g-expansions).

We remark that the first formula in (3.17) can be used to give a different proof of
the Eichler-Shimura congruence in Proposition 3.12.

§4. Modular forms (mod p). We henceforth fix a prime p which does not divide
N (and recall that N > 4). For k > 1 we let M, denote the vector space of modular
forms of weight k for I'; (N) over Z/pZ, and let M} denote the space of cusp forms.
If R is a field of characteristic p, then the space of modular forms of weight k over
Ris M, ® R. We let 0 denote the Frobenius endomorphism of R over Z/pZ: o(x) =
x?. If f in M, ® R has Fourier expansion X a,q", then f°(q) = X ajq" = Zalq".

In the previous section, we defined linear endomorphisms T;, U, and {d) of M,
and M, provided that k > 2. In this case it is customary to denote the operator
T, by U,—this makes little difference as the formulae (3.5) and (3.7) agree on
g-expansions. We now consider the case when k = 1. For | # p, formula (3.3) defines
an endomorphism of the space of forms over an algebraic closure of Z/pZ, and the
g-expansion (3.5) shows that T, gives an endomorphism of M, stabilizing M. A
similar argument, using (3.6) and the g-expansion (3.7) gives the existence of U, for
l|N. The only difficulty remaining is to define the operator T,,.
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PROPOSITION 4.1.  There is a unique endomorphism T,: M; — M, which has the
Jollowing effect on g-expansions: if f € M, and f(q) = Z a,q", f1{p>(q) = £ b,q", then

fIT (@) =Y a,,q" + Y b,q™.

Proof. By part a) of Proposition 2.7, the form f|T, (if it exists) of weight 1 is
completely determined by its Fourier expansion at co. Hence we are reduced to
proving that X a,,q" + Z b,q"" is the Fourier expansion of a holomorphic form g of
weight 1 over Z/pZ.

The curve X;(N)° = X,(N) — cusps is affine, so H'(X,;(N)°, w) = 0. Hence the
natural map H°(X,(N)°, w) ® Z/pZ — H°(X,(N)°, ® ® Z/pZ) is an isomorphism,
and we may lift f to a section F of w on X,(N)° over Z[1/N]. F is then a
meromorphic modular form of weight 1 for I'; (N) over Z[1/N] with singularities
along the divisor cusps. Similarly F|{p) is a meromorphic form, which reduces
(mod p) to f<p>.

The definition of Fourier expansions at oo, using the Tate curve G, /q% over
Z[1/N]1((q)) as in (2.6), extends to meromorphic modular forms. We have F(q) =
2 A,q" and FI{p)>(q) = X B,q" with A, = B, = 0 for n « 0. Since the map taking a
meromorphic form to its Fourier expansion commutes with reduction (mod p), we
have the congruences: 4, = a, (mod p) for all n > 0, 4, = B, = 0 (mod p) for all
n <0.

The definition of T, in (3.3), and the Fourier expansion (3.5) of F|T, also works
for meromorphic forms F. Hence F|T,(q) = Z A4,,4" + Z B,q" is the Fourier expan-
sion of a meromorphic form of weight 1 over Z[1/N]. Let g be the reduction of
f1T,, which is a priori a meromorphic form of weight 1 for I'; (N) over Z/pZ. Since
the negative Fourier coefficients of F| T, are all = 0 (mod p), the Fourier expansion
of g at oo is equal to ,,a,,4" + Z,0b,q"". Hence g is regular at co. A similar
argument (using the p-divisibility of the negative coefficients of F at all cusps of
X(N), and the formula for the expansion of F|T, at other cusps (cf. [K2, 1.11.1]))
shows that g is regular at all cusps of X, (N) over Z/pZ, so is a holomorphic form
of weight 1.

Beyond the Hecke operators on M,, there are additional linear maps between the
spaces which exist only in characteristic p. First there is the map:

Vp: My — M,
4.2)
frr.
The linear extension of V, to M, ® R satisfies
“3) (V1Y =V(f) =17,

and the effect of V, on Fourier expansions is given by

(4.4) V@ =Y a,q™.
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Next, there is the derivation:

(4.5) 0: M, - Mk+(p+1)

which is characterized by its action on Fourier expansions:
(4.6) 0f (@) = X na,q".

The existence of 0 is proved as in Katz [K3, where 6 is denoted A67]; our hypothesis
that N > 4 insures the existence of a universal curve E over X;(N). The map 0 is
injective if k is prime to p, and the kernel of 6 on M, is equal to the image of V,
[K3, §II].

The Hasse invariant A(E) € H°(X,(N), ®®P7!) defined in §1 gives a canonical
holomorphic modular form A4 of weight p — 1 for I'; (N) over Z/pZ. By Proposition
1.9 part c) the Fourier expansion of 4 at the cusp oo is given by A(g) = 1. The section
A vanishes to order 1 at each super-singular point of X, (N) [KM, 12.4.3]. Multipli-
cation by 4 gives an injective linear map f > Af from M, to M, ,-,), whose image
consists of the sections of w®**P~1 which vanish along the divisor of supersingular
points on X (N).

The endomorphisms T;, U, T, (= U, for k > 2), and {d) of M, all commute. They
also commute with multiplication by A: M, — M, ,—1, except in the case when
k = 1, where:

(4.7) A(S1T,) = (ANU, + (fFKpIN V.

(This identity suggests a different proof of Proposition 4.1, which does not involve
lifting to meromorphic forms in characteristic zero. Namely, for f € M, the right
hand side of (4.7) defines an element of M, with the correct Fourier expansion at
00. A detailed analysis of this section of @®? shows that it vanishes at each super-
singular point, so has the form Ag for ge M,, and we define g = f|T,.) The
operators T; and U, commute with V,: M, - M,,, and (f|V,)|U, = A*. Their com-
mutation relations with 0 are:

@ONIT, =1-6(f1Ty)
4.83) @NIU, = 1-0(f1Uy)

@)IU, = 0(f1V,) = 0.

All this can be checked on Fourier expansions, using part a) of Proposition 2.7.
Let M = @50 M, where M, = Z/pZ. Then M is a graded Z/pZ-algebra of Krull
dimension 2.
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PROPOSITION 4.9.  (cf. [Sw], [S4, Thm. 1]) The kernel of the ring homomorphism
M - Z/pZ[[q]], taking f € M, to its Fourier expansion f(q) at oo, is equal to the
principal ideal (A — 1)M.

Proof. The kernel clearly contains (4 — 1)M. This is a prime ideal p of M, as
A has simple zeroes at the supersingular points. Since the image M is not finite, it
has dimension 1 and the kernel cannot properly contain p for dimension reasons.

By Proposition 4.9 the image M = M/(A — 1)M in Z/pZ[[4]] is graded by
Z/(p — 1)Z: we write M = ®. 1\71,, with a in Z/(p — 1)Z. We say the series £ a,q" in
M, has filtration k > 0 if it is the image of an element f € M, which does not vanish
at at least one supersingular point of X, (N). Equivalently, X a,q" has filtration k if
it is the Fourier expansion f(q) of f € M, which is not divisible by 4 in M. One has
k = a (mod p — 1), by the definition of the grading on M.

ProrosiTiON 4.10. (cf. [Sw, Lemma 5], [J, §7])

a) If f(q) = Z a,q" has filtration k and (k, p) = 1, then 0f(q) = Z na,q" has filtra-
tionk +p + 1.

b) Assume f(q) = X a,q" has filtration k, with 2 < k < p. Define k' = p + 1 — k,
so 1 < k' < p — 1. Then 0%f(q) has filtration <p + 1 + k', with equality holding if
and only if f|U, # 0.

Proof. a)is proved for N = 1in [Sw], and in [K3] a proof is given for modular
forms on the curve X(N)for N > 3. The latter proof generalizes to X, (N) for N > 4,
using the universal elliptic curve over X, (N)° and the Gauss-Manin connection on
its deRham cohomology.

To prove b), we first note that 6% ~f(q) has filtration pk’; this follows from succes-
sive applications of a). Indeed, for i < k' — 1, 6'(qg) has filtration = k + i(p + 1)
prime to p, and k + (k' — 1)(p + 1) = pk’. To determine the filtration of 8*f(q), we
use the formula [K3, pg. 8]:

4.11) 0f = Adf + kBf

for fe M,. Here of e My,,, AeM,_,, and Be M, is a canonical form (the
negative of the form denoted B in [K3]) which is non-zero at all supersingular
points. We have the identities: 4 = B and B = — QA where Q is the normalized
Eisenstein series of weight 4 and level 1 [S4, Thm. 5]. If we recursively define
fO=ffD=0f fO=0CV—(k+v—2)(v—1)Q:f*?, then f*(q) has fil-
tration < k + 2v. By induction on n, one proves the formula [Sw, pg. 317:

- n! k+n-—1) Y Er=v ()
of—v;oﬁ(n-——v)!(k+v——1)!AB f

for alln > 0, starting with (4.11)—which is thecasen = 1. Whenk < pandn =k’ =
p+ 1 —k, we have (k + n — 1) = p and the only nonzero term in the above sum
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occurs when v.= n: 0¥f = A¥f®), Hence the filtration of 6*f(q) is equal to the
filtration of f*7(q), whichis <k + 2(k')=k' +p + L

Using a) we now observe that the filtration of 6% f(q) is equal to k' + p + 1if and
only if the filtration of 87~!f(q) is equal to pk. But

077'f(q) = ( Z) ) a,9" = f(@) — f1U,IV,(q).
n,p)=
If f|U, # 0, it has filtration k, and f|U,|V,(q) has filtration pk (as V,, is essentially

the p* power map). If f|U, = 0, the right hand side has filtration k, so 6*f(q) has
filtration <k’ + 2.

If f(q) = £ a,q" is an element of Z/pZ[[q]] we define f(9)|U, = Z a,,q". The next
result gives a useful criterion for an element in M, to have low filtration.

PROPOSITION 4.12.  (cf. [S5, Thm. 6]) If f(q) € M, satisfies f(q)| U, = 4" f(q) with
A # 0, then f(q) has filtration k with2 <k <p + 1.

Proof. Let k be the filtration of f(g), and let f € M, be a form with this Fourier
expansion. Then

(FIUIV,(@ = X a9 = flg) — 6”71 (9).

The left hand side is the Fourier expansion of A- f?, which lies in M, and, by
hypothesis, has filtration pk. The right hand side has filtration <k + (p — 1)(p + 1).
Hence pk < k + (p — 1)(p + 1), which implies that k < p + 1.If f has weight k = 1,
sodoes g = f|<p) and f|T, = f|U, + g|V,. Since g|V, has filtration p, so does f|U,
and we cannot have f|U, = Af. Hence k > 2.

The results in Propositions 4.9, 4.10, and 4;12 also hold for modular forms
f e M, ® R and for Fourier expansions f(q) € M, ® R < R[[q]], where R is any
field of characteristic p. The proofs are essentially the same.

§5. Igusa curves. Let X, (N)" be the affine curve over Z/pZ obtained by removing
the supersingular points (the support of the divisor of the section 4 of @®?1)
[DR, V, pg. 101]. We define the affine Igusa curve I,(N)" as the fine moduli space
of triples (E, «, B), where E is a generalized elliptic curve over a scheme of character-
istic p, a: uy < Ey is an embedding whose image meets every irreducible com-
ponent in each geometric fibre of E, and f: u, < E, is an embedding of group
schemes.

The group (Z/pZ)* acts freely on I,(N)". If d is a non-zero class (mod p) the
automorphism {d ), is defined by the formula:

G.1) d(E, &, B) = (E, «, dp).

The quotient of I, (N)" by this action is the affine curve X, (N)".
Let E be the universal curve over I,(N)*, and let @" be the dual of the invertible
sheaf Lie(E™?). Then " = n*(w), where n: I, (N)" — X, (N)" is the covering map.
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There is a unique morphism Spec Z/pZ[[q]] — I,(N)" over Z/pZ such that the triple
(G,./9% Idy, 1d,) arises via pull-back from the universal curve. The image of the
point g = 0 is the cusp oo of I,(N), and g gives a uniformizing parameter in the
neighborhood of this cusp. Hence sections of w" have a Fourier expansion at oo, as
in (2.6).

The Igusa curve I,(N) is defined as the smooth compactification of I,(N)*
over Z/pZ. The étale covering n: I,(N)* — X,;(N)" extends to a ramified covering
n: I;(N) - X (N), and the line bundle w" extends to I, (N) by @ = n*(wx, ).

PROPOSITION 5.2. The line bundle @ of I,(N) has a canonical section a which
satisfies:

1) a is nonvanishing on I,(N)",

2) aP™! = A as sections of w®P7!,

3) a(G,/q% Idy, 1d,) = dt/t, so a(g) = 1,

4) a has a simple zero at each supersingular point x in I,(N) — I,(N)",

5) ald), =d 'a for all d e (Z/pZ)*.

Proof. Let (E, a, B) be a noncuspidal point of I, (N)". There is a unique point P
in E? =E,/B(p,) such that f,(P): E,—G,, is the identity map on u, (where
fp: E,» Hom(E,, G,,) is the duality of (1.2)). In other words, for all sections
{ of u, we have the formula e,(P, f({)) = (. Let g be a function on E with
div(g) = p- {(P) — (0)}; the holomorphic differential dg/g in wy depends only on f
and we define:

(5.3) «(E, o, B) = dg/g.

This gives a non-vanishing section of " on I, (N)*, once we check that the definition
(5.3) extends to the cusps. In fact, the identity a?~* = A4 shows that a extends to a
holomorphic section of @ on I;(N). To prove it, we recall that the Hasse invariant
is given by the formula 4 = (Cw)?- w™!, where w is a nonvanishing section of wg
and C is the Cartier operator. Applying this to w = dg/g, which satisfies
C(dg/g) = dg/g, we find A = a?~! over the ordinary points of I,(N). Since this is an
identity between meromorphic sections of @®?~! which holds on an open subset of
I,(N), it holds on the entire curve. Since A has a simple zero at each supersingular
point of X, (N), the covering I, (N) —» X, (N)is totally ramified at each supersingular
point (of degree p — 1) and a has a simple zero at each supersingular point x of
I,(N). This proves 1), 2), and 4).

To calculate the Fourier expansion of the section a in a neighborhood of
© = (G,/q% Idy, 1d,), we remark that in the definition (5.3) we may take P = g7
(as we have the formula e,(q'/%, {) = (! on the Tate curve) and the function g may
be taken to be

0(g"y

g() = (—t)W
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where 0(t) = (1 — )II,., (1 — g")(1 — ¢q"/t) is the standard Jacobi-Tate theta
series. Hence dg/g = dt/t and a(q) = 1 as claimed in 3).

By the definition of the action of {d), on sections of w, we have a|<{d),(E, o, B) =
a(E, o, df) at ordinary points. But the point P’ associated to f' = df: u, < E is
equal to d™'P. Hence dg'/g’ = d"'dg/g and a(E, o, dB) = d"*a(E, a, B). Since the
identity a|<d), = d"*a holds above all ordinary points, it is true on all I;(N). This
proves 5).

Note 5.4. Since the covering I,(N) — X,(N) is totally ramified at the super-
singular points, the curve I, (N) is geometrically connected.

Let S be the affine coordinate ring of I, (N) over Z/pZ. Then S = @), S, is graded
by a € Z/(p — 1)Z, where S, consists of functions g satisfying g|<d), = d*- g for all
d e (Z/pZ)*. For any g € S we let

9o = Z a”qn
n=0
be its local expansion in a neighborhood of the cusp oo of I, (N), with respect to the
uniformizing parameter q.

PROPOSITION 5.5. The map g g, gives an isomorphism of graded rings S = M,
where M < Z/pZ[[q]] is the ring of Fourier expansions of modular forms for I';(N)
(mod p).

The Fourier expansion = a,q" in M, associated to the function g € S, has filtration
k if and only if ord,(g) = —k at every supersingular point x of 1,(N), with equality
holding for at least one x.

Proof. We may assume that g € S,. Let k be an integer with k = « (mod p — 1)
and such that ord,(g) > —k at every supersingular point x of I;(N). Then by 4) of
Proposition 5.2, the element f = g- a* is a holomorphic section of ®®* on I, (N). By
5) of Proposition 5.2, this section is fixed by the Galois group of I, (N) over X, (N),
so f is a modular form of weight k for I'; (N). Since a(g) = 1 by 3) of Proposition
5.2, the Fourier expansion f(gq) of f at co is given by g, = X a,q". Hence g, is an
element of M,.

The map S, — Ma is clearly injective. To prove surjectivity we lift an expansion
f(g) € M, to a modular form f € M, and set g = f/a* in S,. Then g, = f(q); the
filtration of f(g) is the minimal value of k for which a lifting to M, exists. In this
case, the poles of g at supersingular points x have order <k, with equality at one
or more Xx.

Let us also recall the relation between holomorphic differentials on the curve
I,(N) and the spaces of cusp forms MY of weight k < p for I';(N) (mod p). Recall
the isomorphism of line bundles on X, (N)

i
w®* 2 Qiq(zv)(c“sl’s)

defined in (2.4). Since the map =: I,(N) — X (N) is totally ramified of degree
e = p — 1 at the supersingular points, Hurwitz’s theorem on computing the canon-
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ical bundle for ramified coverings [H, Ch. IV, §2] gives an isomorphism of line
bundles on I, (N):

Q}l(N) = “*Q}lfl(zv)((l’ — 2)ss).

Here ss denotes the divisor of supersingular points on I,(N), and the multiplicity
p —2=-e — 1 occurs as the ramification is tame. Since @ on I,(N) is simply the
pull-back n*(w) from X, (N), we obtain an isomorphism

(5.6) @®((p — 2)ss) = Qf, w)(cusps)

of line bundles on I,(N). Hence a meromorphic section h of ©®2 on I,(N) gives a
holomorphic differential on I, (N) if and only if h is regular at each ordinary point,
vanishes at each cusp, and satisfies ord,(h) > —(p — 2) at each supersingular point
x. If f € M? with k < p, the section h = f/a*~? satisfies the above conditions, so
corresponds to a holomorphic differential w, on I, (N). The Galois group of I, (N)
over X, (N) acts on o, by: w;|<d), = d*"2- w,. Indeed, f is fixed and the group acts
on a by d7*, by 5) of Proposition 5.2.

PROPOSITION 5.7.  (Serre, cf. [ST], [KM; §12.8]) Assume that 2 < k < p. Then the
map [, = f/a*"? identifies M with the subspace of holomorphic differentials
HO(I;(N), Q}, ) (k — 2) on which the Galois group acts by the character {d > d*~2.

The expansion of the differential w; at the cusp oo is equal to f(q) dq/q.

Proof. Since a(q) = 1, the argument in Proposition 2.8 shows that w, = f(q)dg/q
in a neighborhood of co. Since the Fourier expansion of f € M, determines the form
f, this shows that the map M — H°(I,(N), @}, ,)(k — 2) is an injection. To show
it is surjective, we observe that any holomorphic differential v in this eigenspace
corresponds, by (5.6), to a meromorphic section h of ®®2. The section h vanishes at
the cusps and satisfies ord,(h) > —(p — 2) at all supersingular points. In fact, since
hisinthe (k — 2) eigenspace for the Galois action, we must have ord (h) = —(k — 2)
(mod p — 1) (or else the section a*~2h would have a fractional order pole at the
supersingular point n(x) of X, (N)). Hence ord,(h) > —(k — 2) at all supersingular
points, and f = a*~2h is an element of My with w, = v.

Arbitrary graded elements of the ring M = @D M, of Fourier expansions give
rise to meromorphic differentials on I, (N), in the following manner.

