THE MONODROMY-WEIGHT CONJECTURE

DONU ARAPURA

Deligne [D1] formulated his conjecture in 1970, simultaneously in the (-adic
and Hodge theoretic settings. The Hodge theoretic statement, amounted to the
existence of what is now called a limit mixed Hodge structure. This was solved
by Schmid [S] a couple of years later. I won’t elaborate, since it would be too
much of a detour. I will explain the ¢-adic version and Deligne’s solution [D3] in
an important special case. Ito [I] proved the conjecture in equicharacteristic by
reducing to Deligne’s result. As I understand it, Scholze [Sc] reduces his result in
mixed characteristic to this case as well.

It’s easier (at least for me) to start with the complex picture. Let A be a disk,
and suppose that X C ]P’% x A is a submanifold such that projection f: X — Ais
onto. Let X; = f~1(t), A* = A — {0} and f* : X — Xy — A* be the restriction.
Then after shrinking A, we can assume that f* is smooth. Therefore, by a theorem
of Ehresmann, f* is topologically a fibre bundle, i.e. it is locally a product of A*
with a space F' = X;. To understand the topology more clearly, let us restrict to
a circle S € A*. S! is gotten by gluing 0 to 1 in the interval [0, 1]. Likewise the
bundle is given by gluing the ends F x {0} to F x {1} by a self homeomorphism
h: F — F. Although this construction involved many choices, the action

T =h*: H(F,Q) — H'(F,Q)
is independent of them. T is called monodromy. This defines a representation
Z = m (A1) = Aut(H (X;,Q)), nw—T"

In the topological setting, T could be almost anything, but in the present setting
of a family of projective manifolds there is a very strong restriction.

Theorem 1 (Borel, Grothendieck, Landman). T is a quasi-unipotent matriz, i.e.
the eigenvalues of T' are roots of unity.

We indicate Grothendieck’s proof since it seems the most relevant here. First,
we need to make a switch to a more algebraic picture. We replace A with the
spectrum S of Henselian® discrete valuation ring R. Let k = R/m be the residue
field, and K the fraction field. We replace 71(A) by the inertia group I. Recall
that this is determined by the exact sequence

(1) 171G —>G,—1

where G ¢ = Gal(K /K) etc, where for now K is the separable closure. If p = char k,
then the prime to p part of I has a single (topological) generator like 71 (A*). Sup-
pose now that f : X — S is a projective scheme, by the magic of étale cohomology?
G will act on the f-adic cohomology of the geometric generic fibre H!, (X, Zy).

You can substitute “complete” if that’s easier.
2A low tech introduction is available on my webpage at
http://www.math.purdue.edu/~dvb/preprints/etale.pdf
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The restriction p of this action to I is the analogue of the monodromy represen-
tation. Grothendieck proved the following theorem (which implies the previous
theorem, but I won’t go into the implication).

Theorem 2 (Grothendieck). Assume that k is finite, then there is an open subgroup
of J C I such that p(g) is unipotent for all g € J.

Proof. T will outline the argument, and refer to [ST, appendix] for more details.
After passing to an open subgroup J, we can assume that p factors through the
maximal pro-¢ quotient I, of I. The advantage of I, is that we know what it is,
namely

(2) Ty = Zy(1) = lim pugn

We choose an element T' € I, which necessarily generates it topologically, and
let N =logT be the logarithm (the series converges in the ¢-adic topology). Let
Ky C K be the subfield generated by ¢"th roots of the uniformizer of R. Then we
have an extension

1—=1I - Ga(K;/K) = G — 1

similar to (1). Gy acts on I by conjugation through this sequence, and it coincides
with the one given by (2). In other words, Gy acts on I, through the cyclotomic
character x. We note that when applied to the Frobenius x(Fr) = ¢, where ¢ is the
cardinality of k. Let us write this action exponentially as g — gX(") for g € I, and
h € Gj. Because of the coincidence of the two actions, we see that g and gX(") are
conjugate elements in Gg. In particular, N and x(h)N = log(TX") are conjugate.
This forces a; = X(Fr)iai = ¢'a;, where a; is the ith coefficient of the characteristic
polynomial of p(N). This implies that all the a; = 0. Therefore p(N) is nilpotent,
and so p(T") is unipotent. O

We make a few comments about the proof.

(1) We only really needed to keep track of the action of the subgroup Z C G, =
v/ generated by F'r € Gi. So could have replaced G by the preimage of Z
which is the so called Weil group Wi . For some things, this seems essential.

(2) N determines the restriction of the representation to J. Writing V =
H!,(X,Q) and suppressing p, we can see by an argument similar to the
one above, that

(3) NFr =qFrN

in End(V). This means that N : V — V(—1) is a morphism of Wk-
modules, where V(—1) means that we twist the action by x.

Before stating the conjecture, I need to recall some terminology. Fix a (highly
noncanonical!) isomorphism ¢ : Q, = C and a prime power q. Let us say that
A € Q¢ has weight n (with respect to these choices) if |A| = ¢™/2. A vector space
equipped with an endomorphism given by some kind of Frobenius action is called
pure® of weight n if all its eigenvalues have weight n. The point is that the nth
cohomology of a smooth projective variety defined over F, is pure of weight n
by the Weil conjectures, i.e. Deligne’s theorem [D2]. In our situation, which is
more complicated, Serre and Tate [ST, p 514] asked whether the weights of V' =

3Deligne calls this ¢-purity in [D3]. There are a number of other variations of this concept.
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H!,(X,Qp) liein [0, 2i]. Deligne refined this, by taking into account the monodromy.
We can decompose V into a sum of (generalized) eigenspaces. Equation (3) implies
that N will map the ) eigenspace of Fr on Hi,(X,Qy) to the g\-eigenspace. Since
N is nilpotent, we cannot expect this to be an isomorphism for all A. However, the
conjecture says that if we arrange the eigenspaces in a clever way then we should
expect NV and its powers to induce isomorphisms.

