THE MONODROMY-WEIGHT CONJECTURE

DONU ARAPURA

Deligne [D1] formulated his conjecture in 1970, simultaneously in the ℓ -adic and Hodge theoretic settings. The Hodge theoretic statement, amounted to the existence of what is now called a limit mixed Hodge structure. This was solved by Schmid [S] a couple of years later. I won't elaborate, since it would be too much of a detour. I will explain the ℓ -adic version and Deligne's solution [D3] in an important special case. Ito [I] proved the conjecture in equicharacteristic by reducing to Deligne's result. As I understand it, Scholze [Sc] reduces his result in mixed characteristic to this case as well.

It's easier (at least for me) to start with the complex picture. Let Δ be a disk, and suppose that $X \subset \mathbb{P}^d_{\mathbb{C}} \times \Delta$ is a submanifold such that projection $f: X \to \Delta$ is onto. Let $X_t = f^{-1}(t)$, $\Delta^* = \Delta - \{0\}$ and $f^*: X - X_0 \to \Delta^*$ be the restriction. Then after shrinking Δ , we can assume that f^* is smooth. Therefore, by a theorem of Ehresmann, f^* is topologically a fibre bundle, i.e. it is locally a product of Δ^* with a space $F \cong X_t$. To understand the topology more clearly, let us restrict to a circle $S^1 \subset \Delta^*$. S^1 is gotten by gluing 0 to 1 in the interval [0, 1]. Likewise the bundle is given by gluing the ends $F \times \{0\}$ to $F \times \{1\}$ by a self homeomorphism $h: F \to F$. Although this construction involved many choices, the action

$$T = h^* : H^i(F, \mathbb{Q}) \to H^i(F, \mathbb{Q})$$

is independent of them. T is called *monodromy*. This defines a representation

$$\mathbb{Z} = \pi_1(\Delta^*, t) \to Aut(H^i(X_t, \mathbb{Q})), \quad n \mapsto T^*$$

In the topological setting, T could be almost anything, but in the present setting of a family of projective manifolds there is a very strong restriction.

Theorem 1 (Borel, Grothendieck, Landman). T is a quasi-unipotent matrix, i.e. the eigenvalues of T are roots of unity.

We indicate Grothendieck's proof since it seems the most relevant here. First, we need to make a switch to a more algebraic picture. We replace Δ with the spectrum S of Henselian¹ discrete valuation ring R. Let k = R/m be the residue field, and K the fraction field. We replace $\pi_1(\Delta)$ by the inertia group I. Recall that this is determined by the exact sequence

$$(1) 1 \to I \to G_K \to G_k \to 1$$

where $G_K = Gal(\bar{K}/K)$ etc, where for now \bar{K} is the separable closure. If p = char k, then the prime to p part of I has a single (topological) generator like $\pi_1(\Delta^*)$. Suppose now that $f: X \to S$ is a projective scheme, by the magic of étale cohomology² G_K will act on the ℓ -adic cohomology of the geometric generic fibre $H^i_{et}(X_{\bar{K}}, \mathbb{Z}_{\ell})$.

¹You can substitute "complete" if that's easier.

 $^{^{2}}$ A low tech introduction is available on my webpage at

DONU ARAPURA

The restriction ρ of this action to I is the analogue of the monodromy representation. Grothendieck proved the following theorem (which implies the previous theorem, but I won't go into the implication).

Theorem 2 (Grothendieck). Assume that k is finite, then there is an open subgroup of $J \subset I$ such that $\rho(g)$ is unipotent for all $g \in J$.

Proof. I will outline the argument, and refer to [ST, appendix] for more details. After passing to an open subgroup J, we can assume that ρ factors through the maximal pro- ℓ quotient I_{ℓ} of I. The advantage of I_{ℓ} is that we know what it is, namely

(2)
$$I_{\ell} \cong \mathbb{Z}_{\ell}(1) = \lim \mu_{\ell^n}$$

We choose an element $T \in I_{\ell}$, which necessarily generates it topologically, and let $N = \log T$ be the logarithm (the series converges in the ℓ -adic topology). Let $K_{\ell} \subset K$ be the subfield generated by ℓ^n th roots of the uniformizer of R. Then we have an extension

$$1 \to I_{\ell} \to Gal(K_{\ell}/K) \to G_k \to 1$$

similar to (1). G_k acts on I by conjugation through this sequence, and it coincides with the one given by (2). In other words, G_k acts on I_ℓ through the cyclotomic character χ . We note that when applied to the Frobenius $\chi(Fr) = q$, where q is the cardinality of k. Let us write this action exponentially as $g \mapsto g^{\chi(h)}$ for $g \in I_\ell$ and $h \in G_k$. Because of the coincidence of the two actions, we see that g and $g^{\chi(h)}$ are conjugate elements in G_K . In particular, N and $\chi(h)N = \log(T^{\chi(h)})$ are conjugate. This forces $a_i = \chi(Fr)^i a_i = q^i a_i$, where a_i is the *i*th coefficient of the characteristic polynomial of $\rho(N)$. This implies that all the $a_i = 0$. Therefore $\rho(N)$ is nilpotent, and so $\rho(T)$ is unipotent.

