
THE MONODROMY-WEIGHT CONJECTURE

DONU ARAPURA

Deligne [D1] formulated his conjecture in 1970, simultaneously in the `-adic
and Hodge theoretic settings. The Hodge theoretic statement, amounted to the
existence of what is now called a limit mixed Hodge structure. This was solved
by Schmid [S] a couple of years later. I won’t elaborate, since it would be too
much of a detour. I will explain the `-adic version and Deligne’s solution [D3] in
an important special case. Ito [I] proved the conjecture in equicharacteristic by
reducing to Deligne’s result. As I understand it, Scholze [Sc] reduces his result in
mixed characteristic to this case as well.

It’s easier (at least for me) to start with the complex picture. Let ∆ be a disk,
and suppose that X ⊂ PdC ×∆ is a submanifold such that projection f : X → ∆ is
onto. Let Xt = f−1(t), ∆∗ = ∆ − {0} and f∗ : X −X0 → ∆∗ be the restriction.
Then after shrinking ∆, we can assume that f∗ is smooth. Therefore, by a theorem
of Ehresmann, f∗ is topologically a fibre bundle, i.e. it is locally a product of ∆∗

with a space F ∼= Xt. To understand the topology more clearly, let us restrict to
a circle S1 ⊂ ∆∗. S1 is gotten by gluing 0 to 1 in the interval [0, 1]. Likewise the
bundle is given by gluing the ends F × {0} to F × {1} by a self homeomorphism
h : F → F . Although this construction involved many choices, the action

T = h∗ : Hi(F,Q)→ Hi(F,Q)

is independent of them. T is called monodromy. This defines a representation

Z = π1(∆∗, t)→ Aut(Hi(Xt,Q)), n 7→ Tn

In the topological setting, T could be almost anything, but in the present setting
of a family of projective manifolds there is a very strong restriction.

Theorem 1 (Borel, Grothendieck, Landman). T is a quasi-unipotent matrix, i.e.
the eigenvalues of T are roots of unity.

We indicate Grothendieck’s proof since it seems the most relevant here. First,
we need to make a switch to a more algebraic picture. We replace ∆ with the
spectrum S of Henselian1 discrete valuation ring R. Let k = R/m be the residue
field, and K the fraction field. We replace π1(∆) by the inertia group I. Recall
that this is determined by the exact sequence

(1) 1→ I → GK → Gk → 1

whereGK = Gal(K̄/K) etc, where for now K̄ is the separable closure. If p = char k,
then the prime to p part of I has a single (topological) generator like π1(∆∗). Sup-
pose now that f : X → S is a projective scheme, by the magic of étale cohomology2

GK will act on the `-adic cohomology of the geometric generic fibre Hi
et(XK̄ ,Z`).

1You can substitute “complete” if that’s easier.
2A low tech introduction is available on my webpage at

http://www.math.purdue.edu/~dvb/preprints/etale.pdf
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The restriction ρ of this action to I is the analogue of the monodromy represen-
tation. Grothendieck proved the following theorem (which implies the previous
theorem, but I won’t go into the implication).

Theorem 2 (Grothendieck). Assume that k is finite, then there is an open subgroup
of J ⊂ I such that ρ(g) is unipotent for all g ∈ J .

Proof. I will outline the argument, and refer to [ST, appendix] for more details.
After passing to an open subgroup J , we can assume that ρ factors through the
maximal pro-` quotient I` of I. The advantage of I` is that we know what it is,
namely

(2) I` ∼= Z`(1) = lim←−µ`n
We choose an element T ∈ I`, which necessarily generates it topologically, and
let N = log T be the logarithm (the series converges in the `-adic topology). Let
K` ⊂ K be the subfield generated by `nth roots of the uniformizer of R. Then we
have an extension

1→ I` → Gal(K`/K)→ Gk → 1

similar to (1). Gk acts on I by conjugation through this sequence, and it coincides
with the one given by (2). In other words, Gk acts on I` through the cyclotomic
character χ. We note that when applied to the Frobenius χ(Fr) = q, where q is the
cardinality of k. Let us write this action exponentially as g 7→ gχ(h) for g ∈ I` and
h ∈ Gk. Because of the coincidence of the two actions, we see that g and gχ(h) are
conjugate elements in GK . In particular, N and χ(h)N = log(Tχ(h)) are conjugate.
This forces ai = χ(Fr)iai = qiai, where ai is the ith coefficient of the characteristic
polynomial of ρ(N). This implies that all the ai = 0. Therefore ρ(N) is nilpotent,
and so ρ(T ) is unipotent. �

We make a few comments about the proof.