PROPOSITION 5.8. If f(q) = Za,q" is an element of M,, then o, = Xa,q"dq/q is
the expansion at the cusp o of a meromorphic differential on I,(N), which is regular
outside the cusps and supersingular points, and satisfies w;|<d>, = d* *w, for all
de(Z/pz)*.

At the cusps the poles of w, have order <1, and w, is regular at all cusps if and
only if f(q) is the expansion of a cusp form. At each supersingular point x we have
ord,(w;) = (p — ®) (mod p — 1). The expansion f(q) has filtration k if and only if
ord,(w,) = (p — k) at all supersingular points x, with equality holding for at least
one Xx.
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If h(q) € M, corresponds to the function g € S,, then f(q) = 6h(q) € M, corre-
sponds to the exact differential w; = dg on I,(N).

Proof. Assume f(q) has filtration k = «. Then w, is the expansion at oo of the
meromorphic section f/a*~2 of @®2 ~ Qf v, (cusps + 2 — p)ss). As a section of »®?
it is regular at the cusps and satisfies ord,(f/a*"2) > (2 — k) at each supersingular
point, with equality holding for at least one x. The corresponding statements for o,
as a meromorphic section of Q] (y, follow immediately.

The fact that Oh corresponds to dg follows from a comparison of expansions at co.

D. Ulmer has remarked that the differential w; = dq/q associated to the modular
function 1 € M, classifies the extension of group schemes

0—»;4p£>Ep—>Z/pZ—>0

over I,;(N)" — cusps. We also mention the fact (implicit in 5.7 and 5.8) that the
automorphism <d), acts by multiplication by d™! on the tangent space of each
supersingular point x on I, (N). (The action is defined by transport of structure.)

The operators {d )y, ford € (Z/NZ)*, T;,and U, (for | # p) define correspondences
on the curve I, (N) over Z/pZ, using the formulae (3.1), (3.11), and (3.13). Hence they
define endomorphisms of the space of holomorphic differential forms on I,(N),
which preserve the eigencomponents for the action of the Galois group (Z/pZ)*.

PROPOSITION 5.9. The isomorphism MY 2 H°(I,(N), Q} ) (k — 2) of Proposi-
tion 5.7 commutes with the action of {d)y, T,, and U, on differentials and modular
forms. It transforms the endomorphism U, of My to the endomorphism Ver, = (Fr,)
of the holomorphic differentials.

Proof. The claim for {d)y is clear, as wg,(E, &, B) = h|<d)y(E, «, B) where
h = f/a*"? is the corresponding meromorphic section of w®2. But h|{d)y =
fI<dYy/a*"? as the section a of w does not depend on a, so is fixed by <d )y. Hence
Dpicayy = O KD

Now suppose f € M has Fourier expansion X, a,q", and for I} Np, f|<I)y
has expansion %, , b,q". Then F|T(q) = £ a,,q4" + I*"? £b,q"™. On the other hand,
h|T(q) = Zauq" + &,(1)- 1Z b,q™, as h has weight 2 and character ¢, for the group
(Z/pZ)* . Since &,(I) = 172, we see that w;;, = w| T, as claimed. A similar argument,
using Fourier expansions at oo, works for U, and U,,.

When k = p + 1, the argument of Propositions 5.7 and 5.9 gives the following
(whose proof we omit).

PROPOSITION 5.10. The map fr>w,; = f/A identifies MJ., with the space
H°(X,(N), Qx,)(s3)) of differentials of the third kind on X,(N) over Z/pZ with simple
poles at the supersingular points. This isomorphism commutes with the action of the
Hecke operators, and the expansion of w, at the cusp oo is equal to f(q)dq/q. The
differential w; is holomorphic on X (N) if and only if f € AM3.
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§6. The curve X;(/Np) over Z[1/Np][{,]. We now consider the curve X,(Np)
in more detail, where N > 4 and p is prime to N. By the results of §2, this curve is
smooth and proper over Z[1/Np]. We now consider certain automorphisms w;, of
X, (Np), associated to primitive p™ roots of unity {, which are rational over the étale
extension Z[1/Np][{] = Z[1/Np][{,]. These automorphisms were studied, in the
case where N = 1, by Mazur and Tate [MT, §5] and Wiles [Wi].

The noncuspidal points of X, (Np) correspond to triples (E, a, ), where E is an
elliptic curve over a Z[1/Np]-algebra and « and f are embeddings of group schemes
a: py < Ey, B: p, = E,. (We may separate o and B as p is prime to N.) For
d € (Z/NZ)* we have the automorphism

(6.1) <dON(E, %, B) = (E, du, B),

and for d € (Z/pZ)* we have the automorphism

6.2) (d>,(E, a, B) = (E, o, dP).

If d is prime to Np, and {d) is the automorphism of X, (Np) defined in (3.1), we have
{d) = {d)y-{d},. Similarly, we have defined Hecke correspondences T, (for I } Np),
U, (for l|N), and U, on X,(Np) over Z[1/Np].

Now let ¢ be a primitive p™ root of unity: this gives an isomorphism

i pu, = Z/pZ
6.3)
{1

of finite groups schemes over Z[1/Np][{,]. Let (E, «, B) be a noncuspidal point
of X;(Np) over Z[1/Np][{,]. Let E' = E/B(u,) be the p-isogenous curve, and
¢@: E — E’ the corresponding p-isogeny. Let o = @a: uy <> E’; this is an embedding
as Nis prime to p. Ife,: E, x E, — p,,is the pairing defined in (1.1), there is a unique
class Py in E,/f(u,) such that e (B(z), P;) = zfor all z € u,. Let P; = ¢(P,), which is
well defined in E,. Finally, let f': p, = E, be the embedding of group schemes
defined by B'({) = Ps. We define

(6.4) w(E, o, B) = (E', o/, B)

as an automorphism of X, (Np) over Z[1/Np][{,].

Note that the choice of { appears only in the final definition of embedding f'. If
we let b': Z/pZ <» E,, be the embedding of group schemes with b(1) = P;, then the
map

(6.5) v(E, a, f) = (E', o, b")

gives an isomorphism from X,(Np) to the curve X,(Np)* which classifies triples
(E, «, b) where b: Z/pZ < E,,. The choice of { gives an isomorphism from X, (Np)*
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to X;(Np):
(6.6) w(E,o,b)=(E,«,b oip)

and we have w, = uy; o v.

PROPOSITION 6.7. 1) w/(G,,/q%, Idy, 1d,) = (G,,/q"%, p1dy, {—q).
2) For d € (Z/pZ)*, wa = {d ), 'w; = w,"<d,.
3) Let w = w, for any primitive p* root of unity {. Then

w? = (poy- (1),
w-{dyy = (ddy'w forallde(Z/NZ)*
w-T, = T-w  forall 1} Np
w-U, = I>*U;w foralll|N.

Proof. 1) We calculate over Z[1/Np]1[{,1((g)), where G,,/q* = E is an elliptic
curve. The isogeny

¢: G,/q* = Gn/a"*

has kernel B(u,) = Id,(1,), so E' = G, /q"* and o = ga = p-Idy. The point P is
equal to ¢'/?, by formula (1.8), so P; = q in G,,/q"*. Hence f': u, = E,, is the map
taking { to q.

2) Since iga = ip o {d), = <d), 1ic’ this follows from the formula: wya = uga o 0.

3) Let w(E, a, B) = (E", «”, B”). Since ‘¢: E' — E is the p-isogeny with kernel
B'(u,), we have E” = E. Since ‘¢ o ¢ = p, we have a” = p-a. As the Weil pairing e,
is alternating, f” = — f. Hence w? = (p)y-<{—1),.

The fact that w commutes with {d )y is clear. To derive the commutation laws
with T; and U,, we use the identity

eP('//ﬂ(Z), l//Pﬂ) = ZdeB ]

where y: E — F is any isogeny of degree prime to p. Hence y Py = {deg ¥)," P, in
F,/yB(u,). The rest is a consequence of the definitions of T, and U;, and we leave
the proof to the reader.

The automorphism w;, of X (Np) acts on the space of holomorphic differentials,
by pull-back. Via the isomorphism (2.4) this induces an action of w; on the space of
cusp forms of weight 2 for I';(Np) over Z[1/Np][{,]. One can verify, using the
method of Proposition 3.15, that the action is given by

63) flwe (E, o, B) = %«p*(f(E’, «\ B))
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where (E', o, f’) is defined in (6.4), ¢: E —» E' is the associated p-isogeny, and
o*: 0@? - w¥? the pull-back.

If we conjugate the correspondence U, by the automorphism w,, we obtain a new
correspondence (cf. [S7], [Wi, §2]):

(6.9) U, = wtU,w,

on X,(Np)over Z[1/Np][{,]. By part 2) of Proposition 6.7, the correspondence U,
is independent of the choice of primitive p* root of unity { (as U, commutes with
{d>,). Hence U, is defined over Z[1/Np]. Using (6.8), we get an action of U, on the
space of modular forms of weight 2 for I';(Np) over Z[1/Np], and this action is
compatible with its natural action as a correspondence on holomorphic differentials
on X, (Np). By part 3) the operator U, commutes with the action of the operators

{d)y,<d>,, Tyand U, on the space of forms of weight 2. It usually does not commute
with U,.
We now determine the action of U, on Fourier expansions.

PROPOSITION 6.10. Let f be a modular form of weight 2 for I';(Np). Then

U @= Y  flwa@l®) + p-fIKpd>n(g").
de(Z/p2)*

Proof. We recall that, by definition of the Fourier expansion in (2.6):

f1Uy(Gn/q" Idy, 1d,) = f|U,(q)- (dt/t)®*.

Since wy(G,,/q%, Idy, 1d,) = (G,,/q"%, pldy, { q) and the p-isogeny is ¢: G,,/q” 2
G,,/q?Z, we have

f' U;:(Gm/qz, IdNa Idp) = f'wc_l UpWC(Gm/qza IdNa Idp)
1
= ;)'(p*(f'WC_IUp(Gm/qu’ pIdNa €'—>‘1))

By the definition of U, in (3.13), we have
U,(Gm/qP%, pldy, {—q)

= Y (Gu/ath pldy, (7% + (Gp/q" %, pIdy, (> qP)

de(Z/pD)*

as the isogenies y,: G,,/q?Z > G,,/(q¢*)? for d € (Z/pZ)* and y: G,,/q?* D G, /q"*?
are those isogenies of degree p whose kernel does not meet the subgroup (g). Letting
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g = flw;!, we have

(6.11) fIU;;(Gm/qZ’IdN7Idp)=’17(p* Y. Y9G Aql"), pldy, {—{7)

p de(Zp2)
1 *, /% P2z 2 P

But wf = {py-{—1),,50 g = flw; ' = flw,<pdy'-{—1),". Hence
9(G,/(at")?, pldy, ({77
= fIw(Gn/(@%)%, Idy, {—7)
= fIwLd>,(Gn/(a®)?, Idy, 1d,)
= fIwa(Gn/(@l?)?, Idy, 1d,).

Since @*((dt/t)®%) = p*(dt/t)®? and Y} ((dt/t)®?) = (dt/t)®?, the first sum in (6.11)
gives a contribution of

Y flwa(al®)

de(Zp7)*
to the Fourier expansion of f|U,. The second term in (6.11) corresponds to

9(G,./q”’%, p*1dy, {— q®) = fIw/(G,,/q"*%, pldy, (> q7P)
1
= ;p*f(Gm/qua pIdNo (HC)

as the relevant p-isogeny for computing w; is p: G, /q"? re G,,/q?% and P = { by
(1.8). Since y*((dt/t)®?) = p*(dt/t)®* and p*(dt/t)®% = (dt/t)®?, the second term
contributes p- f|{p>(q”) to the Fourier expression of f|U,. This completes the proof.

PROPOSITION 6.12.  Let f be a modular form of weight 2 for I'; (Np) which satisfies
Z4fIKd>, = 0. Then f|U,U, = p- fIKpy-

Proof. Let Xa,q" be the Fourier expansion of f|{p)y. Then by the previous
proposition

fIU,’,(q)=de Y, flwa@l?) + pZa,q™.

(Zlp2)*

The coeflicient of ¢"? in the sum is equal to zero. Indeed, this is equal to the
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coefficient of "7 in Z, f|wya(q) as ((*)” = 1 for all p. But =, f|w.a = (Z,f [<d™)) w,
and X, f|<d™*> = 0 by hypothesis.

Hence the coefficients of ¢"?in f|U,(q) is equal to pa,, and f|U,U,(q) = pZ a,q" =
p* fIKp>n(q). Therefore f|U,U, = p- f|{p)y by the g-expansion principle.

The space of modular forms of weight 2 for I'; (Np) over Q is the direct sum of
subspaces M’ ® M", where M’ consists of forms f satisfying f|<d), = f for all
d € (Z/pZ)* and M" consists of forms f satisfying Z, f|{d>, = 0. Both subspaces are
stable under the operators {d)y, T, U, U,, and U,, as these operators commute with
the (d},.

COROLLARY 6.13.  On the subspace M" the operators U, and U, commute. They
are invertible, and satisfy U,U, = p-<{p)y.

Proof. The relation U,U, = p{p)y on M" follows from Proposition 6.12.
Hence U, and U, are invertible. Since p-{p)y commutes with U,, so does
U,=p<pox- U, "

Note. On the subspace of M’ consisting of forms which are new at p, the
operators U, and U, also commute. In fact, one has U, = U, = —w on M,,, so
U,U, = {pyy (cf. [Li]). The failure of U, and U, to commute on M is therefore due
to the presence of forms in M’ which are old at p.

PROPOSITION 6.14. Let F = Z A,q" be a newform (=normalized cuspidal eigen-
form) of weight 2 and character ¢ = ey ¢, for I'y(Np) with coefficients in an extension
of Q. Then F\w, = ¢, F', where F' = T A, q" is a newform of weight 2 and character
¢ =ey-¢," for Ty (Np) and c, is a nonzero constant. We have

(6.15) A, = A,/e,(n) for all n primetop.
Ife,=1then F' = F, A2 = ey(p), and ¢, = — A,. If ¢, # 1 then
(6.16) A, A, = pen(p)

and the constant c, is given by the formula:

(6.17) o == 1)8~(I;) Da &d)(

p

Proof. By Proposition 6.7 it follows that F|w;, is a form with character &' =
ey €," which satisfies

(F|W4)|Tt = Al/gp(l).(Fle)
(FIw)IU, = A)/e, (1) (Flwy)

for I # p. To show F|w, = ¢, F', where F' is a newform, it suffices to show F|w; is
an eigenvector for U,. We will prove this when ¢, # 1;a proof when ¢, = 1 (assuming
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F is new at p) is given in [ALi], which also gives the formulae for 4, and c; in this
case.

Ife, # 1 then F lies in the extension of scalars of the subspace M", as X, F|<d), =
Z¢,(d)' F = 0. Hence

(Fiw)|U, = F|U,|w,

_ p-en(p)
A

'F|Wc,
14

as U, = p{pyyU,"* on M". This shows F|w, = c,F’, where F’ has p™ coefficient
A, = pey(p)/A,. The constant c, is equal to the coefficient of q in F|w,(q), which we
may determine as follows.

First, observe that F|w,a = F|<d™* Yw, = ¢,(d™")" F|w, by Prop. 6.10. By Proposi-
tion 6.12, the coefficient of g in F|U,(q) is equal to:

cg-;ep(d‘l)l_,"’.

But by Corollary 6.13, this coefficient is equal to pey(p)/A4,. Hence

¢ = p .EN(P)‘
F X 4,

Since (Z¢,(d)(Y) (T e, (d)¢%) = p-g,(—1) [L, Ch. I], we obtain formula (6.17).

§7. A model for X;(Np) over Z[1/N]1[{,]. We now describe a stable model X
for the curve X, (Np) over the base Z[1/N][{,], which was introduced by Deligne
and Rapoport [DR, V, §2]. To be completely accurate, we note that the scheme
X' = Mr,,wnrsop defined by Deligne and Rapoport is actually a model for the
curve X, (Np), which classifies triples (E, a, f) with a: Z/NZ <» E,. However, the
schemes X and X' become isomorphic over Z[1/N][{,, {y], and one can obtain X
over the base Z[1/N][{,] by Galois descent.

To define X, we let Z(Np) be the projective scheme over Z[1/N] which represents
the functor of generalized elliptic curves E together with a “Drinfeld basis” of Ey,
[KM, 5.1.1]. This is a regular scheme of dimension 2, with a natural action of
the group GL,(Z/NZ) x GL,(Z/pZ). We let X be the quotient of this scheme by

the finite group Hy x H,, where Hy, = {(‘c’ Z) € GL,(Z/NZ).c =0(N)andd = 1

(mod N)} and H,= {((1) I;)EGLZ(Z/I)Z)}. This quotient is defined over

Z[1/N1][¢,] and has the following properties.

ProrosiTiION 7.1. 1) X is a regular scheme of dimension 2, and the morphism
X — Spec Z[1/N][{,] has only ordinary double points as singularities.
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2) X is smooth over Spec Z[1/Np][{,]. The special fibre X, of X in characteristic
p is a reduced curve over Z/pZ, consisting of two smooth projective curves I and I'
crossing transversally at a finite set X of double points.

3) The component I is canonically isomorphic to the Igusa curve 1,(N), and X is
the set of supersingular points on I,(N). The component I' is the smooth compactifi-
cation of the moduli of triples (E, a, b), where b: Z/pZ <> E,.

Proof. This is a restatement of Théoréme 2.12 in [DR, V, §2].

The sections of X which do not meet X correspond to triples (E, a, ) or to
triples (E, o, b) over Z[1/N][{,]-algebras, where : u, = E,and b: Z/pZ < E , are
embeddings of group schemes. The sections of the type (E, «, f) meet the component
I and those of the type (E, o, b) meet the component I'. The map v defined in (6.5)
gives a canonical automorphism of X over Z[1/N][{,] which interchanges these
two types of sections and induces an isomorphism I =2 I’ in characteristic p.

Fix a primitive p™ root of unity {, and let i;: p, = Z/pZ be defined as in (6.3). We
then have an isomorphism from X to X,(Np) over the base Z[1/N][{,]. The
sections (E, o, ) of X are mapped to the corresponding points of X, (Np), and the
sections (E, «, b) are mapped to the points (E, «, f = b o i;). The automorphism v of
X then induces the automorphism w, of X,(Np). We henceforth identify X,(Np)
with the “general fibre” of X over Z[1/N][(].

The automorphisms {d)y and <{d}, of X,(Np) extend to X, and induce the
automorphisms with the same name on the component I, (N) = I of X|,. Since the
generic fibre X, (Np) of X can be defined over Z[1/Np], there is a semi-linear action
of the Galois group I' of the covering Z[1/Np][{,] over Z[1/Np] on X. Since this
covering is totally ramified at p, this action induces a geometric action of I" on the
special fibre X, (cf. [ST, pg. 483]). We may identify I" with (Z/pZ)* by letting g, be
the automorphism with 6,({,) = (3.

PROPOSITION 7.2.  The element 6, 0f T acts on X, via the automorphism 1 x <{d),*
of I x I'.

Proof. For sections of X meeting I — X, we have the formula o(E, a, f) =
(E°, «’, B°) for any o € I. Since T acts trivially on the residue field at p, this gives
the trivial automorphism of I.

For sections of X meeting I' — X, we have the formula

(1.3) 6,(E, o, b) = (E°4, 0%, d~1-b4).