We make a few comments about the proof.

- (1) We only really needed to keep track of the action of the subgroup $\mathbb{Z} \subset G_k \cong \hat{\mathbb{Z}}$ generated by $Fr \in G_k$. So could have replaced G_K by the preimage of \mathbb{Z} which is the so called Weil group W_K . For some things, this seems essential.
- (2) N determines the restriction of the representation to J. Writing $V = H^i_{et}(X, \mathbb{Q}_\ell)$ and suppressing ρ , we can see by an argument similar to the one above, that

$$NFr = qFrN$$

in End(V). This means that $N : V \to V(-1)$ is a morphism of W_K -modules, where V(-1) means that we twist the action by χ .

Before stating the conjecture, I need to recall some terminology. Fix a (highly noncanonical!) isomorphism $\iota : \overline{\mathbb{Q}}_{\ell} \cong \mathbb{C}$ and a prime power q. Let us say that $\lambda \in \overline{\mathbb{Q}}_{\ell}$ has weight n (with respect to these choices) if $|\lambda| = q^{n/2}$. A vector space equipped with an endomorphism given by some kind of Frobenius action is called pure³ of weight n if all its eigenvalues have weight n. The point is that the nth cohomology of a smooth projective variety defined over \mathbb{F}_q is pure of weight n by the Weil conjectures, i.e. Deligne's theorem [D2]. In our situation, which is more complicated, Serre and Tate [ST, p 514] asked whether the weights of V =

(3)

 $\mathbf{2}$

³Deligne calls this ι -purity in [D3]. There are a number of other variations of this concept.

 $H_{et}^i(X, \mathbb{Q}_\ell)$ lie in [0, 2i]. Deligne refined this, by taking into account the monodromy. We can decompose V into a sum of (generalized) eigenspaces. Equation (3) implies that N will map the λ eigenspace of Fr on $H^i_{et}(X, \mathbb{Q}_\ell)$ to the $q\lambda$ -eigenspace. Since N is nilpotent, we cannot expect this to be an isomorphism for all λ . However, the conjecture says that if we arrange the eigenspaces in a clever way then we should expect N and its powers to induce isomorphisms.

Lemma 1. Given a finite dimensional vector space V with a nilpotent endomorphism N, there exists a unique increasing filtration M_{\bullet} such that

- (a) $NM_i \subset M_{i-2}$ (b) $N^r : Gr_r^M V \cong Gr_{-r}^M V.$

The lemma is probably due to Deligne, but the thing I want to emphasize is that it is purely a result of linear algebra. When $N^2 = 0$, the filtration is simply $M_{-1} = im(N), M_0 = \ker(N), M_1 = V.$

Conjecture 1 (The Monodromy-Weight conjecture). Let $V = H^i_{et}(X, \mathbb{Q}_\ell)$ and N as above, then $Gr_r^M V$ is pure of weight i + r.

To put this another way, this says that N^r induces an isomorphism between the i + r and i - r pure subquotients of V.

Theorem 3 (Deligne [D3, 1.8.4]). The conjecture holds when $X \to S$ is obtained from a family of projective varieties over a curve defined over a finite field.

Deligne uses this as a step in his proof of the generalized Weil conjectures. I'm sure it has many other number theoretic applications as well. Here is an interesting consequence in topology.

Corollary 1 (Local invariant cycle theorem). Given a family $f: X \to \Delta$ over the disk, the cohomology of the singular fibre $H^i(X_0, \mathbb{Q})$ surjects onto the monodromy invariant part of a smooth fibre $H^i(X_t, \mathbb{Q})^{\pi_1(\Delta^*)}$.

Proof. [D3, 3.6.1] + [A] + specialization to finite fields. (This can be, and usually is, proved more directly using limit mixed Hodge structures, cf [GS].)

I'm going to try to explain a small piece of the proof of the above theorem. Let $\mathcal{X} \to Y$ be a projective morphism of smooth separated \mathbb{F}_q schemes of finite type, with dim Y = 1. Let $j: U \to Y$ be an open set over which f is smooth. Let Z = Y - U. Choose a closed point $y \in Z$, let R be the Henselization of $\mathcal{O}_u, S = \operatorname{Spec} R, K$ its field of fractions, and $X \to S$ is the fibre product. Then $\mathcal{F} = R^i f_* \mathbb{Q}_{\ell}|_U$ is a lisse sheaf on U, which we extend to X by taking direct image $j_*\mathcal{F}$. In more prosaic terms, $j_*\mathcal{F}$ can be viewed as the family of cohomology spaces $H^i_{et}(X_u, \mathbb{Q}_\ell)$ for $u \in U$, together with $H^i_{et}(X_K, \mathbb{Q}_\ell)^I$ at y and similar things at other "bad" points. Each of these spaces carries an action of the Frobenius $Fr_w \in G_{k(w)}$ at $w \in Y$. By the usual Weil conjectures (i.e. Deligne's theorem [D2]) these spaces are pure of weight i when $w \in U$. Deligne calls this property pointwise purity of \mathcal{F} , and he formulates and proves the theorem for such sheaves. This is useful, since it allows it allows him to modify \mathcal{F} as the proof proceeds. We need to understand what happens at points of Z for the extension $j_*\mathcal{F}$. We can assume without loss of generality that X is affine, so the 0th compactly supported cohomology of $j_*\mathcal{F}$