Lemma 1. Given a finite dimensional vector space V with a nilpotent endomor-
phism N, there exists a unique increasing filtration My such that

(a) NM; C M;_5

(b) N":GrMV = GrM V.

The lemma is probably due to Deligne, but the thing I want to emphasize is
that it is purely a result of linear algebra. When N? = 0, the filtration is simply
M_l = zm(N), M() = ker(N), Ml =V.

Conjecture 1 (The Monodromy-Weight conjecture). Let V = HZ,(X,Q,) and N
as above, then GrMV is pure of weight i + 1.

To put this another way, this says that N” induces an isomorphism between the
i+ r and ¢ — r pure subquotients of V.

Theorem 3 (Deligne [D3, 1.8.4]). The conjecture holds when X — S is obtained
from a family of projective varieties over a curve defined over a finite field.

Deligne uses this as a step in his proof of the generalized Weil conjectures. I'm
sure it has many other number theoretic applications as well. Here is an interesting
consequence in topology.

Corollary 1 (Local invariant cycle theorem). Given a family f : X — A over the
disk, the cohomology of the singular fibre H'(Xo, Q) surjects onto the monodromy
invariant part of a smooth fibre Hi(Xt,Q)”l(A*).

Proof. [D3, 3.6.1] 4+ [A] + specialization to finite fields. (This can be, and usually
is, proved more directly using limit mixed Hodge structures, cf [G5].) O

I'm going to try to explain a small piece of the proof of the above theorem.
Let X — Y be a projective morphism of smooth separated F, schemes of finite
type, with dimY = 1. Let j : U — Y be an open set over which f is smooth.
Let Z =Y — U. Choose a closed point y € Z, let R be the Henselization of
Oy, S = SpecR, K its field of fractions, and X — S is the fibre product. Then
F = R f.Qu|y is a lisse sheaf on U, which we extend to X by taking direct image
j«F. In more prosaic terms, j.F can be viewed as the family of cohomology spaces
Hi, (X, Q) for u € U, together with H!, (X, Q) at y and similar things at other
“bad” points. Each of these spaces carries an action of the Frobenius Fry, € G (w)
at w € Y. By the usual Weil conjectures (i.e. Deligne’s theorem [D2]) these spaces
are pure of weight ¢ when w € U. Deligne calls this property pointwise purity of
F, and he formulates and proves the theorem for such sheaves. This is useful, since
it allows it allows him to modify F as the proof proceeds. We need to understand
what happens at points of Z for the extension j,/F. We can assume without loss
of generality that X is affine, so the Oth compactly supported cohomology of j.F
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vanishes. Then the Grothendieck-Lefschetz trace formula expresses the L-function
, det(l— Fri, H (X, j.F))

I det(q = Fryttese, 7)=" T det(1 — Fr.td87, . F)~

welr i ~det(1 — Frt, H2(X, j.F))

A B

The information about eigenvalues at uw € U can be used to show that first factor
labelled A has no zeros or poles in the region |t| < ¢~ /21, and the right side has
no poles in the same region. Thus we may conclude that the second factor B on
the left has no poles in this region. We can use this to bound the eigenvalues A
of Fr, on j,F for z € Z by |A| < (¢%°&2)"/>T1 or equivalently log,, |A| < i/2 + 1
where Q = ¢9°8*. By applying this to the nth tensor powers of F, he gets a similar
estimate on A", whence

1 ; 1 )
(4) logg |\l = ~logg \" < 5+~ = =

This provides the basic foothold. It is now remains to refine this. To explain the
rest of the proof, suppose for simplicity that N2 = 0. We reduce the case where the
weights of on F,,,u € U are 0 by twisting by a suitable character (when 7 is even we

can use a power of the cyclotomic character, in general see [D3, 1.2.7]), Then we just
have to check that the eigenvalues of F'r, on Gréw satisfy |A| = ¢//2 for j = —1,0, 1.
In fact, it is enough to treat the cases j = —1,0, because Grif = Gr™ (—1). Then

(4) gives the estimate |A| < 1 on the eigenvalues of F'ry, on (j..F), = ker N = M.
This bound applies to Gr}’. Applying the same reasoning to the dual F* gives
the opposite [A| > 1 on Gr)?, which takes care of this case. For GrY, we can also
apply the estimate |A| < 1. However, this can be dramatically improved by noting
that on the square F @ F, GrM @ GrM, (1) is a summand of Gr)f. Thus [\%q| < 1
or |A| < ¢~'/2. Dualizing gives the opposite inequality as before.

Building on this, Ito [I] and Scholze [Sc] proved
Theorem 4 (Ito). Conjecture 1 holds when char R = char R/m.

Theorem 5 (Scholze). Conjecture 1 holds when char R =0 and X is a set theoretic
complete intersection in a smooth projective toric variety.

It may be worth remarking that the last condition, of being a complete inter-
section in a smooth projective toric variety, does impose strong restrictions. For
example, by weak Lefschetz, H,(Xg,Z;) = 0 when i is odd and different from
dim X[(.

Finally, I should mention that an earlier case of the conjecture, for relative
dimension 2 in mixed characteristic, was done by Rapoport and Zink [RZ].
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