Indeed, (E, «, b) corresponds to the point (E, a, B = b o i;) in the general fibre, so its
conjugate by ¢ € I is the point (E?, a°, f°). Write 7 = b’ o i;; for ¢ = 6, we must
show that b’ = d™'- b°, But

b'(d) = p°(Y = p°(°) ifo=o0,
= Q)
= b(l)y.
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This proves (7.3); since I" acts trivially on the residue field at p we have o, = (d),!
on I'. (We note that the action of I" on X, is independent of the choice of { used to
define it.)

The correspondences T, and U, of X, (Np) (for | # p) preserve the sections reducing
to] — X or I' — Z (modulo p) on X, and their induced action on I = I,(N) is the
one described in §5. The correspondence U, preserves the sections reducingto I — Z,
and induces the correspondence U, = Ver, on I = I;(N). The correspondence U,
does not preserve the sections meeting I’ — X, and hence the correspondence U,
does not preserve the sections meeting I. From Proposition 6.10 one can derive the
formula (cf. [Wi, §57):

(74) U= Y wa+<{p)yFr, onl=IL(N).
de(Z/p2)*

The automorphism w = w, preserves the set X of supersingular points on I, (N),
and its action on X is independent of the choice of { (as {d), fixes each supersingular
point). If x € T covers the supersingular point (E, &) on X, (N), then w(x) covers the
supersingular point (E’, o), where E' = E®, ¢ = Fr,: E— E® is the associated
p-isogeny, and o’ = @a. Hence o/(z) = a(z)? = a'P(z?) for all z € uy, and w(x) covers
the point Fr,(E, pa) of X, (N). Consequently:

(1.5) { o PO oy,
U,=p<{p>yFr,

§8. Regular differentials. Let { be a primitive p™ root of unity in an algebraic
closure of Q,. We now consider the scheme X over the base ¢ = Z,[{], and identify
its general fibre with X (Np) over the field K = Q,({) (using the isomorphism i, as
in §7). The element = = 1 — { is a uniformizing parameter for the discrete valuation
ring ¢, and O/r0 = Z/pZ.

Since X — Spec 0 is a morphism which is purely of dimension 1 and is locally a
complete intersection, the dualizing sheaf Qy, , of “regular differentials” is invertible
on X [DR, L.2: in this reference the dualizing sheaf is denoted by wy,,]. Let
L = H°(X, Qy,,); we call elements of the finitely generated O-module L regular
differentials on X.

If R is flat over @), pull-back gives an isomorphism

L ®cR = H(X/R, Q).

In particular, this holds for R = K where X = X,(Np) is smooth and Qyx ~
Q% wpyx- Hence elements of L ® K correspond to holomorphic differentials on
X;(Np) over K, and hence to cusp forms of weight 2 for I'; (Np) over K. We again
emphasize that this identification requires the choice of a p™ root of unity .

In fact, L is torsion-free and defines an (-lattice in the space of cusp forms of
weight 2. This follows from the argument in [M, II, §3], which also shows that
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pull-back gives an isomorphism
(8.2) L/nL :HO(X(), on/(z/pz)) = Lo.

The right hand side consists of the regular differentials on X, the special fibre. This
space can be identified with a subspace of the differentials of the third kind on the
normalization X, = I11I' [S1, Ch. IV, §3]: a pair (v, v') of differentials of the third
kind on I'II I’ corresponds to a regular differential w on X, if and only if v and v/
are regular outside £ = I n I’ and satisfy

8.3) Res,(v) + Res,(v)=0

for all x € X. This follows from the fact that X, has only ordinary double points as
singularities.

For w € L we write o = (v, v') (mod nL) if v and v’ are the differentials of the third
kind on I and I’ which correspond to the image of w in X,.

ProposITION 8.4. (cf. [S7]) Let F be a cusp form of weight 2 for T'\(Np) with
coefficients in a finite extension Ky of K = Q,((). Let O denote the ring of integers
of Ky, and let wp = F(q)dq/q be the corresponding holomorphic differential on X ,(Np)
over Kg. Then wpg is a regular differential on X over O if and only if the Fourier
expansions

Fig= Y A,q" and
n>1
8.5)

Flw(q) = ; B,q"

both lie in Og[[q]]. In this case, let Ty be a uniformizing parameter in O and let a,
and b, be the images of A, and B, in the residue field Og/nzOp. Then wg = (v, V')
(mod mpLg) where

v(q) = Y. a,q"dq/q and

n>1

(8.6)
Viwlq) = Y. b.q"dqa/q

in a neighborhood of the cusp o of I = I,(N).

Proof. Let w be a regular differential on X. Since oo is a smooth section of X
and q is a local parameter there, the pull-back of w to Spec O[[q]] is a regular
differential, so the expansion w(q) = X A4,9"dq/q must be integral. Since the auto-
morphism w; of X preserves L, the expansion of w|w,(q) = £ B,q"dq/q along co must
also be integral.
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Conversely, assume wy is a holomorphic differential on X,(Np), and that the
expansions F(q) and F|w,(q) are both integral. Then w is a meromorphic section
of Qy, o, which is an invertible sheaf on X. Hence the points where wy is not regular
form a divisor D contained in the special fibre X,,. The integrality of the 4, shows
that D does not intersect the section oo, so D does not contain the component 1.
The integrality of the B, shows that D does not intersect the section w,(c0), so D
does not contain I'. Hence wy is a regular section of Q.

The reduction of wy has the Fourier expansions v=ZX a,q"dq/q, v'|w,=Z b,q"dq/q
at oo, as the Fourier expansion of the reduction of a differential at oo is the reduction
of the original Fourier expansion.

PRrOPOSITION 8.7. The endomorphisms {d),, {d)y, T;, U, U,, and U, of the
space of cusp forms of weight 2 for I';(Np) over K preserve the O-lattice of regular
differentials on X.

Proof. This is clear for {d}, and {d )y, which give automorphisms of X over .
Let t = T; or U, with | # p, and assume wy € L, so by Proposition 8.4 the Fourier
coefficients of F and F|w, lie in ¢. By formulae (3.4), (3.5) and (3.7) the form F|t
has integral Fourier coefficients. By Proposition 6.7 F|tw, = F|<I},w,t; the same
formulae now show that F|tw, has integral Fourier coefficients. Hence |t lies in L.

The Fourier expansions of F|U, and F|U, have integral coefficients, by (3.7)
and Proposition 6.10. (We recall that wya = w;-<d),.) Since F|U,w, = F|w,U, and
F|U,w, = F|w,U,, the same argument shows that the expansions of F|U,w, and
F|U,w, are integral. Hence wg|U, and wg|U, both lie in L.

Let x: (Z/pZ)* — Z; be the Teichmiiller character. The lattice L decomposes as
a direct sum of ¢-modues

-1
(8.8) L= F@l L(j)
where
8.9) L(j) = {we L:w|<d), = x’(d)- w for all d € (Z/pZ)*}.

Since the automorphisms {d), commute with {d)y, T;, U, U,, and U, the latter
endomorphisms of L preserve each eigenspace L( ).

ProposITION 8.10. 1) U,U, = U, U, = p{pdy on @, ,-1 L(j).
2) If we @# p—1 L(j) then @ = (v, V') (mod nL) where v and v’ are holomorphic
differentials on I and I', respectively.

Proof. 1) This follows from Proposition 6.12, as the submodule @# -1 L(Jj)
consists of the regular differentials wy such that X, z/,2)« FI<d)>, = 0.

2) Since v and v' are meromorphic, with poles of order <1 at each supersingular
point x, and Res,(v) + Res,(v') = 0 it suffices to prove that Res,(v) = Ofor all x € X.
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But the group {<{d),: d € (Z/pZ)*} fixes each supersingular point x on I;(N), as
the Galois covering I;(N) — X, (N) over Z/pZ is totally ramified at supersingular
points. Hence Res,(v|[<d),) = Res,(v) for all d. Since w = wp liesin @), ,—; L(j), we
have X, F|[{d), = 0. Hence

0 =) Res,(v|[<d),) = (p — 1)Res,v = —Res,v
d

and v is regular at each supersingular point x € X. 3 B 3
We now consider the corresponding eigenspaces of L = L/nL: L = @¥! L(j)
with

8.11) L(j) = {w e L: 0[Kd), = d'o} = L(j)/nL(j).

Each L(j) is a finite dimensional vector space over O/n@ = Z/pZ, with a commuting
family of endomorphisms given by the Hecke operators <{d )y, T;, U,, and U,. We
wish to identify the Hecke module L( ) in terms of cusp forms for I'; (N) over Z/pZ
of weightsk=j+2andp+3—k=p+1—j

First assume that j # (p — 1), so k =j + 2 satisfies 3 < k < p. Any w € L(j)
satisfies w = (v, v') mod nL(j), where v and v are holomorphic differentials on I
and I' by part 2) of Proposition 8.10. We have v e H°(I,(N), Q; () (k — 2) and
V|w, € H(I,(N), Q] ) (2 — k). By Proposition 5.7, there are cusp forms f e M
and g € My, ;_, such that

v = f(q)dq/q
(8.11)

V'iw, = g(q)dq/q

in a neighborhood of the cusp oo on I,(N). We define a map of Z/pZ-vector spaces
(for3<k<p)

pi Lk —2) > My ® M,?+3-—k
(8.12)
o—(f,9).

This is clearly an isomorphism, as w (mod nL(k — 2)) is completely determined by
(v, v'), which may be arbitrary holomorphic differentials in the (k — 2) eigenspace
(by our description of L, the regular differentials on X,). If ® = w; with F as in
Proposition 8.4, the Fourier expansion of f and g at oo are given by f(q) = X a,q"
and g(q) = Zb,q".

We define a new action of the Hecke operators on MY, ;_, by having {d )y act as
usual, and having T;, U, and U, acts as I*2T;, I*"2U,, and p*~2U, = 0, respectively.
Denote this twisted Hecke module by MY, ,_,[k — 2].
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ProPOSITION 8.13.  (cf. [S7]) Assume that 3 < k < p. Then the map p, defined in
(8.11-8.12) gives an isomorphism of Hecke modules:

P Lk — Q=M M, p+3 [k —2].

Proof. Wehave observed that p, is an isomorphism of vector spaces. Let = wg
and suppose p,(w) = (f, g). We must prove that

’Pk(wp|<a>n) = (fIKdDn, gI{ddy)
plopr) = (fIT, I*%g|T)
pl@py) = (fIU, I¥2g|U)

L Pk(a’pwp) = (f] U, 0).

(8.14) ;

These all follow from a calculation of the Fourier expansions and the fact that
x*72(l) = I*"%(mod p). We will only prove the final formula, and leave the other
calculations to the reader.

The reduction of F|U,(g) is clearly f|U,(q), so the first component of p(wpy,) is
correct. We must prove that the Fourier expansion of F|U,w, lies in nO[[q]], so
the second component of p,,(coFlU ) is equal to zero. But F|U,w, = F|lw,U, = G|U,
where G(q) € O[[q]]. We now appeal to the formula in Proposition 6.10, whxch
shows that

Uyg) = ZGIwga(qC“) (mod p)

= ; Glwa(g)  (mod 7)

as (‘=1 (mod n0) for all d. But X, Glwa = EGI(d“),Iwg =0 as G lies in an
eigenspace for the group {{d),:d € (Z/pZ)*} with nontrivial character. Hence
F|U,w,/(q) = G|U,(q) = 0 (mod n0O[[¢]]). A similar argument shows that:

(8.15) Pk(a)F|U,',) = (0, g| Up)'

We observe that the map p, depends on the choice of primitive p*™ root of unity
{ used to identify the general fibre of X with X, (Np) (and so to identify L with an
O-lattice in the space of cusp forms of weight 2 for I'; (Np) over F). If p,(wf) = (f, 9)
and p; is the isomorphism associated to {' = (% we have p(wy) = (f, d> *g). This
follows from the identity w.a = <d), 'w, = w,{(d), proved in (6.7). In particular, the
surjection of Hecke modules

p: Lk — 2) » M?
(8.16)

wp = f
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is independent of the choice of {. The kernel of p may be canonically identified with
the Hecke module Mp, ;_, ® u$*~2, where T, and U, act on p, by <I>, = land U,
acts as zero, via the map (g ® (®*72)1— (0, v,|w).

We now consider the case when j=p—1,sok=p+landp+3—k=21If
w < L(p — 1) we have w = (v, V'), where v is a meromorphic differential on X, (N)
with poles of order <1 at the supersingular points. By Proposition 5.10, there is a
unique cusp form f € MP,, such that v = f(g)dg/q in a neighborhood of the cusp
0. We define the map

p:L(p— 1)~ M3+1
8.17)
wp > f.

The kernel of p consists of the differentials w = (0, v') with v holomorphic on X, (N).
Hence v'|w; = g(q)dq/q for a unique cusp form g € M 9; in this case, g is independent
of the choice of {. We define the map u: M3 — L(p — 1) by u(g) = (0, v').

PROPOSITION 8.18. There is an exact sequence of Hecke modules

0->M[p—1]5L(p—1)5M2, —0.

Proof. The maps u and p commute with the usual actions of {d)y, T;, and U,
by a computation of Fourier expansions at co. But on L(p — 1) we have the formula

(V, V’)'Up = (lepa —VIW)

where w = wya for any d e (Z/pZ)*. This follows from the Fourier expansion of U,
in Proposition 6.10 and the fact that w,a = w, = won L(p — 1). Hence U, annihilates
the image of u; since it also acts trivially on M?[p — 1], this shows p is a homo-
morphism of Hecke modules.

We note that, unlike 8.13, there are cases when the sequence of Hecke modules
in Proposition 8.18 does not split. The case when N = 11 and p = 3 gives a nonsplit
example.

§9. Lifting eigenforms to weight 2 in characteristic zero. Let f = Xa,q" be a
normalized cuspidal eigenform, which is a newform of type (k, ¢) for I'; (N) (mod p).
Since the Hecke module My has finite dimension over Z/pZ, the Fourier coefficients
a, of f and the values of the character ¢ generate a finite extension field E of
Z/pZ.

Let R be the integral closure of Z, in an algebraic closure of Q,; let mg be the
maximal ideal of R and fix an embedding of E into the residue field R/my (which
is an algebraic closure of Z/pZ). We say a newform F = £A4,q" on I',(N) or I'; (Np)
over R is a lifting of f if the Fourier coefficients A, of F satisfy the congruence

9.1) A, =a, (modmyg)
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for all n > 1. We also insist that the character &, = ey ¢, associated to F satisfies
the congruence

9.2) ex(d) = e(d) (mod my)

for all d € (Z/NZ)*. The next Proposition shows that if f has weight kand 2 < k <
p + 1,it has alifting to a newform F of weight 2 over R. In this way, many questions
on modular forms (mod p) can be reduced to the study of forms of weight 2 in
characteristic zero (as was noted by Shimura [Sh3]).

PROPOSITION 9.3. 1) Let f be a newform of weight 2 for I'y(N) over E. Then there
is a lifting of f to a newform F of weight 2 for I';(N) over R.

2) Let f be a newform of weight k for T';(N) over E, with 3<k<p+ 1. If
k = p + 1 we assume further that the expansion f(q) has filtration p + 1. Then there
is a lifting of f to a newform F of weight 2 for T';(Np) over R with ¢, = x*~2, where
x: (Z/pZ)* < Z, is the Teichmiiller character.

Before giving the proof of Proposition 9.3, we make a few remarks. Since y(d) =
(mod p) we have the congruence

9.4) ey(d) =d*"* (mod mpg)

for all d € (Z/pZ)*. When p = 5, Serre [S9] has shown that one can first specify a
lifting ey: (Z/NZ)* — R* of the character ¢, and then find a lifting F of f of type
(2, eyx*?). In particular, one can show there is a lifting F of f with character &, of
order prime to p. This statement is false for p = 2 and 3: the space of cusp forms of
weight 2 for I';(13) has dimension 2, and the characters of both eigenforms have
order 6 in characteristic zero (so have order 3 (mod 2) and 2 (mod 3)). For more
details on this example, see §17. This is the reason why Serre modified his conjectures
in [S8] to use Katz’s definition of modular forms (mod p).

We emphasize that there is no unicity of the lifting F, even if the character
&r = ey &, is fixed. For example, the space of cusp forms of weight 2 for I'; (23) with
e =1 has dimension 2; the two eigenforms F and F’ in characteristic zero are
conjugate over Q(\/g) and have the same reduction f (mod 5).

Proof. 1) We consider the curve X(N) over Z,, where it is smooth. Let L be
the free Z,-module of cusp forms of weight 2 for I (N ) over Z,,; by (2.4) we have an
1somorph1sm L= H(X,(N), Q% vy z,)- In particular, the quotlent L/pL is canoni-
cally identified with M2, the space of ¢ cusp forms of weight 2 for I', (N) over Z/pZ.

Let H be the commutative Z -algebra of endomorphisms of L which is generated
by the automorphisms {d )y and the correspondences T; and U, of X, (N) (including
T,, as p} N). The H/pH acts on L/pL, and by hypothesis has the eigenvector
vr = f(q)dq/q on L/pL ® E. Let m be the maximal ideal of H which annihilates v;;
then m contains pH and H/m = E.

Since H is a free Z,-algebra of finite rank, we may choose a minimal prime
ideal p of H which is contained in m and satisfies p N Z, = 0. The quotient H/p is
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then a local integral domain (of finite rank over Z,) with maximal ideal m/p and
residue field E. Choose an embedding i: H/p <> R which gives the fixed embedding
E <> R/my of residue fields, and define ey(d) = i({d)y) in R*, A, = i(T;) in R for
I} N, and A4; = i(U,) in R for I|N. By the definition of m, we have ¢y(d) = &(d), and
A, = a; (mod mg).

The ideal p ® Q, of H® Q,, is in the support of the module L ® Q, (on which
H®Q,hasa fa1thful representatlon) Hence there is a nonzero elgenvector Wy in
L® Q anmhllated by p. Here F is cusp form of weight 2 for I'; (N) over Q which
satlsﬁes F|{d)y = ey(d), F|T;= A,  F and F|U, = A, F. By (3.7) and (3.8) the first
Fourier coefficient 4, of F must be nonzero (or else the entire Fourier expansion
of F is zero, hence F = 0). If we normalize our eigenvector by the condition that
A; = 1, all of its Fourier coefficients lie in R (and are given by (3.9)). In particular,
F is a lifting of f. Since f is a newform of level N, the same holds for F.

2) We consider the curve X, (Np) over Q,((), where { is a primitive p* root of
unity, and let X be the regular model over Z,[{] discussed in §7. Let L be the
Z,[{]-module of regular differentials on X, and let H be the commutative Z,[{]-
algebra of endomorphisms of L which is generated by the automorphisms {d)y,
{d), and the correspondences T;, U;, and U, of X, (Np). (These endomorphisms of
the space of cusp forms of weight 2 over QP(C ) preserve the lattice L by Proposition
8.7.) Then the algebra H/(1 — {)H acts as endomorphisms of L = L/(1 — {)L, the
space of regular differentials on the special fibre X|,.

Assume first that 3 < k < p. By Proposition 8.13 the eigenform f in My gives
an eigenvector (v, 0) for H/(1 — {)H acting on the space L(k — 2) ® E. Let m be
the maximal ideal of H which annihilates this eigenvector, and choose a minimal
prime p of H contained in m and satisfying p N Z,[{] = 0. Choose an embedding
i H/p <»R which gives the fixed embedding E = R/my of residue fields, and
define ey(d) = i({dDy), &,(d) = i({d),), A, =i(T) for I} N, A; = i(U) for [N, and
A, = i(U,). Since the eigenvector (vr, 0) occurs in the subspace L(k — 2) we have

,,(d) d" 2 (mod my), so ¢, = x*~2. By the definition of m we have &y(d) = &(d),
A, = a;, A, = a, (mod mpg).