DONU ARAPURA

vanishes. Then the Grothendieck-Lefschetz trace formula expresses the L-function

$$\underbrace{\prod_{u \in U} \det(1 - Fr_u t^{\deg u}, \mathcal{F})^{-1}}_{A} \underbrace{\prod_{z \in Z} \det(1 - Fr_z t^{\deg z}, j_* \mathcal{F})^{-1}}_{B} = \frac{\det(1 - Fr t, H_c^1(X, j_* \mathcal{F}))}{\det(1 - Fr t, H_c^2(X, j_* \mathcal{F}))}$$

The information about eigenvalues at $u \in U$ can be used to show that first factor labelled A has no zeros or poles in the region $|t| < q^{-i/2-1}$, and the right side has no poles in the same region. Thus we may conclude that the second factor B on the left has no poles in this region. We can use this to bound the eigenvalues λ of Fr_z on $j_*\mathcal{F}$ for $z \in Z$ by $|\lambda| \leq (q^{\deg z})^{i/2+1}$, or equivalently $\log_Q |\lambda| \leq i/2 + 1$ where $Q = q^{\deg z}$. By applying this to the *n*th tensor powers of \mathcal{F} , he gets a similar estimate on λ^n , whence

(4)
$$\log_Q |\lambda| = \frac{1}{n} \log_Q |\lambda^n| \le \frac{i}{2} + \frac{1}{n} \to \frac{i}{2}$$

This provides the basic foothold. It is now remains to refine this. To explain the rest of the proof, suppose for simplicity that $N^2 = 0$. We reduce the case where the weights of on $\mathcal{F}_u, u \in U$ are 0 by twisting by a suitable character (when *i* is even we can use a power of the cyclotomic character, in general see [D3, 1.2.7]), Then we just have to check that the eigenvalues of Fr_y on Gr_j^M satisfy $|\lambda| = q^{j/2}$ for j = -1, 0, 1. In fact, it is enough to treat the cases j = -1, 0, because $Gr_1^M \cong Gr_{-1}^M(-1)$. Then (4) gives the estimate $|\lambda| \leq 1$ on the eigenvalues of Fr_y on $(j_*\mathcal{F})_y = \ker N = M_0$. This bound applies to Gr_0^M . Applying the same reasoning to the dual \mathcal{F}^* gives the opposite $|\lambda| \geq 1$ on Gr_0^M , which takes care of this case. For Gr_{-1}^M , we can also apply the estimate $|\lambda| \leq 1$. However, this can be dramatically improved by noting that on the square $\mathcal{F} \otimes \mathcal{F}, Gr_{-1}^M \otimes Gr_{-1}^M(-1)$ is a summand of Gr_0^M . Thus $|\lambda^2 q| \leq 1$ or $|\lambda| \leq q^{-1/2}$. Dualizing gives the opposite inequality as before.

Building on this, Ito [I] and Scholze [Sc] proved

Theorem 4 (Ito). Conjecture 1 holds when char R = char R/m.

Theorem 5 (Scholze). Conjecture 1 holds when char R = 0 and X is a set theoretic complete intersection in a smooth projective toric variety.

It may be worth remarking that the last condition, of being a complete intersection in a smooth projective toric variety, does impose strong restrictions. For example, by weak Lefschetz, $H^i_{et}(X_{\bar{K}}, \mathbb{Z}_{\ell}) = 0$ when *i* is odd and different from dim $X_{\bar{K}}$.

Finally, I should mention that an earlier case of the conjecture, for relative dimension 2 in mixed characteristic, was done by Rapoport and Zink [RZ].

References

- [A] Artin, Comparaison avec la cohomologie classique, SGA4 Exp XI
- [D1] Deligne, Theorie de Hodge I, ICM (1970)
- [D2] Deligne, La conjecture de Weil I, IHES (1974)
- [D3] Deligne, La conjecture de Weil II, IHES (1980)
- [GS] Griffiths, Schmid, Recent developments in Hodge theory, (1975)
- [II] Illusie, Autor du théorème de monodromie locale (1994)

- [I] Ito, Weight-monodromy conjecture over equal characteristic local fields, Amer. J. Math. (2005)
- [RZ] Rapoport, Zink, Über lokale Zetafunktion von Shimuravarietäten..., Inventiones (1982)

- [S] Schmid, Variations of Hodge structure..., Inventiones (1973)
 [Sc] Scholze, Perfectoid spaces, IHES (2012)
 [ST] Serre, Tate, Good reduction of abelian varieties, Annals (1968)