The existence of a cusp form F over @, with these eigenvalues for H ® Q, then
follows as in 1). (F is an elgenvector annihilated by p in L® Q,.) If we normahze F
by the condition 4, = 1, it gives a newform of weight 2 on F 1 (Np) over R which
reduces to f (mod mg). The level of F is divisible by N as f was assumed to be a
newform, and is divisible by p as ¢, # 1.

Finally, assume that f has weight k = p + 1 and f(g) has filtration p + 1. Define
H and L as above; by Proposition 8.18 there is an eigenvector (v, V') in L(p—-1)
which maps to the eigenvector f for H/(1 — {)H in M?,, . Indeed, since the filtration
of f(q) is p + 1, the eigenvalues of T; and U, on f do not occur in the submodule
MJ[p — 1]. The construction of a lifting F, with ¢, = 1, proceeds as above; we note
that F is new at p (or else f(g) would have filtration 2).

The ambiguity in the lifting of f to F results from the choice of a minimal prime
p of H contained in m, as well as the choice of an embedding of H/p into R extending
the fixed embedding of residue fields.
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For the rest of this §, we assume that the weight k of the newform f = Xa,q"
satisfies 2 < k < p and that a, # 0. Define the integer k' by

(9.6) k+k=p+1,
so 1 <k’ < p — 1. By Proposition 4.10, the series

©.7 f'(@) = 0"f(q) = Zn*a,q"

has filtration k' + p + 1 in My, = My, 5. (If a, = 0, this series has filtration
k' + 2 when k # 2, and filtration 2 when k = 2.) If g’ = 6% "', then g’ has filtration
pk’in M., and

(9.8) f'(@) =0g'(9).

PROPOSITION 9.9. 1) The differential v, = f(q)dq/q is holomorphic on I,(N). It has
an expansion of the form

v = <ocxz"_" + Y oc,,z") dz

n>p-1
n=p—k(mod p—1)

at each supersingular point x, where z is a local parameter at x. The constant o, is
nonzero for at least one x € X.

2) The differential v, = f'(q)dq/q is meromorphic and exact on I,(N). It is regular
outside X, and has an expansion of the form

n>0
n=—1-k’ (mod p—1)
n#E—1 (mod p)

V= (ﬁxz'l"" + Y [3,,2") dz

at each supersingular point x. The constant B, is nonzero for at least one x € .

Proof. This follows from Proposition 5.8, given the filtrations of f(q) and f”(g),
and identity (9.8) which shows that v,. = dg’ is exact. We note that the product o, 8,
is independent of the choice of uniformizing parameter z at x.

Now let F = XA4,q" be a lifting of f to a newform of weight 2 and character
er = &y x*~% on I';(N) (when k = 2) or on I'; (Np) (when 3 < k < p). Since a, # 0,
the lifted coefficient 4, is a unit in R. We will describe a cusp form F’ = £4,4" of
weight 2 and character gz = ey x* on I';(Np), which is a normalized eigenvector
for the operators T;, U, and U, and reduces (mod mg) to f'(q).

When k = 2, let u denote the unique unit root of the quadratic equation

x? — A,x + pex(p) =0
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in R, and define
9.10) F'(q =XA4,9" —uXA,q"™.

This is the expansion of the “old form” F(r) — uF(pt) on I';(Np). When 3 <k <p
we define F’ by

(9.11) FlWC=cC'F,.
In this case, F’ is a newform by Proposition 6.14. When k = 2, F’ is a normalized
eigenform for T;, U,, and U, with eigenvalue A}, = pey(p)/u but is not an eigenvector

for U,. Indeed, on the 2-dimensional space with basis (F(t), F(pt)) the operators
T, and U, act via the scalars 4;, and

4, 1
U”_<—pen(p) 0)

(0 P“)
W"(pan(p) o)

PRrOPOSITION 9.13. 1) The Fourier coefficients A, of F' lie in R, and satisfy the
congruence

(9.12)

F'(9) = f'(@) = 0"f(q) (mod mpg).

2) The differential F'(q)dq/q is formally exact: there is a series G(q) € R[[q]] such
that dG(q) = F'(q)dq/q. ,

3) The differential (1 — {)* wg. on X,(Np) is a regular differential on the model X
over R.

Proof. When k = 2 part 1) follows directly from formula (9.10). Indeed, F'(q) =
2 p=1,4", as u = a,. When 3 <k < p, the coefficients of F’ for (n, p) =1 are
given by (6.15): 4, = A,/x(n)* % = a,n*. Since 4, = pey(p)/A, = 0, we have F'(q) =
*n¥a,q" as claimed.

To prove 2), we must check that 4, = 0 (mod nR) for all n > 1 (as we may then
define G(q) = X, (4,/n)q"). Since R is n-divisible when (n, p) = 1, we need only
consider the case when n is divisible by p. Write n = p"-m where m is prime to p.
Since F’ is an eigenvector for T;, U, and U, we have 4, = 4,,"(4,), so it suffices to
check that 4, = 0 (mod pR). When k = 2 this follows from (9.10),as 4, = 4, —u =
pey(p)/u. When k > 2 this follows from (6.16), which shows that 4, = pey(p)/A4,.

To prove 3), we will use the criterion of Proposition 8.4. Clearly the expansion
(1 = ¢)* - F'(g) lies in R[[q]] and reduces to zero (mod mg). We must also verify
that the expansion (1 — {)*F'|w,(q) is integral. When k = 2 we use (9.12), which
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shows that F'|w = pey(p)F(pt) — p~*uF(t). If we multiply this series by (1 — {)*,
which has the same valuation as p, it becomes integral. When 3 < k < p we have
F'lw = c;' F|lw? = ¢ ey(p)e,(—1)- F. But the constant ¢, has the same p-adic
valuation as the Gauss sum Zy(d)™*'(¢ by formula (6.17). This sum has the same
valuation as (1 — {)*, by Stickelberger’s theorem [L, Ch. I]. Hence, the differential
(1 — {)¥ wp- is regular, with nonzero reduction on I’, in all cases.

§10. The cases when N < 4. In §2 we made the hypothesis that N > 4, so that
the objects (E, a) being classified have no automorphisms. When N < 4 there are
automorphisms of the following type (cf. [D3]). Any pair (E, «) has the auto-
morphism —1for N = 1and N = 2. If E; is an elliptic curve with an automorphism
{5 of order 3 and a5: uy < ker(1 — {;) is an embedding, then (E;, «;) has an
automorphism by {5, as does (E;) in level 1. If E, is an elliptic curve with an
automorphism {, of order 4 and a,: u, < ker(1 — {,) is an embedding, then
(E4, oy) has an automorphism by {,, as does (E,) in level 1. Finally, one of the cusps
on X, (4) has an automorphism of order 2.

When N < 4 we define X, (N) over Z[1/N] as the coarse moduli scheme asso-
ciated to the stack .#,[1/N] [DR, 234-243]. The line bundle ©»®? can be defined
on X, (4), ®®3 can be defined on X, (3), ®®* can be defined on X, (2), and ©®!? on
X, (1)[K2, 1.10]. For weights k divisible by 2 (respectively 3, 4, and 12) we can define
holomorphic modular forms for I';(N) as sections of w®*. For other weights, we
must use the definition at the beginning of §2. However, if we remove the points
with extra automorphisms, we can define @ on the open curves of level N = 3 and
N = 4 and ©®? on the open curves of level N = 2 and N = 1. Modular forms give
holomorphic sections of an appropriate power, with possibly a fractional order zero
at the deleted points.

Proposition 2.5, which studies the base change of modular forms of weight k over
Z[1/N]-algebras R, remains true for N > 2. It only holds for level N = 1 when 2
and 3 are invertible in R; the g-expansion principal of Proposition 2.7 holds in all
cases [K2, 1.8—-1.9].

The results of §3 go through for N < 4 without change. In §4 we used the universal
curve E over X, (N) to show that the derivation 0 exists. A different construction of
0 for level N =1 is given in [S4], and the remaining results in this section were
proved for level N = 1 in [Sw].

The results in §5 are all valid for N = 3 and N = 4; they must be modified for
N =1and N = 2, as the Igusa covering I,(N) has degree (p — 1)/2 for p odd and
Galois group (Z/pZ)*/{+1). Over X,(N)" the cover is ramified only at ordinary
points with Aut(E, «) # { + 1). The line bundle ©®? can always be defined on I, (N);
it has a canonical section “a2” which vanishes to order 1 at each supersingular point
and whose ((p — 1)/2)-power is the Hasse invariant A. The ring M is graded by even
integers (mod p — 1) and the isomorphism of (5.6) becomes

w®2 <P -

& S_S) = Qlll(N)(C“SPs)-
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Proposition 5.7 holds for even k with 2 < k < p — 1. In Proposition 5.8 we find that
f(q) has filtration k if and only if ord,(w;) > (p — 1 — k)/2 at all supersingular
points x, with equality holding for at least one x. The case when N = 1 is treated
briefly in [S4, 1.3] and in more detail in [S7].

The results of §6 remain valid for N < 4. In §7 all results remain valid provided
Np>4(ie,p>3when N =1). When N =1 and N = 2 the results in §8 and §9
hold forkevenand 2 <k <p + 1.

§11. Galois representations associated to eigenforms (mod p). Let Q be an alge-
braic closure of @, and let ¥ = Gal(Q/Q). Let I be a rational prime, 4 a place of Q
dividing I, and %, the corresponding decomposition subgroup in 4. Let ¢, be a
Frobenius element in %,, which satisfies ¢,(«) = ' (mod A). Then g, is well defined
modulo the inertia subgroup of ¥,.

If p: 9 > GL,(E) is a linear representation of %, we say p is unramified at [ if p is
trivial on the inertia subgroup of ¢,. (This condition is independent of A dividing I,
as the inertia subgroups of different factors are conjugate in %) In this case, the
element p(g;) is well-defined in GL,(E), and its conjugacy class p(s;) depends only
on p and I

PrOPOSITION 11.1.  (Deligne) Let f = Xa,q" be a normalized eigenform of type
(k, €) for 'y (N), which is defined over the finite field E of characteristic p. Then there
is a continuous, semi-simple Galois representation

p = p;: % - GL,(E), where¥ = Gal(Q/Q)
which is unramified for all primes 1} Np and where

(11.2) Trp(o) =a,  det p(g;) = e(l)I* !
for alll} Np.

Before giving the proof of this Proposition, we make two remarks. It follows from
the Cebotarev density theorem that a semi-simple continuous representation of
% = Gal(Q/Q) is determined, up to isomorphism, by the characteristic polynomials
of Frobenius elements on a set of primes I of density 1. Hence the representation p,
is determined up to isomorphism by (11.2). Also, since the cyclotomic character
x: Gal(Q/Q) —» Aut(p,) ~ (Z/pZ)* is unramified for | # p and satisfies y(g;) = I, we
have:

(11.3) det p, =¢-y* 1.
Here we have identified ¢ with a character of Gal(Q/Q) via the surjective homomor-
phism Gal(Q/Q) —» Aut(uy) ~ (Z/NZ)*.

Proof. When f is an Eisenstein series, the representation p; is reducible, and its
existence follows from the theory of cyclotomic fields. Hence we may assume that
fis a cusp form, of weight k > 1.
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If g has weight k = 1, we may find a normalized eigenform f of weight k = p with
a,(f) = a)(g) for all | # p. Indeed, take f to be an eigenvector for U, in the span of
Ag and V,g. The existence of the representation p, implies the existence of p,(= p;).

If g has weight k > 2, there is an eigenform f of weight k in the range 2 < k <
p + 1 such that 0'(q) = g(q) for some 0 < i < p — 1. This is a result due to Tate
when N = 1(cf. [J, §7]); a proof for arbitrary N can be found in [AS, Thm. 3.4, 3.5].
The existence of the representation p, implies the existence of p, (=p; ® x%). Con-
sequently, to prove Proposition 11.1 it suffices to demonstrate the existence of p,
for f a cusp form of weight k, with 2 < k < p + 1. If k = p 4+ 1 we may assume that
f(q) has filtration = p + 1, for if f = A-q then g has weight 2 and p, = p,. Also, it
is no loss of generality to assume that f is a newform on I'; (N).

Let F = X A,q" be a lifting of the eigenform f to a newform of weight 2 on I';(N)
(when k = 2) or on I';(Np) (when 3 < k < p + 1). This lifting is guaranteed by
Proposition 9.3. Let e; = &y x*~2 be the character of F. We recall that the Fourier
coefficients A4, of F, as well as the values of the character ¢, lie in a finite integral
extension Ok of Z,, with residue field E and quotient field K of finite degree over
Q,. We now recall a standard construction of a continuous Galois representation
pr: Gal(Q/Q) — GL,(K), using the p-power division points in the Jacobian.

PrOPOSITION 11.4. Let F = £A,q" be a newform of weight 2 and character &g for
'y (M), which is defined over a finite extension K of Q,. Then there is a continuous
Galois representation

ps: Gal(@/Q) —» GL,(K)

which is unramified for all primes 1} Mp, and where
Tr pp(o)) = 4, det pp(ay) = ep() -1
for all 1} Mp.

Proof. Let J be the Jacobian of X,(M) over Q; this abelian variety has good
reduction at all primes I} M. The Hecke correspondences T;, for I} M, induce
endomorphisms of J over Q (viewing J as the Albanese variety of X, (M)) and the
congruence of Proposition 3.12 shows that T; = Ver, + {I>)Fr, in Endz;,;(J). We
also have the identity Ver,* Fr, = Fr,- Ver, = | in the endomorphism ring of J over
Z/Z.

Let H be the commutative subring of End o(J) which is generated over Z by the
operators T,, for [ prime to M and the automorphisms <{d ), for d € (Z/MZ)*. The
canonical polarization of J induces an anti-involution ¢+ t* of End(J) (the Rosati
involution). On the subring H, we have t* = wy,tw,,, where w,, = w, is the involu-
tion of X, (M) over Q({,,) defined as in (6.4), using a primitive M* root of unity
[MW, Ch. 2, §5].If 6 = g, in Gal(Q({,,)/Q) ~ (Z/MZ)*, we have w; = {adp'wy =
wy - {a), as in part 2) of Proposition 6.7.
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Let T,J = 1im J[p"](Q) be the Tate module of J, and let V = T,J ®,, K, which

is a module for the K-algebra H ® K. The newform F gives a character of H ® K;
we let W < V be the subspace on which H ® K acts via the character associated to
F. It is well known that W has dimension 2 over K: this follows from the fact that
the F-eigencomponent in the space of holomorphic differentials has dimension 1
(as F is a newform) and the representation of H® K on V is (via a comparison
theorem in étale cohomology) the direct sum of its action on differentials and the
dual representation [D1].

The group 4 = Gal(Q/Q) also acts K-linearly on V, and this representation is
unramified outside Mp. The Galois action commutes with the action of H ® K, as
the endomorphisms generating H are defined over Q. Hence ¢ acts on W, and this
gives a continuous representation

rF: g d AutK(W) = GLz(K)

unramified outside Mp. We claim that the characteristic polynomial of rx(s;), for
1} Mp, is equal to

(11.5) x? — AJep(D)x + 1/eg(l).
Indeed, on W the operator T, = A, and {I>); = &g(l). By the Eichler-Shimura con-
gruence, A; = l/rg(0;) + ex(I)rp(0;) in Endg(W). Hence (o) satisfies (11.5). To prove
this is its characteristic polynomial, it suffices to show that
(11.6) det(ay|W) = l/eg(l).
To prove (11.6), we consider the Weil pairing [W1]:
(, ) T,J x T,J > T,G,, = Z,1).

This is strictly alternating, and satisfies (a°, b’) = (a, b)’ forall o € %, (ta, b) = (a, t*b)
for all t € End(J). Define another alternating form on T,J by:

{a, b) = (a, wyb).

Then {ta, b) = {a, tb) forallt € H,so { , ) induces a nondegenerate alternating
pairing

, XWxW->K

which can be used to compute the Galois representation det 7. If a, b€ W and
o =0;, we have {a, b)? =(a, wyb)’ =(a’, wizb)=(a’, wy - {I>pb*)=<a’ ep()b°)> =
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ep(l)<a’, b%). On the other hand, <a, b)°=(a, wyb)’ =1 (a, wyb) = 1-{a, b, so
<aa, bd> = <aa b> : l/aF(l)

and det(a,| W) = Il/eg(]) as claimed in (11.6).
We now define the representation pg by

(117) Pr = rF®3F~

Since the characteristic polynomial of r¢(a;) is given by (11.5), the characteristic
polynomial of pg(o;) is equal to

x2 — A;x + leg(l).

This completes the proof of Proposition 11.4.

We now apply Proposition 11.4 (with M = N or Np) to the lifting F of our
eigenform f. Since the representation py is continuous, and ¥ = Gal(Q/Q) is com-
pact, the image of pp stabilizes an O-lattice of rank 2. Hence py can be reduced
modulo the maximal ideal my of O, and we define p; as the semi-simplification of
this reduction. Then p, is independent of the lattice chosen, by the Brauer-Nesbitt
theorem. Since

A;=a, (modmy)
ep()- 1= ex(x*2(D) 1= e()I* ! (mod my)

the characteristic polynomial of p,(a;) is as claimed in (11.2).

Let f = X a,q" be a normalized eigenform of type (k, ¢) for I'; (N) with coefficients
in the finite field E of characteristic p. Assume the weight k of f satisfies 2 < k <
p + 1,and that when k = p + 1, f(q) has filtration =p + 1. Whenk = 2,let V =V,
be the subspace of J;(N) [p](Q) ® E on which T; acts by multiplication by the scalar
a,, for all 1} Np, and {d)y acts by multiplication by &(d). When 2 < k <p + 1, let
V = ¥, be the subspace of J;(Np)[p] (Q) ® E on which T, acts as multiplication by
a,, for all 1} Np, {d)y acts by multiplication by &(d), and {d), acts by multiplication
by d*~2. It follows from the proof of (11.2) that V is a non-trivial E-subspace of the
p-torsion in the Jacobian; it affords a representation of the group ¢ = Gal(Q/Q).

PROPOSITION 11.8.  Assume that the representation p,: 4 — GL,(E) is irreducible.
Thendim V; = 2r is even, and the semi-simplification of the representation V, ® ex* ™2
is isomorphic to r copies of p;.

Proof. The Eichler-Shimura congruence shows that the Frobenius element g,
satisfies the quadratic polynomial x2 — (a;/e(I)I*~2)x + I/e(I)]*"2 in Endg(V). Hence
o, satisfies x2 — a;,x + &(I)I*! in the endomorphism ring of V' = V ® ex* 2. Let o
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and B, be the roots of this polynomial, and assume « occurs with multiplicity s and
B occurs with multiplicity ¢ in the semi-simplification of V".

Let V* = Hom(¥, E) be the dual representation of 4. Then the eigenvalues of g,
on the semi-simplification of V" = V* ® y are « with multiplicity ¢t and f with
multiplicity s. Hence the characteristic polynomial of g, on V' @ V" is equal to
(x? — a;x + g()I*1)%™¥_ Since this is true for all I} Np, the semi-simplification of
V' @ V" isisomorphic to dim V copies of the representation p, (where the character-
istic polynomial of o, is equal to x* — a;x + &(I)I*™"). Since p, is irreducible, V’ has
semi-simplification isomorphic to r = (dim V)/2 copies of p,.

Note. In the next section we will show, following Mazur, that r = 1 in most
cases.

§12. The local Galois representation at p (ordinary case). Let f=Xa,q" be a
normalized eigenform of type (k, ¢), which is a newform for I';(N) and is defined
over the finite field E of characteristic p. Let p,: 4 = Gal(Q/Q) — GL,(E) be the
associated semi-simple Galois representation, which was constructed in the proof
of Proposition 11.1. In this section we will study the restriction of p, to a decom-
position group %, at p, in the “ordinary case” when a,, (the eigenvalue of U, acting
on f) is nonzero. By Proposition 4.12, it is no loss of generality to assume that f
has weight k, with 2 <k <p + L

The character yx: Gal(Q/Q) —» Aut(u,) = (Z/p2)* restricts to a character of a
decomposition group %, ~ Gal(Qp/Q,,) at p, which has order (p — 1) on the inertia
subgroup. For any « ;é 0 in E, we let A(x) denote the unramified character of
Gal(Q »/Q,) which maps a Frobenius element Fr, (in the sense of Artin) to a.

ProrosiTiON 12.1. Let f = X a,q" be a normalized eigenform of type (k, ¢) for
I'y(N) over E, with2 < k < p + 1 and a, # 0. Let W be the 2-dimensional E-vector
space underlying the representation p, of % = Gal(Q/Q). There is an exact sequence
of 9, ~ Gal(Q,/Q,)-modules

(12.2) 0->L->W->L -0 withdimL=dimL =1.

The group Gal(@p/Qp) acts on L by the character y*~* - A(e(p)/a,) and on L' by the
unramified character A(a,).

In terms of matrices, Proposition 12.1 states that there is a basis for W such that
the subgroup %, acts via upper triangular matrices:

(123) ("H Melpfag) - ) .
0 Aa,)
We remark that the line L where %, acts by the character x*~*+ Ae(p)a,) is unique,
except in the case when k = p, a2 = ¢(p), and the representation W is unramified at p.
Proposition 12.1 was first proved by Deligne [D2] in a letter to Serre; the proof
uses the étale cohomology of nontrivial sheaves on the modular curve and works
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for all k > 2. We will give a different proof for weights 2 < k < p, using the realiza-
tion of p, in the p-torsion of the Jacobian of X (Np). This proof is modeled on an
argument due to Serre and Fontaine, who also treated the case when a, = 0 (at least
for N = 1) in an exchange of letters [F3, S7]. In our proof, we will assume f is a
newform of level N and that the representation p; is irreducible over E. When p, is
reducible, (12.1) follows from work of Swinnerton-Dyer [Sw].

A further question, posed by Serre, is whether or not the sequence of 4,-modules
in (12.2) is split. If f has filtration =p + 1, this sequence is always nonsplit: results
of Mazur [R, §6] show that a? = &(p) and that p, is “trés ramifi¢” in the sense of
Serre [S8, pg. 186]. When f has weight k, with 2 < k < p, the splitting of (12.2) is a
subtle question, intimately related to Serre’s general conjectures on Galois repre-
sentations and modular forms (mod p), which we will pursue in the next four
sections.

Before beginning the proof of Proposition 12.1, we recall some basic results from
the theory of p-divisible groups. (We refer to the papers of Tate [T] and Fontaine
[F2] for the proofs.) Let G = lim G, be a p-divisible group of height h over the ring

R. Let ‘G be its Cartier dual: hm Hom(G,, G,,), which is also p-divisible of height
h over R.

If R = K is a field of characteristic zero, with algebraic closure K, the group G
is etale and is completely determined by the Galois module T,G = lim G,(K) =
Homg(Q,/Z,, G). This module is free of rank h over Z,, and the Galois group
Gal(K/K) acts continuously and Z -linearly on T,G. Conversely, any such Galois
module determines a p-divisible group G over K. There is a canonical, nondegen-
erate Z -linear pairing: T,G x T,'G - T,G,, = Z,(1).

If R = L is a perfect field of characteristic p, the group G splits as the product
G° x G° of its connected and étale subgroups. The subgroup G° is also a product
G™ x G" of its subgroups of multiplicative and local-local type: G™ is the largest
subgroup of G whose dual ‘G™ is étale. We let D(G) be the contravariant Dieudonné
module of G, defined as in Fontaine [F1], [F2]. Then D(G) is a free module of rank
h over W, the Witt vectors of L; it has semi-linear endomorphisms F and V which
satisfy FV = VF = p. A group G is étale if F acts invertibly on D(G), and is multi-
plicative if V acts invertibly on D(G). In general, we have D(G®) = Homg (T,G, W,)
and D(G™) = TG ® W, [Br].

Finally, assume that R is a complete discrete valuation ring with quotient field
K of characteristic zero and residue field L perfect of characteristic p. Let G be a
p-divisible group over R and let G be the corresponding p-divisible group over L.
The splitting G = G° x G* is reflected in an exact sequence:

0-G°>G-G* >0

of p-divisible groups over R. This gives an exact sequence 0 — T,G° » T,G —
T,G° -0 of Gal(K/K)-modules, where the Galois action on the quotlent T, Ge is
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unramified. If G is a p-divisible group over K, we say that G¢ has good reduction
over R if it is the general fibre of a p-divisible group G over R. Tate’s fundamental
theorem: Homg(G, G') = Homg(Gg, Gx) shows that G is uniquely determined by
Gy, if it exists [T].

We begin the proof of Proposition 12.1 by defining a p-divisible group G over Q
attached to a normalized eigenform f (mod p). When f has weight k = 2, we let J
be the Jacobian of the curve X, (N) and let H be the commutative subring of End ¢(J)
which is generated over Z by the Hecke operators T, for I} N, U, for I|N, and {d)y
for d e (Z/NZ)*. When f has weight k satisfying 3 < k < p, we let J be the Jacobian
of X;(Np) and H the commutative subring of End o(J) generated by the operators
Ty for If N, U, for I[N, U,,{d )y for d € (Z/NZ)*, and <{d ), for d € (Z/pZ)*.

PROPOSITION 12.4.  There is a maximal ideal m = m; of H with residue field
H/m = E such that the following congruences hold:

Li=q
U=aq
dyy=¢d) (modulom)

Uy=a,

@y, = d*? (modulo m).
, =

whenk#Z{

Proof. Let F be a lifting of f to a newform of weight 2 on I'; (N) or I';(Np), as
guaranteed by Proposition 9.3. Then F gives a ring homomorphism H — R, where
R is the integral closure of Z,. The resulting homomorphism H — R — R/my has
kernel m, and is independent of the choice of lifting F.

Since H is free of finite rank over Z, the ring H,=limH/p"H =HQ®Z, is a
complete semi-local Z -algebra of finite rank. Similarly, the ring H,, = lim H/m"H
is complete and local, with residue field H,,/mH,, = H/m = E. The maximal ideals
of H, correspond bijectively to the maximal ideals of the finite ring H/pH. In
particular, m is a maximal ideal of H,; by the theory of complete, semi-local rings
H,, is a direct factor of H,,. This splitting gives an idempotent decomposition of the
identity:

H,=H, x H,
(12.5)
1=¢,+e¢,

which may be used to decompose any H,-module (cf. [M, II §7]).

The structure of H,, is somewhat clarified by considering the set of all liftings F
of f to R, the integral closure of Z,. (We recall that an identification of E with a
subfield of R/my has been fixed.) Associated to the lifting F; we have the order
R; = 7,[A,] generated by its Fourier coefficients, with residue field R;/m; = E,
together with a surjective homomorphism H,, — R; taking T; to A4,, etc. The inertia
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group of @, acts on the set of liftings {F;} by conjugation of coefficients, and we
have an injective homomorphism
(12.6) H,= [] R

orbits
whose image is contained, with finite index, in the subring of elements (r,, ..., ,)
with r; = r;in E (the index reflects higher congruences among the orbits of liftings).
In particular, the artinian Q,-algebra H,, ® Q, is a product of fields, and the

newform F lifting f in Proposition 9.3 is unique if and only if H,, is unramified over
Z,. We define

(12.7) h = rank; (H,) = dimgq (H, ® Q,).

We note that T, is a unit in H,, when k = 2, as T, = a, # 0 (modulo m). Similarly,
U, is a unit in H,, when 3 <k <p.
Let T,J = lim J[p"](Q) be the Tate module of the Jacobian, which is a module

for H,. The Z,-module ¢,,T,J (where ¢, is the idempotent for H,, defined in (12.5))
is free over Z,, and is stable under the action of 4 = Gal(Q/Q). It therefore defines
a p-divisible group G over Q with T,G =¢,T,J. This is the p-divisible group
associated to the eigenform f (mod p); we note that G has endomorphisms by H,,
over Q. The representation of 4 on G[m"](Q) is given by the Galois action on
T,G/m"T,G. We will prove that T,G is a free H,-module of rank 2 (in most cases)
and that the representation of 4 on T,G/mT,G is isomorphic to the representation
pr ® (e* x*"2)1. The structure of G over Q, will allow us to determine the restriction
of p, to 4,. We begin with the case when f has weight 2.

PROPOSITION 12.8.  Assume that the newform f has weight k = 2.

1) The p-divisible group G has height 2h and is isomorphic to 'G over Q(uy). It has
good reduction over Z,. B

2) Let G be the reduction of G over Z/pZ, and D(G) its Dieudonné module. The
endomorphism F of D(G) is Z ,-linear, commutes with H,,, and satisfies the quadratic
polynomial {p)y-x* — T,x + p = 0 in End(D(G)).

3) G % G™ x G®, where the multiplicative and étale components of G each have
height h over Z/pZ. The endomorphism F of D(G®) acts via multiplication by a unit u
in H,, which satisfies u = a,/e(p) (modulo m). The endomorphism V of D(G™) acts via
multiplication by the unit u-{p)y in H,,.

4) There is an exact sequence of p-divisible groups 0 - G° — G — G°* — 0 over Z,,,
where G is of multiplicative type and both G° and G* have height h. The Galois group
4, = Gal(Q,/Q,) acts on T,G° by the character Au™ -{pdy*)* x, (Where y,, is the
p-adic cyclotomic character giving the action on T,G,) and acts on T,G® by the
unramified character A(u).

S) There is an exact sequence of E-vector space schemes

0- G°[m] » G[m] = G [m] =0

over Z,,. The connected component G°[m] has dimension d° > 1 and the étale compo-
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nent G°[m] has dimension d° = 1. The Galois group %, acts on the semi-simplification
of G°[m] via the character A(1/a,)- x (with multiplicity d°) and on G°[m] via the
character A(a,/e(p)).

Proof. 1) The height of G is equal to the dimension of the Q,-vector space
V,6=T,G®Q,=¢, V,J. But V,G is a free H,® Q, module of rank 2, by
the theorem of multiplicity 1 for GL,, as every lifting F of f is a newform
(cf. [M, II §6—7]). Hence it has Q,-dimension 2h.

The alternating form { , ) defined in the proof of (11.6) introduces a nondegen-
erate pairing of Z,-modules T,G x T,G - T,G,,. If 0 = g, with [ =1 (mod N),
we have <{a’, b?) = I(a, b) for all a, b e T,G. Since such elements are dense in
Gal(Q/Q(uy)), G is isomorphic to ‘G over Q(uy).

Since J is an abelian scheme over Z[1/N], the p-divisible group lim J[p"] has
good reduction over Z,. The same holds for its subgroup G, which is the limit of
finite group-schemes hm J[m"] over Z,,.

2) By part 1), D(G) is a free Z -module of rank 2h, with endomorphisms by H,
and D(G) ® Q, is free of rank 2 over H, ® Q,,. The endomorphisms F and V
are Z,linear, as G is defined over Z/pZ where p™-power is the identity. The
Elchler-Shlmura congruence: T, = {p)yF + V shows that F satisfies < PONx* —
T,x +p=0in End(D(G)).

3) Since T, = a, # 0 (modulo m), T, is a unit in H,, and the quadratic polynomial
satisfies by F factors over H,: (x> — {p)y'T,x + {p)n'p) = (x — u)(x — u’), where
u is a unit in H,. We have u = a,/e(p) (modulo m) and u’ = p/u-{p)y. Hence the
eigenvalues of F on D(G) are either units or divisible by p, and G has no local-
local part. Since G is self-dual over Z/pZ[ uy] by 1), we must have height(G™) =
height(G®) = h. Hence F acts on D(G*) by multiplication by u, and V acts on D(G™)
by multiplication by p/u’ = u{p)y.

4) The exact sequence of groups over Z, follows immediately from 3), and the
general theory of p-divisible groups. The characters of ¢, on T,(G°) and T,(G°)
follow from the eigenvalues of F on D(G™) and D(G°®) respectlvely

5) Everything is an immediate consequence of 4), except that we may only
conclude that d° and d° are > 1. (The H,-modules T,(G°) and T,(G*) are nontrivial,
as they become free H,, ® Q, modules when tensored with@Q, )To show thatd® =1,
we follow the method of Mazur M, pg. 118-119]. The E-vector space G°(m) is a
subgroup of the p-torsion of J; (N) over the algebraic closure of Z/pZ, on which the
algebra H acts via the eigenvalues of the form f. We will bound this subgroup, by
studying its image in the differentials of the first kind.

Recall that there is a natural injection & from the p-torsion in Pic®(X,(N)) to the
space H°(X,(N), Qk, ) over an algebraic closure of Z/pZ: if D is a divisor with
pD = (f) we have §(D) = df/f. The map ¢ is a twisted homomorphism of Hecke
modules [Wi, Prop. 6.5], namely 6(tD) = t*6(D) for all t € H, where t* = wytwy.
(This twist arises from the fact that we have defined the action of the Hecke
correspondences of X;(N) on the Jacobian J = J,(N) by considering J as the
Albanese (not the Picard) variety of the curve.) Hence the image of §(G*(m)) lies in
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the space of holomorphic differentials where wytwy = t* acts by the eigenvalue of
t on wy, for all t € H. This space is 1-dimensional over E, and spanned by wy,,,, by
the g-expansion principle. Hence d° < 1.

The analogous results when f has weight k with 3 < k < p are obtained using the
geometry of X, (Np), instead of the curve X, (N).

PROPOSITION 12.9. Assume that f has weight k with 3 < k < p.

1) The p-divisible group G has height 2h and is isomorphic to ‘G over Q(uy,). It
has good reduction over the extension Z ,[{,] of Z,,.

2) Let G be the reduction of G over Z,,[C 1/ =,)Z,[¢,] = Z/pZ, and D(G) its
Dieudonné module. Then G = G™ x G°, where the multiplicative and étale compo-
nents of G each have height h over Z/pZ. The endomorphism F of D(G) is Z ,-linear
and commutes with the action of H,,. F acts on D(G®) via multiplication by the unit
U, <{p>y* of H,, and V acts on D(G™) via multiplication by the unit U, of H,.

3) The exact sequence 0 — G° - G — G° — 0 of p-divisible groups over Z L8]
gives a filtration 0 —» T,G° —» T,G — T,G° — 0 of T,G which is stable under the group
4, = Gal(@p/@ ). The Galozs group {g acts on T G° by the character A(U,")
Xp» Where y, is the p-adic cyclotomic character and on T,G® by the character
AU, <pdit)

4) There is an exact sequence of E-vector space schemes

0 - G°[m] - G[m] - G°[m] -0

over Q,,, with flat extensions to Z ,[{,]. The connected component G°[m] has dimen-
sion d° > 1 and the étale component has dimension d° = 1. The Galois group %, acts
on the semi-simplification of G°[m] via the character A(1/a,)- x (with multiplicity d°)
and on G°[m] via the character A(a,/e(p))- x*~*.

Proof. 1) The height and duality statements are proved exactly as in Proposition
12.8. In this case, however, G does not have good reduction over Z,, but has
potentially good reduction (over the ramified extension Z[(,] it achieves good
reduction). Indeed, the Jacobian J of X, (Np) is isogenous to the product of abelian
varieties A x B, where A is the connected component of the subgroup of points P
in J with 2, 7/,2x <d)>,P = 0, and B is the connected component of the subgroup
of points fixed by the group {<d),: d € (Z/pZ)*}. The isogeny ¢: J — A x B defined
by ¢(P) = ((p — )P — Z{d),P, {d),P) has degree prime to p (so induces an
isomorphism of p-divisible groups), as the composite of ¢ with the canonical
inclusion is multiplication by (p — 1) on J. The group G is a subgroup of the
p-divisible group of 4, as <d), = x*~?(d) in End(G). In fact, the Hecke algebra H
stabilizes 4, and T,G = ¢, T,A where ¢,, is the idempotent of H,, defined in (12.5).
An important result of Deligne and Rapoport [DR, V, Thm. 3.2] shows that the
abelian variety A (and hence the p-divisible group G) has good reduction over
Z,[¢,1

2) Let I and I' be the components of the special fibre X, of the model X for
X (Np) over Z,[{,] described in §7. A result of Raynaud [Ra, Thm. 12.1] gives an
isomorphism from Pic®(X/Z,[{,]) to the connected component of the Néron model
of J = J;(Np) over Z,[{,] (which is isogenous to the product of the Néron models
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of A and B). Standard arguments (cf. [MW, pg. 268-269]) then show that the
reduction G is isomorphic to the p-divisible group lim Jac(I) x Jac(I')[m"] over
Z/pZ. "

This group splits as a product of G™ = lim Jac(I)[m"] by G° = lim Jac(I') [m"].

Indeed, the m"-torsion in Jac(I) is clearly a subgroup (as H acts on I); since
U, = a, # 0is a unit in H,, and U, = Ver, on I, this subgroup is of multiplicative
type (as V is a unit on its Dieudonné module). The element U, in H does not act on
I, but it acts on the subgroup of Jac(I') where £{d ), = 0 by formula (7.4). Hence
it makes sense to speak of the m"-torsion in Jac(I'); since U, is a unit in H,, and acts
on the Dieudonné module of this subgroup by {p>y-F, it must be étale. Both
subgroups have height h, as G is self dual over Z/pZ[ uy] by 1).

3) The filtration 0 —» T,G° — T,G — T,G® — 0 is clearly stable under the normal
subgroup Gal(Q,/Q,(x,)) of %,, which acts via the characters A(U, ") x, on T,G°
and A(U,- {p)y"') on T,G*. Since these characters are nonconjugate (one is unrami-
fied, and the other an unramified twist of y,), the filtration is stable under the action
of ¢, on T,G. To determine the characters of %, on T,G® and T,G°, we recall that
the inertia group Gal(Q,(,)/Q,) acts trivially on I (and hence on G™) and by <d ),
on I’ (and hence by (x*~2)~! on G°): this is the content of Proposition 7.2. This gives
the claim.

4) This follows from 3), which gives d°, d® > 1. To show d° = 1 we argue exactly
as in the proof of Proposition 2.8. We leave the details to the reader.

ProrosiTION 12.10. (cf. [M, I1 §15]) Assume that the newform f = Xa,q" is an
eigenform of weight 2 < k < p with a, # 0, and that the representation p;: 4 =
Gal(Q/Q) - GL,(E) is irreducible. When k = p assume further that a? # &(p). Then

1) We have d° = dimg G°[m] = 1 and the representation of % on G[m] is isomor-
phic to p, ® (- x*%)7.

2) T,G is a free H,-module of rank 2.

3) H,, is a Gorenstein ring.

Proof. 1) By Proposition 12.8 and 12.9 we know that the characters of ¥,
on the semi-simplification of G[m] are A(1/a,)-y, with multiplicity 4°, and
Aa,/e(p))x*~*, with multiplicity d* = 1. Our hypothesis that a2 # &(p) when k = p
implies that these two characters of %, are distinct. But Proposition 11.8 implies
that the semi-simplification of G[m] as a ¥-module is isomorphic to r copies of
the representation p, ® (e x*¥"2)7*. Hence each character of %, occurs with multi-
plicity divisible by r. Since d® = 1 this implies r = 1. Hence G[m] is isomorphic to
pr®e x*)tandd® =1

2) Since V,G = T,G ® Q, is free of rank 2 over H,, ® Q,, the H,-module T,G is
free (of rank 2) if and only if T,G/mT,G = G[m] has dimension 2 over E, by
Nakayama’s lemma. But dim G[m] = d® + d°, so this follows from 1).

3) The ring H,, is local, of dimension 1. It is therefore Gorenstein if and only if
the module H,, = Hom(H,,, Z,) is free of rank 1 [B]. The H,-module T,G* is free
of rank 1 over E. Likewise T,G° is free of rank 1, as d° = 1 by part 1). Hence T,G° =
Hom(T,G*, Z,) ~ Hom(H,,, Z,) is free of rank 1, and H,, is Gorenstein.
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Note. We do not know if the three equivalent statements in Proposition 12.10
continue to hold when k = p and a2 = ¢(p). The argument using Proposition 11.8
only shows that d° is odd.

Using the results in the previous three propositions, we can now complete
the proof of Proposition 12.1. If k = p and a2 = ¢(p), these results show that
the only character of ¢, which occurs in p, is A(e(p)/a,) = A(a,), which is the
content of 12.1. In all other cases, the filtration 0 —» G°[m] - G[m] —» G*[m] -0
of ¢,-modules gives (after twisting by ¢-x*~2) a filtration 0>L—>W —>L -0
on the representation space W of p,, where ¢, acts on the line L by the char-
acter A(1/a,)- x* Ae(p))- x*~% = Ae(p)/a,)  x*! and on the line L’ by the character
Map/e(p) x> Me(p)- 272 = May).

§13. Extension classes and companion forms. In this section, we assume that
f = Za,q" is a normalized eigenform of type (k, ) for I'; (N) with coefficients in the
finite field E of characteristic p. We assume the weight k of f satisfies 2 < k < p and
definek’ = p 4+ 1 — k,s01 < k' < p — 1. We always assume that a, # 0; in the case
when k = p, we will also assume that aﬁ # &(p). Finally, we assume that the repre-
sentation p,: Gal(Q/Q) — GL,(E) associated to f is irreducible; when p # 2 this
implies that p, is absolutely irreducible [S8].

By the results of the previous section, we have a realization of the Galois
representation p, ® (ex* %)™ on the m-torsion G[m] of the p-divisible group asso-
ciated to f in the Jacobian. The finite group scheme G[m] over Q has the structure
of an E-vector space scheme of dimension 2; over Q,, it lies in an exact sequence

(13.1) 0 — G°[m] - G[m] - G[m] - 0

of E-vector space schemes, where the E-vector spaces G°[m] and G°[m] each have
dimension 1. This sequence was the key to our understanding of the restriction of
the representation p, to a decomposition group at p in Gal(Q/Q). The E-vector
spaces in (13.1) all have canonical flat extensions over Z,,[{,]. We are now concerned
with when the exact sequence in (13.1) is split, and in determining its extension class.

PROPOSITION 13.2.  The following are equivalent:

1) The sequence of E-vector space schemes in (13.1) is uniquely split over Q,,.

2) The sequence of E-vector space schemes over Z,[{,] which extends (13.1) is
uniquely split over Z,[{,]. 3

3) The restriction of p, to 9, = Gal(Q,/Q,) is diagonalizable, and is the sum of
the distinct characters x*~'A(e(p)/a,) and A(a,).

Proof. The equivalence of 1) and 3) follows from the fact that the representation
py occurs in G[m] ® ex*~2. The two characters x*~*1(e(p)/a,) and A(a,) of &, on the
semi-simplification of p, are given by Proposition 12.1. They are distinct as x* ™! = 1
implies that k = p, where we have assumed a2 # &(p). Hence if (13.1) splits, it splits
uniquely.
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Part 1) is equivalent to assuming that the sequence (13.1) is uniquely split over
the extension Q,({,), which has degree prime to p over Q,. This is clearly implied
by 2), but it also implies a spliting over Z,[{,]. To show this, we may base change
to any étale extension R of degree prime to p of Z,[{,], and show that a splitting
of (13.1) over the quotient field L of R implies a splitting over R.

Choose R so that the characters A(1/a,) and A(a,/¢(p)) are trivial on Gal(Q,/L).
The E-vector space scheme G°[m] is isomorphic to the étale vector space scheme
E = E ® Z/pZ with trivial Galois action over R, and G°[m] is isomorphic to the
Cartier dual 'E = EY ® p, over R, where EY = Hom(E, Z/pZ). The existence of
such isomorphisms follows from Propositions 12.8, 12.9. Since Kummer theory
gives an isomorphism of Z/pZ-vector spaces Extx(Z/pZ, p,) = H(R, u,) = R*/R**
for any local ring R, where Ext} classifies extensions of finite flat group schemes,
we obtain a canonical isomorphism of E vector spaces

(13.3) Extg(E, E¥ @ u,) = R*/R* Q EV.

Here Exty classifies extensions in the category of E-vector space schemes: it is the
sub-module of the E-bimodule

Extx(E, E¥ ® u,)

R*/R* ® (EQE")

of extensions of group schemes where the two E actions are the same. Hence the
sequence (13.1) over R gives a class in R*/R*" ® E", which is zero iff the sequence
is split. Since R*/R*” injects into L*/L*”, a splitting over L implies one over R.

We now consider the extension class defined by (13.1) in more detail. By Pro-
positions 12.8 and 12.9 the vector space schemes G°[m] and G°[m] are twists of
EY ® pu, and E over Q,, by the characters Y, = A(1/a,) and ¥, = x> *A(a,/e(p)) =
x* AMa,/e(p)), respectively. In other words, we have isomorphisms iy: EY ® u, =
G°[m] and i,: E 2 G°[m] over L such that i = iy Y, (0), i = i, ¥,(0), for all
o € Gal(L/Q,). Let a: G°[m] — E¥ ® p, and B: E — G°[m] be homomorphisms of
flat E-vector space schemes over R. Via push-out and pull-back we obtain a homo-
morphism o, f*: Extg(G°[m], G°[m]) — Extg(E, E¥ ® p,). By (13.3), the extension
G[m] defines a class

(13.4) qm(®, B) in R*/R¥* Q EV.
We will write the value group R*/R** ® E¥ multiplicatively, for reasons that will
become clear in the next section.

PrOPOSITION 13.5. 1) For s and t in E, we have the formula q,,(s, tB) = qn.(o, B)*.

Hence the classes q,(a, B) all lie in an E-subspace {q,> of dimension <1 in
R*/R* @ E~.
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2) For o € Gal(L/Q),), we have the formula q,,(x, B)° = qu(a, B)*®, where  is
the character x*-A(a2/e(p)). Hence {q,» is contained in the V-eigenspace of
R*/R** @ EV.

3) Wehave{q,,y = 1(i.e., q.(c B) = 1(mod R*"))if and only if the exact sequence
of E-vector space schemes in (13.1) is split.

Proof. 1) is clear, as is the formula g,,(a, f)° = q,,(x°, B°). Taking « = iz* and
B = i, shows that {gq,,> lies in the Y = /iy -eigenspace, which proves 2), and 3) is
a tautology from the definition of Ext groups.

The ring R is an unramified extension of Z,[{,], so = =(1—{,) is a uni-
formizing parameter in R. Since R*/(1 + nR) has order prime to p, R*/R*" =
(1 + =R)/(1 + =R)’. Since (1 + na)® = 1 + pra + - + nPa” and n~* has the same
valuation as p, we see that (1 + nR)? is contained in the subgroup (1 + pnR) =
1 + 7?R. Hence fori = 1,2, 3, ..., p we have the quotient 1 + n'R/(1 + nR)? = U,,
and a descending filtration

(13.6) R¥*R¥ =U; o U, o2 Uy o> U,>0.

The subgroups U, are all stable under the action of Gal(L/Q),), where L is the
quotient field of R. The group U, is isomorphic to Z/pZ and Gal(L/Q,) acts via the
character y. For i =1, 2, ..., p— 1 the representation of Gal(L/Q,) on U;/U;,,
is induced from the character y' of the inertia subgroup. In particular, the
x* - A(a2/e(p))-eigenspace of R*/R** @ EY has dimension 1 over E, since a; # &(p)
when k = p.

PrOPOSITION 13.7.  The three conditions of Proposition 13.2 are equivalent to the
following:

1) When f has weight 2 < k < p — 1, the representation p is tamely ramified at p.

2) When f has weight k = p, the representation p; is unramified at p.

Proof. Clearly part 3) of Proposition 13.2 implies that p; is tamely ramified at
p when 2 < k < p — 1, and unramified at p when k = p. Conversely, the restriction
of p; to the inertia subgroup of Gal(Q,/Q,({,)) has matrix form:

(6

where 7 is a character with values in E. If p, is tamely ramified or unramified at p,
the character # is trivial and the sequence (13.1) is split over the maximal unramified
extension of Q,({,). Hence the extension class {g,, lies in the subspace U, ® E" of
R*/R*” ® E". But it lies in the eigenspace with character y* - A(a2/e(p)) # ¥, so
{4qmy> = 1 and the extension (13.1) is split over Q,.

The following modular criterion for the restriction of p, to %, to be diagonalizable
was noted by Serre [S7, pg. 18].
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ProrosiTiON 13.8. If f = Xa,q" has weight k with 2 < k < p — 1, assume that
there is a cusp form g = Xb,q" of weight k' = p + 1 — k and character ¢ for I';(N)
over E which satisfies: g = 0*f in Mk,+p+ 1 and g\U, = A-g. If f has weight k = p
assume that there is a cusp form g of weight p and character ¢ for I';(N) over E which
satisfies: 0g = 6f in 1\71,,“, g # f,and g|U, = Ag. Then

1) The cusp form g is a normalized eigenform for I';(N), and the eigenvalues b, for
T, and U, satisfy b, = a,- ¥ 1.

2) The eigenvalue A = b, of U, is nonzero, and is given by the formula b, = &(p)/a,.

3) The representation p; is diagonalizable when restricted to 9,: all the equivalent
conditions in Propositions 13.2 and 13.7 hold.

Proof. 1) The identity 0g = 0*f shows that b, = 1. To show that g|T, =
a,1¥'g, we use formula (4.8):

1-6(g|Ty) = 69| T, = 0"/ T, = I“0% (f1T)).

But f|T, = a,f, 50 0(g| T;) = 6(a,* I* 'g). Since the kernel of 6 is the image of V,,, we
have

(13.9) 9| —a 1" "'g=hl¥,

P

When k # p this forces & = 0, as the left hand side of (13.9) has weight k' < p.
When k = p, his a form of weight 1. But the left hand side of (13.9) is, by hypothesis,
an eigenvector for U, with eigenvalue A. Since (h|V,)|U, = h, this shows that
h = - (h|V,) which forces h = 0. A similar proof works for U;.

2) If k # p and A = 0, we have g = 0¥ 1g in M,, by part 1). This contradicts the
fact that % ~*f has filtration pk’, which was noted in the proof of Proposition 4.10.
If k= p and 1 = 0, we have g = §7~'f in M,, by part 1). This contradicts the fact
that 67~'f has filtration p2, which was proved in Proposition 4.10, part 2).

Let p, be the Galois representation associated to the normalized eigenform g; by
Proposition 12.1 there is a line in the semi-simplification of p,|%, where the local
Galois group acts by the character 4(b,). But part 1) implies that p, ~ p, ® y* " as
representations of ¥ = Gal(Q/Q), and the characters of 4, in the semi-simplification
of p, ® x* " are y* ! - A(a,) and A(e(p)/a,), respectively. When k # p the first char-
acter x* ~'A(a,) is ramified, so we must have b, = &(p)/a,. When k = p, both char-
acter are unramified, but the hypothesis g # f means that b, # a,. Hence b, =
&(p)/a, as claimed.

3) By Proposition 12.1 the representation space W of p, ~ p, ® x*™* has the
4,-stable lines L, and L, with characters x* "' 4(e(p)/a,) and x*~* (x*~1 - A(s(p)/b,)) =
Aa,), respectively. Since a? # &(p) when k = p, these two lines are distinct and
W = L, ® L, is semi-simple as a %,-module.

Serre calls the modular form g (when it exists) a companion form of f. This relation
is clearly symmetric: f is a companion form of g. Proposition 13.8 asserts that forms
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f which have a companion g have locally split Galois representations at p. In the
next three sections, we will prove the following converse to Proposition 13.8, which
was conjectured by Serre [S7, pg. 18].

THEOREM 13.10. Let f = X a,q" be a normalized eigenform of type (k, €) for I';(N)
over E, with 2 < k < p and a,, # 0. When k = p we assume further that a2 # &(p).

If the restriction of the Galois representation p;: 9 — GL,(E) to %, is diago-
nalizable, then a companion form g = Xb,q" exists, satisfying the hypotheses of
Proposition 13.8.

CoROLLARY 13.11. Let f = X a,q" be a normalized eigenform of type (k, €) for
I';,(N) over E, with 2<k<p and a,#0. When k =p we assume further that
a2 # &(p). Then the following are equivalent:

1) The Galois representation p; is tamely ramified (k # p) or unramified (k = p) at p.

2) Thereis a formh = Xc,q" of type (k', ¢) for T'y(N) over E, withk' = p + 1 — k,
which satisfies the differential equation Oh = 0%f in M,. pH1-

Proof of Corollary. If p; is a reducible representation of %, it is completely
reducible (as p, is semi-simple). In this case, p, is certainly diagonalizable when
restricted to %, and 1) always holds. But one can show, using the theory of Eisenstein
series, that a form h satisfying 2) also exists. For example, if

r=ti-ko+ 3 (Lo o

n>1 \dn

is the Eisenstein series of weight 2 < k < p and character ¢ # 1,thenp, = 1 @ i
and the form A is given by the Eisenstein series

h=Y, (Z s(n/d)d""‘)q"
n>1 \dn

of weight k’ and character &. The general case is similar, but we do not treat it here.

Henceforth, we assume p; is irreducible as a representation of .

First assume that k # p. By Proposition 13.7 and Theorem 13.10 we have 1) = 2):
simply take h = g, the companion form. Conversely, if  exists and satisfies Oh = 6*,
the proof of 13.8 shows that h is an eigenvector for T, and U,. We may find an
eigenvector g for U, in the span of <h, h|U,, h|U?...); since this has the same
eigenvalues for T, and U, as h, it is a normalized eigenform which satisfies g = 6*f.
Hence g is a companion to f, and the restriction of p, to %, is diagonalizable by
Proposition 13.8.

Now assume k = p. If p, is unramified at p, then by Proposition 13.7 and
Theorem 13.10 we have a companion g to f of weight p which satisfies g|U, = b,g
with b, = &(p)/a, # a,. We define the form h of weight k' = 1 by the identity
(a, — b,)-h|V, = f — g. Conversely, if h exists, we may assume it is a normalized
eigenform of weight 1 (it is an eigenvector for T, and U, from 60h = 60f, and one can
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choose an eigenvector for T, in the span of <h, h|T,, h|T},...>). Let g be the
eigenvector for U, with eigenvalue b, = &(p)/a,, in the span of <h|V,, Ah). Then g is
a companion for f, and p, is unramified at p by Proposition 13.8.

We note that the identity 6h = 0¥f = f’ of part 2) of Corollary 13.11 can be
verified by a finite amount of computation. It suffices to check that nc, = n*a, for
all n < HZN? T y(1 —q7%) (k' + p + 1), as any form of weight (k' + p + 1) on
I'; (N) which vanishes to this order at co must be identically zero.

R. Coleman has observed that the existence of a companion form for f can be
neatly expressed in terms of the vanishing of the class of the meromorphic differen-
tial v,. in the de Rham cohomology of the Igusa curve I = I,;(N) [Col]. Recall that
f' = 0¥f has filtration k' + p + 1, so v, = f’(g)dg/q is a meromorphic exact differ-
ential on I which is regular outside X, and has poles of order <k’ + 1 of super-
singular points.

The de Rham cohomology H!(I/E) of the Igusa curve I over E is defined as the
first hypercohomology group of the complex Q;p = (O 4 Q}g). Coleman [Co2]
shows that H!(I/E) is isomorphic to the quotient of the space of meromorphic
differentials v on X, with no residues and poles of order <p at all points x, by the
space of exact differentials dg, where the function g has poles of order <(p — 1) at
all points x. Hence the differentials v, and v, define classes in H'(I/E), where E is
the finite field generated by the coefficients of f, and their cup product {v;, v lies
in E. Since v, is holomorphic, and the poles of v, are contained in Z, the cup product
is given by the formula

(13.12) vy vpy = — Zz Res,(gy vy)

where, for each x € X, g, is a meromorphic function on I such that the differential
v — dg, is regular at x.

The expansions of v, and v, at supersingular points x was determined in Pro-
position 9.9. If z is a local parameter at x we have

v = (ocx-z""‘ + Y, oc,,z”> dz

n>p—-1

Vv = (ﬂx~z'1"" + lf,,z") dz.

n>0
Hence g, = (—1/k')* B, 27" + £,,07,2" and

_“x'ﬂx
ko

Resx(gx : vf) =
(13.13)

kv, vpy =Y a.f, inE.

xel
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ProrosITION 13.14. The following are equivalent:

1) The class v;. is zero in H'(I/E)

2) There is a modular form h of weight k' with 6h = f'

3) The representation p; is diagonalizable when restricted to &,,.
Assuming H,, is unramified over Z,,, these three conditions are equivalent to:

4) The cup-product {v;, v;> = 0inE.

Proof. Wehave v, = 0in H'(I/E) if and only if there is a function & on I which
satisfies dh = v,. and h has poles of order <(p — 1) at all supersingular x. Then h
corresponds to a form of weight k’ satisfying 6h = f’, so 1)< 2). We have seen that
2)<>3)in Corollary 13.11. Clearly 1) = 4) in all cases. When H,, is unramified over
Z,, there is a unique lifting F of f, in the sense of §9, to an eigenform of weight 2 in
characteristic zero. Hence the eigenvalues of f do not occur in the Hecke module
M, /{f> by the multiplicity one theorem. Since the cup-product pairing induces
a non-degenerate duality between the f- and f’-eigenspaces for the Hecke algebra
on H'(I/E), we have v;. = 0 if and only if (v, v,.> = 0.

Proposition 13.14 suggests that there may be a formula for (v, v, in terms of
the invariant q,, of the extension of E-vector spaces

0 - G°[m] -» G[m] — G°[m] - 0.

§14. The invariant of Serre and Tate. In this section, we refine the invariant
g.(a, B) which classifies the extension 0 — G°[m] —» G[m] —» G°[m] -0 of E-
vector space schemes over Q, by studying the extension class of the sequence
0 - G° -» G — G° - 0 of p-divisible groups with endomorphisms by H,,.

Let R be a complete, discrete valuation ring with quotient field K of characteristic
zero and perfect residue field of characteristic p. We say a p-divisible group 4
over R is m-divisible of height g if 4 has endomorphisms by H, and T,A4 is
a free H,-module of rank g; the height of 4 as a p-divisible group is then equal
to g-h=g-[H,:Z,]. By Tate’s theorem [T], the functor A T,4 embeds the
category of m-divisible groups over R as a full sub-category of the category of free
H,-modules of finite rank with a continuous, H,-linear action of Gal(K/K). The
groups Extg(4, B) relative to the category of m-divisible groups classify extensions
0—- B— C —» A - 0 with C m-divisible over R; Extgz(A, B) is the subgroup of the
bi-H,-module Extk(4, B) which classifies extensions of p-divisible groups where
the two H,-actions are the same. In particular, Extg(A4, B) has the natural structure
of an H,-module.

We apply this to the p-divisible group G associated to the eigenform f = Xa,q"
of weight 2 < k < p, with a, # 0 and a} # &(p) when k = p. By Proposition 12.10
the groups G, G°, and G* are m-divisible over Q, or Z,[{,]. Let R be the completion
of the maximal unramified extension of Z,[{,], and let Q,/Z, ® H,, be the trivial
étale m-divisible group of height 1 over R, i.e., T,(Q,/Z, ® H,,) = H,, with trivial
Galois action. The Cartier dual of the trivial étale m-divisible group, in the category
of p-divisible groups over R, is the multiplicative p-divisible group Gm ® H, =



A TAMENESS CRITERION 501

Homg (H,, G,,). Since HY = Hom(H,, Z,) is a free H,-module of rank 1 by Pro-
position 12.10 (H,, is Gorenstein), T(G, ® H,)) = T,(G,,) ® Hy is free of rank 1
over H,, and the group G, ® H,, is also m-divisible of height 1 over R. By part 3)
of Proposition 12.9, we have isomorphism of m-divisible groups over R:

je:Q,/Z,® H,, = G°
jo: G, ® HY = G°

such that j¢ = j, - 1.(0), j§ = jo ' 10(0) for all o € Gal(K/Q,). Here K is the quotient
field of R and the characters 5, and #, take values in H* and reduce to the characters
Y. and Y, (modulo m), which describe the twisting of G°[m] and G°[m] respectively.
When 3 < k < p we have no = A(U, ') and 7, = AU, {p)x*)x*. When k = 2 we
have 7o = A(u™') and 5, = A(u-{p)y"') where u is the unit root of x* — T,x +
{p>x'p=0inH,.

Since R is complete and local, we have a canonical isomorphism:

(14.1) Extx(Q,/Z,, G,) = 1;? Exti(Z/p"Z, p,m)
= I}nEl Hl(Ra .“lp”)

= lim R*/R*"

o
=1+ nR

where n = (1 — {,) is a uniformizing parameter in R. The group (1 + 7nR) is a
Z ,-module, and we write this action multiplicatively. From (14.1) it follows that:

(14.2) Ext(Q,/Z, ® H,, G, ® Hy) = (1 + nR) ®,, Hy .

Now let «:Q,/Z,® H,,—»G* and B:G° -G, ® Hy, be homomorphisms of
m-divisible groups over R. By push-out and pull-back they give a homomorphism
a*p, from Extg(G¢, G°) to Extx(Q,/Z, ® H,,,, G, @ H)). Applying the homomor-
phism to the class of the extension 1 - G° - G — G° — 1 over R, and using (14.2)
gives an extension class:

(14.3) 40, ) in (1+nR)®HY.

PROPOSITION 14.4. 1) For all s, t in H,, we have q(sa, tf) = q(a, B)™

2) For all o€ Gal(K/Q,) we have q(x, f)° = q(o, B)"”, where n=n,/n,=
A@W? - {p)n'): x* and u is a unit in H,, with u = a, (modulo m).

3) The invariants q(a, ) of the extension defined by G lie on the H,-submodule of
(1 + =R) ® H,, where Gal(K/Q),) acts via the character n. In particular, q(a, ) is
contained in the H,-submodule (1 + n*R) ® H,).
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4) The image of q(x, B) in the quotient (1 + nR) ® H,, /(1 + ©R) ® mH,; lies on
the E-subspace {q,,» of R*/R** ® E¥ ~ R*/R*" ® E.

Proof. Thisis similar to Proposition 13.5, and we leave the details to the reader.
When H,, is unramified over Z,,, the quotient H,, /mH,; is canonically isomorphic
to EV, and the image of g(«, B) in the quotient is equal to g,(«, ). When H,, is
ramified, the isomorphism is not canonical and H,//mH,, and E¥ are simply two
1-dimensional E-vector spaces. Similarly G°[m] is isomorphic to m™'pH,,/pH,,
rather than to H,,/mH,,.

The choice of a homomorphism «: Q,/Z, ® H, — G° of m-divisible groups is
equivalent to the choice of an element @ € T,(G°) = T, (G) Similarly, the choice of
a homomorphism f: G° - G,, ® H, is equlvalent to the choice of an element
Be Hom(T,G° Z,(1)) 2 T,((G)) = T, ('G) If we set q4(@ B) = q(«, ) we obtain,
by Proposition 14.4 an H,,,-bilinear pairing

(14.5) 46: T,G x T,)G > (1 + nR)@ H,y

with image in the n-eigenspace for Gal(K/Q,). This is the Serre-Tate invariant of
the m-divisible group G: it takes values in (1 + n*' R) ® mH,y if and only if the exact
sequence of E-vector space schemes 0 » G°[m] — G[m] — G°[m] — 0 is split over
R.

The usual Serre-Tate invariant (cf. [K5]) of the ordinary p-divisible group G over
R is the Z -bilinear pairing

qs: T,G x T,)G - (1 + nR).

This satisfies gg(ha, B) = qg(a, hp) for all h € H,,; the action of ‘h on ‘G is identified
with the action of h on G in the isomorphism of G with its dual (cf. the definition
of { , ) in the proof of Proposition 11.4). If tr: H,, — Z,is the canonical Z -linear
map tr(f) = f(1), we have

(14.6) 46 = (1 ® tr)ge.

Indeed, tr arises from the contraction H,, ® H,, — Z, which forgets the m-divisible
structure on G.

Since ord,(p) = p — 1, the ideal nR has divided powers (if x € 7R then x"/n! € 7R)
and the p-adiclogarithm defined by the series log(1 + x) = x — x?/2 + x*/3 — x*...
gives a Z -linear continuous homomorphism log: (1 + nR) - nR. Since the ideal
72R has topologically nilpotent divided powers (x"/n! -0 as n — 00), the p-adic
logarithm induces an isomorphism 1 + n‘R = ‘R for all i > 2, its inverse is defined
by the series exp(y) = 1 + y + y?/2! + y3/3! + ---. It follows that the homomor-
phism log: 1 + nR - R is surjective, with kernel the torsion subgroup p, of
1 + nR; it induces the Artin Schreier isogeny ¢+ t? — t from 1 + nR/1l + n*R to
nR/n?R.
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We define logg; as the composite of g; with the H,-linear map
log®1:(1 + nR)® H,, - R ® H,,.

PROPOSITION 14.7.  The bilinear pairing of R ® H,-modules:
log g6: R® T,G) x (R® T,)G) » nR ® H,/

takes values in t* R ® H,y, and takes values in the submodule n* R ® mH,, if and only
if the sequence of E-vector spaces 0 — G°[m] = G[m] — G¢[m] — O is split over R.

Proof. We must verify that the n-eigenspace of Gal(K/Q,) containing the image
of g¢ has no intersection with the kernel of the p-adic logarithm. But the kernel p,
lies in the y-eigenspace, and n # y (modulo m) (as a2 # &(p) when k = p).

Similarly, we define the pairing of R-modules

(14.8) loggs: (R® T,G) x (R® T,'G) > nR

as the composite of g with log: 1 + 7R — #R. Then log g5 = (log ® tr)q¢. In the
next section, we will present Dwork’s formula for log g, using the action of
Frobenius on the deRham cohomology of G.

§15. de Rham cohomology and Dwork’s formula. We begin with the case when
fhas weight k = 2. In this case G is a p-divisible subgroup of the Jacobian J = J;(N)
of the curve X = X(N) over Z,. Since X and J are smooth and proper over Z,,
the de Rham cohomology groups H'(X) = H!(X, Qy) and H(J) = H'(J, Q;) are
free Z ,-modules, and pull-back via the Albanese map X < J induces an isomor-
phism H'(J) @ H!(X) [K4]. In the exact sequences

15.1 {0—>H°(X,Q,‘()—+H1(X)—>H1(X, Ox)—0
(15D 0> ®, - H(J)-> Li(J) -0

the invariant differentials w; are identified with the holomorphic differentials on X
and the Lie algebra of 'J = Pic(X) is identified with H(X, Oy).

The Hecke algebra H, of X,(N) acts Z -linearly on H'(X) and preserves the
sub-module H°(X, Q%). We define

Gy — e -l - 1
(15.2) H (G) - Sm HO(X) lamH (J)
wg = &, H(X, Q') = ¢,,0;
These are both H,,-modules, and we have an exact sequence:
(15.3) 0 - wg - H(G) — Lie('G) = 0.

Let J be the reduction of J over Z/pZ, and let D(J) be the Dieudonné module of
the p-divisible group of J, with its Z ,-linear action of F = Fr,and V = Ver,. The ideal
pZ, has divided powers, so by a theorem of Grothendieck (cf. [G1], [G2]) there is
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a canonical isomorphism H!(J) = D(J) which presumably commutes with the
action of H,,. (This may be known, but I could not find a precise reference.) Thus the

Z -module H'(J) has a filtration, defined by (15.1), as well as a Z -linear action of
Fr It is extremely difficult to construct the action of Fr, on H 1(J) directly, or
equlvalently, to describe the submodule w; of D(J). (See however [F1] for the case
of the Dieudonné module of a formal group.) Some general references on Grothen-
dieck’s isomorphism, and its relation to crystalline cohomology, are [BM], [BBM],
[Br], [K4] and [Me]. Passing to ¢,-cigencomponents, we obtain an isomorphism
of H,-modules

(15.4) HY(G)=ZDG)=U®P.

Here U = D(G®) is the unit root eigenspace for Fr,and P = D(G™) is the p-root
eigenspace for Fr,. Since Fr, annihilates the submodule wg/pwg in H (G)/pH!(G),
the H,-submodule wy is disjoint from U. Hence, projection onto the second factor
gives an isomorphism wg = P.Since U = Hom(T,,G, Z,)and P = T;‘G_, Proposition
12.10 shows that U, P and w, are free H,-modules of rank 1, and consequently that
H'(G) is a free H,-module of rank 2.

We now consider the case when f has weight 3 < k < p, where G appears as a
p-divisible subgroup of J, (Np). Here we let X be the regular model for X, (Np) over
Z,[{,] studied in §7 and let J be the Néron model of J; (Np) over this base. We have
an isomorphism Pic®(X) = 'J° of smooth group schemes over Z,[{,], where ‘J is
the connected component of the Néron model of the dual abehan variety *J [Ra]
LetQy = Qy; ;, be the dualizing sheaf on X and define HY(X) = HY(X, Ox 5 Q).
Since the differentials d: H {(X, Ox) > H(X, Q) are all zero, the spectral sequence
for hypercohomology degenerates at the E, term and we have an exact sequence of
free Z,[{,]-modules

0— HO(X, Q) —» HY(X) » H (X, Oy) > 0.

The lattice H'(X) is self-dual with respect to the cup product on H'(X) ® Q,((,),
which is the de Rham cohomology of X,(Np). We define H!(J) as the Lie
algebra of the smooth group scheme Extrig(J°, G,,) (which represents extensions
0 - G,, » E - J° > 0 together with an invariant differential on E pulling back
to dt/t, cf. [MM)). As Ext(J°, G,,) = 'J we have an exact sequence of Lie algebras:

0- w; > H'(J)-> Lie(J)> 0
as in (15.1). The isomorphism of de Rham cohomology

H'()® Q,(,) R H'(X)® Q,((,)

induced by the Albanese map identifies the lattices H'(J) and H'(X), as well as the
submodules w; and H°(X, Q). This follows from an extension of Raynaud’s theory,
which identifies Extrig(J°, G,,) with H' (0% 2% Q,) [Co2, §3].

Since the Hecke operators of X,(Np) give endomorphisms of J and J°, by
Néron’s theory, they stabilize the lattice H(J) in the de Rham cohomology
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of J;(Np) over Q,((,). Hence they stabilize the lattice H'(X) in the de Rham
cohomology of X,(Np). We may therefore define H(G) = ¢, H'(X) = ¢,,H'(J)
and wg = ¢, H°(X, Q') = ¢,,w; as in (15.2), and have an exact sequence of
Z,[¢,]1 ® H,-modules 0 - wgz - H*(G) — Lie(‘G) — 0 as in (15.3). The question of
a crystalline structure on H'(G) is a bit more subtle, as J is not an abelian scheme.
But, as in the proof of Proposition 12.9, we have an isogeny of abelian varieties
Ji(Np) - A x B over Q which has degree prime to p. This isogeny induces a
decomposition H'(J) = H'(4) @ H'(B) in cohomology over Z,[{,], defined using
rigidified extensions and the Néron models of 4 and B. But 4 is an abelian scheme
over Z,[{,] with special fibre A; since the ideal (1 — ¢ ») has divided powers we
again have a canonical isomorphism of Z,[{,]-modules H'(4) = D(4) @ Z,[{,].
Since H'(A) is stable under H, and ¢,,H'(J) = ¢,,H"(A), we obtain an isomorphism
of Z,[{,] ® H,-modules (if the Hecke actions are compatible...)

(15.7) HYG)=DG)®Z,[{,1=UP

asin (15.4), and hence an action of Fr, on H'(G) commuting with H,,. We summarize
the situation in the following Proposition.

PROPOSITION 15.8. When k=2 let R=17,; when 3<k<p let R=127,[(,].
There is an exact sequence of R ® H,, modules

0——  w; —— HY{(G) — Lie(G) — 0

e HO(X, Qy) e, H(X).

as well as an action of Frobenius Fr, on H'(G) which commutes with H,,. In the
decomposition

H@G=U®P

into unit and p-root eigenspaces for Fr, the subspace U is complementary to wg,
and wg projects isomorphically onto P. The R ® H,,-modules U = Hom(T,G, R),
P = RQ® T,'G, and wg are all free of rank 1, and H'(G) is free of rank 2.

Proposition 15.8 actually holds when R is a complete, local, flat extension of Z,
(or Z,[¢,]), defining H'(G/R) = H'(G) ® R, etc. We write Ug, Pg and g for the
corresponding R ® H,, submodules. As in the previous section, we now specialize
to the case where R is the completion of the maximal unramified extension of Z,
(when k = 2) or Z,[{,] (when 3 < k < p). The choice of

BeR® TG ~ Py ~ wgr
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determines an element pj € Py as well as an invariant differential w; = ug + py on
G over R with this component. The choice of

«€ R® T,G = Hom(Ug, R)

gives an R-linear map ¢,: Uz — R. Dwork’s interpretation of the logarithm of the
Serre-Tate invariant is the following (cf. [Dw] for elliptic curves, and [K5] in
general).

PROPOSITION 15.9. For alla € R® T,G and f € RQ® T,'G we have

®u(ug) = log gg(a, B) innR.

Note. When H,, = Z, and « is a basis of the free R-module R ® T,G, there is a
unique element u, € Uy with ¢,(4,) = 1. Proposition 15.9 takes the more attractive
form

(15.10) wy = log qg(a, B)-u, + py.

In this sense, the image of g in 1 + nR (which reflects the splitting in the sequence
0 — G° > G - G® - 0 of p-divisible groups over R) is reflected in the divisibility of
the unit eigencomponents of invariant differentials on G over R.

Proof. Dwork’s formula actually holds over the formal coordinate ring £ of the
formal Lie group .# = Hom 2,(T,G ® T,)G, G,,) of multiplicative type over the Witt
vectors W of the residue field of R. The ring £ is the parameter space of the universal
formal deformation % of G, by the theory of Serre and Tate. If {a;} is a Z,-basis of
T,G and {B;} a Z,-basis of T,'G, then the elements g; = q(«;, ;) are 1-units in Z.
(Here q is the pairing associated to the deformation ¥ over #.) We have an
isomorphism £ ~ W[[q; — 1]].

The sequence of F-crystals 0 — Uy — HY(9/%) — P4 — 0 is split over a larger
ring #—the subring of W ® Q »[[4;; — 11] consisting of series which converge in
the open unit disc (i.e.,—whenever g; — 1 is the maximal ideal of C,). We have the
general formula:

(15.11) @,(ug) = log q(o, f) in R.

Since % is contained in the ring of divided powers of #, the specialization map
# — R induced by G gives a map # — R and Proposition 14.12 follows.

To prove (15.11) we follow Katz [K5]. For each bilinear form ¢: T,G®T,'G - Z,
there is a unique continuous derivation D(¢) of £ which is W-linear. By [KS5, 3.2]
we have D(¢)q(x, B) = £(a, B) q(o, B), which we may write as

(15.12) D(¢) log q(, B) = ¢(a, B).

Let V be the Gauss-Manin connection on H*(9/4#). For f € T,'G, the element p; in
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Hl({ﬁ/é?) is characterized by: w; — pge Ug, Vpy = 0. Let {5 € Hom(TpC—;, Z,) be
defined by () = 7(«, B) and let Fix(¢;) be the corresponding element in Ug. By
[K, Thm. 4.3.2] we have

(15.13) V(D(¢))w, = Fix(4p)

’ V(D(¢))Fix(«") = 0 alla¥ inHom(T,G, Z,).

If {0} is a Z,basis of T,G, with dual basis {0}, the element w;—
%, log q(«;, B) Fix(;’) is annihilated by V, hence equal to ps. Therefore u; =
2, log q(a;, p)- Fix(a;"); formula (15.11) then follows from ¢,(Fix(e;)) = o’ ().

Associated tox € R® ’1;,(7 = Hom(Ug, R) there is a unique R @ H,,-linear map
Yot Ug = R® H,; = Hom; (H,, R) defined by y,(u)(h) = ¢,(hu). As a corollary of
Proposition 15.9, we obtain the formula y,(u;) = log g¢(e, B) in 7R ® H,,. Indeed,
viewing log q4(, B) in Hom(H,,, rR) we have log q4(o, B)(h) = log gg(ha, B) =
log g6(, hB) = @,(h- ug) = Y,(us). Now fix bases h and a of the free H,,-modules H,,
and T,G of rank 1; then there is a unique element u, € Uy such that y,(u,) = 1®h
in R ® H,,. Since u, is a basis of the free R ® H,,-module Uz, we may write

(15.14) wp = c(a, B)-u, + pg
with c(a, f) € R ® H,,. Applying ,, we find that
(15.15) log g(a, B) = c(o, B) (1 ® h)

in R ® H,, which is the generalization of 15.10 (where H,, = Z,and h = 1).

Combining the identities (15.14—15.15) with Proposition 14.7, we obtain our final
result of this section.

PROPOSITION 15.16. Let R be a complete local flat 7 ,[{,]-algebra (or Z ,-algebra,
when k = 2) and let o be an element of wgg. Write w = u + p using the decom-
position H(G/R) = Ug ® Pg. Then u € n*¥'Uy. If the sequence of E-vector spaces
0 - G°[m] —» G[m] — G¢[m] — 0 is split, then u € (n* R ® mH,,) Uy.

Proof. For R the completion of the maximal unramified extension of Z,[{,],
this follows directly from the identities. It is therefore true over Z,[{,], by extension
of scalars. Finally, it holds for any extension R of Z,[{,], as wgr = ws ® R, and
similarly for Ug, P and H*(G/R). When k = 2, the same argument works over Z,,.

§16. Washnitzer-Monsky classes. We begin by reinterpreting Proposition 15.16
using regular differentials on the scheme X. Let F be a lifting of f to an eigenform
of weight 2 for I'; (N) (when k = 2) or for I'; (Np) (when 3 < k < p) as guaranteed by
Proposition 9.3. Let R be the complete local Z -algebra generated by the coefficients
A, of F, and the values of ¢;. The regular differential w, = F(q)dq/q then lies in the
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gn-component of H(X, Qy z); since ¢, HO(X, Qx/z) = wgris afree R ® H, module
of rank 1, we may write wy = w|hy where w is a basis and h; € R® H,,.

The eigenform F determines a ring homomorphism ¢z: R ® H,, — R which maps
1® T, to Ay, etc. Since wg|h = @p(h) wy for all h e R ® H,,, we have

(16.1) hg h = hg- @p(h)

in R® H,, for all he R® H,,. We let UF and P denote the R-submodules of Uy
and Py where the algebra R ® H,, acts by the character ¢g.

PROPOSITION 16.2. Let f = X a,q" be a normalized eigenform for I';(N) of weight
k satisfying 2 < k < p, and assume a,, # 0.If k = p assume further that a2 # &(p). Let
F be a lifting of f to an eigenform of weight 2 for I';(N) or I';(Np) with coefficients
in R, and let wy = F(q)dq/q be the associated regular differential on X over R.

Then wy = up + ppin H'(X/R), where up € U < Ug < ¢, H (X/R)and pg € PF <
Py < &,H'(X/R). The unit eigencomponent uy lies in n* U*. If the representation p,
is diagonalizable when restricted to 9, = Gal(Q,/Q,), then u lies in mg - n* U, where
mpg is the maximal ideal of R.

Proof. Recall that o is a basis for the free R ® H,-module ¢, H*(X, Qyz) =
wgg = Ug @ Pg. Write @ = u + p with u € Uy and p € Pg. Then up = u|h lies in
U¥ by (16.1); similarly py = p|hg lies in PF and wp = up + pg.

Since u € n% Uy by Proposition 15.16, we clearly have u, e n¥ U*. If p, is com-
pletely reducible when restricted to %, the sequence 0— G°[m] —» G[m] - G*[m] -0
of E-vector space schemes is split, and u = (n* ® a)u, with « € mH,, and u, € Uyg.
Since @ maps the ideal 7* R ® mH,, into the ideal n* - mg, and u,|hy is contained
in U7, this shows that uy € mgn* U¥.

For the rest of this section, we will assume that p, is diagonalizable when restricted
t0 %, s0 up € mem* UF. We now unify the cases k = 2 and 3 < k < p by passing to
the eigenform F’ on I';(Np). This is an old form, defined by (9.10) when k = 2, and
anewform defined by the equation F|w, = ¢, F' whenk # 2. The differential n* - w.
is regular on the model X of X, (Np) over R, by Proposition 9.13, part 3).

COROLLARY 16.3.  We have n* - wgp. = up. + pp in H (X/R), where ug. and py. are
in the F'-eigenspace of the unit-root and p-root eigenspaces for Fr,. Furthermore,
up =7 a-u' withu' € U¥ and « € my.

Proof. When k # 2 this follows from the identity wg|w, = ¢;" wp- proved in
Proposition 6.14 and Proposition 16.2. Indeed, ¢, has the same p-adic valuation as
n¥, and w, preserves the eigenspaces for Fr, acting on H'(4/R) < H'(X/R).

When k = 2 the matter is a bit more subtle, as the class 7% wy. lies in the summand
H'(B/R) of H'(X/R), where we have not yet defined a crystalline structure. But B
isisogenous, by an isogeny of degree prime to p, to the product J; (N) x J;(N) x K4,
where K, has multiplicative reduction at p. Since n* wj. corresponds to an invariant
differential on J,(N) x J,(NY, it lies in H!(J,;(N)/R) @ H'(J,(N)/R) which has an
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action of Fr,. The corollary then follows from Proposition 16.2, using the formula
(16.4) P wp = p- ¥ (0p) — un'*(wg).

In (16.4) u is the unit root of x> — A,x + pey(p) = 0 and =, #': X,(Np) > X,(N) are
the usual coverings n(E, o, B) = (E, o), 7'(E, a, f) = (E’, «') with E' = E/B(u,) and o
the induced injection of uy.

To exploit the extra divisibility in u,., we will consider a map 5 from H*(X/R) to
the Washnitzer-Monsky cohomology of the affinoid subdomains V and V' consist-
ing of points reducing to I — X and I' — Z, respectively (modulo mg). The scheme
X is obtained by glueing the two “wide open spaces” ¥ and V' with these underlying
affinoids along their intersection: the annuli reducing to points in X [Co1]. Figure
1 illustrates the analogy of the map n with the Mayer-Vietoris sequence for comput-
ing the de Rham cohomology of a Riemann surface.

Let V, be the reduction of V (mod m}), which is an affine scheme over R/m}, and
let o/(V) = lim H°(V,, 0,). This is an R-algebra, with .« (V) ® R/my isomorphic to

the coordinate ring of the affine curve I — X over E. Let K be the quotient field of
R; then &/(V) ®z K is the algebra of rigid analytic functions & on V over K. An
analytic differential & -d% on V over K is said to be over-convergent if it extends
to some neighborhood of ¥ in V. The Washnitzer-Monsky cohomology group
H'(V/K) is defined as the quotient of the space of over-convergent differentials by
the exact differentials [WM]. This K-vector space is finite dimensional and has a

<|

—
4___
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FIGURE 1
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K-linear action of Fr,: it depends functorially only on the reduced curve I — X. As
such, it has an action of the Hecke algebra H,,.
Define the K-linear mapping

(16.6) n: H*(X/K) » H*(V/K)

on aclass c by first representing c¢ by a differential v of the second kind on X (modulo
exact differentials) whose poles reduce to points in I' — X. Then v is analytic on V,
and we may define #(c) = v|,,. I will assume that the map n commutes with the action
of H, and Fr, on each factor. This is undoubtedly true, but I could not find it in the
literature; it would follow from a general theory of correspondences in p-adic
cohomology. Hence 7 induces a map of the F’-eigenspaces: H*(X/K)F' — H*(V/K)*
which we may apply to the differential ..

PROPOSITION 16.7.  We have n(wg.) = o n(u’) in H*(V/K)*', where u' € UF is in
the unit eigenspace for Fr, (over R) and « € mg.

Proof. Since wp = a-u’ + p’ with p’ = n™%p,. by Corollary 16.3, it suffices to
show that P¥' is in the kernel of 5. To do this, it suffices to show that Fr, is a unit
on the eigenspace H'(V/K)'. But U, = Ver, on I, so Ver, acts as A, = pey(p)/A4,
on H(V/K)"". Since A4/, has the same p-adic valuation as p, Fr, = p/Ver, acts as the
unit 4,/ex(p).

Let v be a differential on X over R which represents the class of u’ in UF and has
poles reducing to points in I’ — X. The following result completes the proof of
Theorem 13.11.

ProposITION 16.8. 1) The expansions wgp = LA,q"dq/q and v = £C,q"dq/q at
oo are both integral and formally exact over R: A, = C, = 0(mod nR) foralln > 1.

2) If py is completely reducible when restricted to %,, then the reduction of the
g-expansion X(A,/n)q" (mod mg) is the Fourier expansion of a modular for g for
T,(N) over E. The form g lies in M,. and satisfies: 0g = 0f, g|U, = ig with A =
&(p)/a, # 0. It has filtration k' (or p, if k' = 1) and is a companion to the eigenform f.

Proof. 1) By part 2) of Proposition 9.13, the expansion XA;q"dq/q is formally
exact. The expansion of v’ at oo is integral, as v € H!(X/R) and oo is a smooth
section of X over R. Since V' is an eigenvector for Fr, with eigenvalue A = A4,/ey(p)
we have

pXC,q"dq/q = A-£C,q"dq/q + d(£D,q")

with D, € R for all n > 1. Hence AC,, + npD,, = pC, for all n > 1. Since 4 is a unit,
an induction on the power of p dividing n shows that C, = 0 (mod nR). For more
on the expansion of classes in the unit root eigenspace, see [K4].

2) When p; is reducible when restricted to %,, by Proposition 16.7 we have
wp = oV + dF as an equality of overconvergent differentials on V, where a € myg
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and & is a rigid analytic function on V. Take the expansions at co to obtain
2A,q"dg/q = a-2C,q"dq/q + ZnB,q"dq/q

where & = IB,q". Thus A, = «C, + nB,; by part 1) we have B,e Rfor alln > 1
and hence & is a rigid function in the R-algebra «/(V). Since « € my we have the
congruence: A,/n = B, (mod mg) so £(A4,/n)q" = F(q) (modulo mge/(V)). But the
elements in o/(V)/mgs/(V) are, by definition, in the affine ring of the curve I — X
over E. Hence the reduction of the expansion X(A4,/n)q" is the Fourier expansion
of a modular form g for I';(N) over E, by Proposition 5.5!

Since X 4;,q"is an eigenvector for U, with eigenvalue 4, and (0H)|U,=p- 0(H|U,)
for any expansion with p-adic coefficients, the formal expansion H = X(4,/n)q" is
an eigenvector for U, with elgenvalue A,/p. Indeed, 0(H|U, — (4,/p)H) = 0 and
the kernel of 6 is characterlstlc zero is the constants. Since H has zero constant
term H|U, — (4,/p)H = 0. Hence g(q) is an eigenvector for U, with eigenvalue
A = &(p)/a, = A,/p (mod mg). Since a2 # &(p) whenk =p,g # f. Slmllarly, one can
show that g is an eigenvector for T, actlng on Mk ,forall £/} N.

We have g = 0¥f = F' (mod mg) by part 1) of Proposition 9.13. Write g = Xg,
using the direct sum decomposition M = @ M,. Since 6g lies in M. p+1, W€ have
ga = h,|V, for all « # k’ (mod p — 1). Apply U, and use the identity V,U, = 1 to get
Ag = Zlga = gu|U, + Z, . h,. Hence h, = A'ha|Vp for all o £ k'. Taking the g-
expansion, we find that h, = 0, unless 4 = 1, « = 0 and h, = constant. But even in
the latter case, we must have h, = 0, as h, is an eigenvector for T, with eigenvalue
a, (¥ 1.Ifh, # 0,wehavea,- - + &(£)¢* " for all # | Np, which implies that
pr~e@® 1 is reducible (a contradiction). So g = g, lies in M,..

Since g|U, = Ag with 1 # 0, the series g(q) has filtration m satisfying 2 <m <
p+1 by Proposition 4.12. Since fg has filtration k' + p + 1, we must have
m < p + 1 and hence m = k' (or m = p, if k' = 1). Therefore g is the desired com-
panion to f.

§17. Examples. We now give some examples of cuspidal eigenforms (mod p) of
weight k < p + 1 on I'; (N), discuss thier liftings to forms of weight 2 on I'; (Np) and
their Galois representations, and describe the search for a companion form.

The cusp form

(17.1) A=gq ”l:ll (1 =g =} tng"

nx1

has weight 12 for I';(1) = SL,(2) and is defined over Z. It gives an eigenform
(mod p) for all primes p, but we will assume that p > 11 so as to have the inequality
k<p+ 1L

When p = 691, A is congruent to the Eisenstein series of weight 12 for SL,(Z):
7(n) = 6,,(n) (mod 691). This implies that the Galois representation p, is reducible,
and isomorphic to 1 @ w''. When p = 23, A is equal to its own companion form:
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1(n) = ntlt(n) = <%> 7(n) (mod 23) for all (n, 23) = 1. In this case, the representa-
tion p, has image the symmetric group on 3 letters in GL,(Z/23Z), and describes
the maximal abelian unramified extension of Q(,/—23). In all other case (ie.,
p = 11, p # 23 or 691) the representation p,: Gal(Q/Q) - GL,(Z/pZ) has image the
subgroup of invertible matrices A with det A € (Z/pZ)*!! [S4, §3]. In particular, p,
determines a Galois extension of Q(u,,) which is unramified outside p and has Galois
group ~SL,(Z/pZ).

For p = 11 we have k = p + 1. By the results of §9 there is a lifting of f = Ato a
form F of weight 2 and trivial character on I';(11). The unique such form has
g-expansion

F=q]] (1 -1 —q""

The representation p, occurs on the 11-division points of the elliptic curve Jy(11) (or
equivalently, on the 11-division points of the 5-isogenous curve J;(11)). Its restric-
tion to the inertia group at 11 is “trés ramifié” in the sense of Serre [S8, pg. 186].

When p = 13 we have k = p — 1. By the results of §5 there is a lifting of f = A to
a form F of weight 2 and character '° on I';(13). The unique such form has
g-expansion in the subring Z[ ug] of Z, 5. If « is the unique 6™ root of 1 in Z¥; which
satisfies o = 4 (mod 13) then the Fourier expansion of F begins

F=q+(-2+a)g*+(—20¢*> + (1 — a)g* + Q. — 1)g° + (2 + 2a)q® + .

The form F’ is the complex conjugate of F; it has weight 2 and character w?. The
Fourier expansion of F’ is obtained by replacing o by @ = 1 — « in the above

F=qg+(—1—a)q¢*+(—2+20)q> + ag* + (1 — 20)q° + (4 — 20)q® + -~

We have 4;; = —4 + 3¢ =8 (mod 13) and A};= —1 — 30 =0 (mod 13). The
form F is congruent to the eigenform f = A, (mod 13), and F’ is congruent to the
eigenform f' = 0% = A,¢ (mod 13), where A ¢ is the unique normalized cusp form
of weight 16 and level 1. The differential v, is meromorphic on the Igusa curve
I = I,(1) over Z/13Z; it has a pole of order 2 at the unique supersingular point and
is exact: v, = dg. Here the function g = 6f = A,¢ (mod 13) has a pole of order
13 at the unique supersingular point. The representation p, = p, occurs in the
subspace of 13-division points of J;(13) where the Galois group (Z/13Z)*/{+1)
of X,(13) over X,(13) acts by w?. As there is no companion form, p, gives an
SL,(Z/13Z)-extension of Q(u,3), which is wildly ramified at 13.

A computer search by Elkies, extended by Atkin, showed that A does not have a
companion form for p < 3,500 with p > 11 and p # 23 or 691. Hence the representa-
tion p, gives an SL,(Z/p)-extension of Q(u,) which is ramified at p in all these cases.

The same search by Elkies and Atkin did discover companion forms for the
eigenforms of weight 16, 18, 20, and 26 for SL,(Z) with integral Fourier coefficients.
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Let E, and E¢ be the normalized Eisenstein series
E, =1+ 240Z05(n)q"

E¢ =1 —504Za5(n)q",

and define the cusp forms

Ag = E,A
Ayg = EA
Ao = E2A
Ay, = ELEA
Aye = EZEGA.

The following table lists the primes p < 3,500 where the image of p, contains
SL,(Z/pZ) and f has a companion form.

f companion p < 3,500
A=A, none
A 397
Asg 271
Ay 139, 379
A,, none
Aye 107.

As an example, let us describe the companion form g of weight 82 for f = A,¢
(mod 107), which was discovered by Elkies. (He also checked that p = 107 is the
smallest prime where there are a pair of companions (f, g) of level N = 1.) We have

g = E,E¢A(ELS — 15E32A — 35E3A? + 36ESA® — 18E3A* + 15A%)

and a, = n*°b,(mod 107) for (n, 107) = 1. Inthis case,a,y; = b;o; = — 1 (mod 107).
The Fourier expansions of f and g begin:

f=q—48q¢* + 64> — 31q* + 45¢° + 33¢° + 10q” + 41¢q® + 38¢° — 204*°
— 38¢"'" + 28¢'% — 4843 + -
g=q—20g> —3q® + 34g* + 12q° — 479° — 49" + 64® — 44¢° — 264*°

— 43¢ + 5¢'? + 509" + -
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This is sufficient to check the identity 6f = 6*%g, which holds in the 10-dimensional
space of cusp forms of weight 134.

Next, consider the case when f = Xa,q" is the reduction (mod p) of a newform
F =XA,q" of weight 2 and trivial character on I';(N). Assume further that the
Fourier coefficients A4, of F are all rational integers; then F corresponds to an elliptic
curve E of conductor N over Q which occurs in the Jacobian of the curve X,(N)
[Sh 2, Ch. 7] and p; occurs on the p-torsion of E. We assume p; is irreducible as
usual.

The condition that a, # 0 implies that E has ordinary reduction at p [S3, §4]. Let
Jjg be the modular invariant of E in Z,, and let j, be the “canonical lifting” of the
reduction of jz (mod p). Then j, is the modular invariant of the unique elliptic curve
E, which satisfies E, = E (mod p) and End zq(Eo) = Endg,z(E). A simple argument,
along the same lines as §14—15, shows that the restriction of p, to a decomposition
group at p is diagonalizable if and only if jz = j, (mod p?) for p odd, and j; = j,
(mod 8) for p = 2. Similarly, the local action on p"-torsion is diagonalizable if and
onlyifj = j,(mod 2- p"*!). In these cases, we will have a companion form of weight
k' =p—1 on I'y(N) over Z/pZ, whose Fourier coefficients satisfy nb, = a, for
(n,p) =1

If p=2 we have jz =1 (mod 2) and j, = —335%. Hence py is diagonalizable
(=trivial) on the decomposition group at 2 if and only if j; = 1 (mod 8); when j; = 1
(mod 4) one finds that p, is unramified at 2. Since j; — 2°-3% = c2/A and ¢ = 1
(mod 8), we have:

py is unramified at 2<-A =1 (mod 4)
pyis diagonalizableat2<>A =1 (mod 8).

Since we are in the case when k = p and a? = &(p), Theorem 13.10 does not apply.
But there is a result analogous to Corollary 13.11: when A = 1 (mod 4) there is an
eigenform h = Xc¢,q" of weight 1 on I',(N) over Z/2Z with ¢, = a, for n odd and
¢, = a, + &(2)/a, = 2a, = 0.1Indeed, in this case p, defines a GL,(Z/2Z) = S, exten-
sion of @ which is unramified at 2, so yields a form of weight 1 on I, (N) with the
desired Fourier coefficients (mod 2) [S8, §5.1]. The first examples of curves E with
A = 1 (mod 4), ordinary reduction at 2, and irreducible representation on 2-torsion
occur at levels N = 83, 139 where A = —83, — 139 respectively. A case when A = 1
(mod 8) and the above hypotheses hold occurs at level N = 431, where A = —431.

When p = 3 we have jz = 1, — 1 (mod 3) and j, = —2'5,2°5 respectively. Hence
p, is diagonalizable on the decomposition group at 3 if and only if jy = + 1 (mod 9).
Since ji = c3/A and ¢ = +1 (mod 9), we have:

py is diagonalizable at 3<>A = +1 (mod9).

In this case, Theorem 13.10 applies and there is a companion from g = X b,q" of

weight k' = 2 on I'y(N) over Z/3Z whose Fourier coefficients satisfy b, = g a, for
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(n, 3) = 1, and bya; = 1. The first case when A = +1(9), E is ordinary at 3, and the
representation on 3-torsion is irreducible occurs at level N = 89. Here we may take
the curve E = 89C with A = —89 and associated eigenform.

F=q-q"—q’—q*"—¢°+q°—4¢" +3¢° + .
The companion g of f also lifts to an eigenform with integral coefficients:

G=q+q*+2¢>—q*—2¢° +2¢° + 29" — 3¢®* + ---.

which corresponds to the elliptic curve E' = 894 with A’ = —892,
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