(1) We only really needed to keep track of the action of the subgroup Z ⊂ Gk ∼=
Ẑ generated by Fr ∈ Gk. So could have replaced GK by the preimage of Z
which is the so called Weil group WK . For some things, this seems essential.

(2) N determines the restriction of the representation to J . Writing V =
Hi
et(X,Q`) and suppressing ρ, we can see by an argument similar to the

one above, that

(3) NFr = qFrN

in End(V ). This means that N : V → V (−1) is a morphism of WK-
modules, where V (−1) means that we twist the action by χ.

Before stating the conjecture, I need to recall some terminology. Fix a (highly
noncanonical!) isomorphism ι : Q̄` ∼= C and a prime power q. Let us say that
λ ∈ Q̄` has weight n (with respect to these choices) if |λ| = qn/2. A vector space
equipped with an endomorphism given by some kind of Frobenius action is called
pure3 of weight n if all its eigenvalues have weight n. The point is that the nth
cohomology of a smooth projective variety defined over Fq is pure of weight n
by the Weil conjectures, i.e. Deligne’s theorem [D2]. In our situation, which is
more complicated, Serre and Tate [ST, p 514] asked whether the weights of V =

3Deligne calls this ι-purity in [D3]. There are a number of other variations of this concept.
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Hi
et(X,Q`) lie in [0, 2i]. Deligne refined this, by taking into account the monodromy.

We can decompose V into a sum of (generalized) eigenspaces. Equation (3) implies
that N will map the λ eigenspace of Fr on Hi

et(X,Q`) to the qλ-eigenspace. Since
N is nilpotent, we cannot expect this to be an isomorphism for all λ. However, the
conjecture says that if we arrange the eigenspaces in a clever way then we should
expect N and its powers to induce isomorphisms.

Lemma 1. Given a finite dimensional vector space V with a nilpotent endomor-
phism N , there exists a unique increasing filtration M• such that

(a) NMi ⊂Mi−2

(b) Nr : GrMr V
∼= GrM−rV .

The lemma is probably due to Deligne, but the thing I want to emphasize is
that it is purely a result of linear algebra. When N2 = 0, the filtration is simply
M−1 = im(N), M0 = ker(N), M1 = V .

Conjecture 1 (The Monodromy-Weight conjecture). Let V = Hi
et(X,Q`) and N

as above, then GrMr V is pure of weight i+ r.

To put this another way, this says that Nr induces an isomorphism between the
i+ r and i− r pure subquotients of V .

Theorem 3 (Deligne [D3, 1.8.4]). The conjecture holds when X → S is obtained
from a family of projective varieties over a curve defined over a finite field.

Deligne uses this as a step in his proof of the generalized Weil conjectures. I’m
sure it has many other number theoretic applications as well. Here is an interesting
consequence in topology.

Corollary 1 (Local invariant cycle theorem). Given a family f : X → ∆ over the
disk, the cohomology of the singular fibre Hi(X0,Q) surjects onto the monodromy
invariant part of a smooth fibre Hi(Xt,Q)π1(∆∗).

Proof. [D3, 3.6.1] + [A] + specialization to finite fields. (This can be, and usually
is, proved more directly using limit mixed Hodge structures, cf [GS].) �

I’m going to try to explain a small piece of the proof of the above theorem.
Let X → Y be a projective morphism of smooth separated Fq schemes of finite
type, with dimY = 1. Let j : U → Y be an open set over which f is smooth.
Let Z = Y − U . Choose a closed point y ∈ Z, let R be the Henselization of
Oy, S = SpecR, K its field of fractions, and X → S is the fibre product. Then
F = Rif∗Q`|U is a lisse sheaf on U , which we extend to X by taking direct image
j∗F . In more prosaic terms, j∗F can be viewed as the family of cohomology spaces
Hi
et(Xu,Q`) for u ∈ U , together with Hi

et(XK ,Q`)I at y and similar things at other
“bad” points. Each of these spaces carries an action of the Frobenius Frw ∈ Gk(w)

at w ∈ Y . By the usual Weil conjectures (i.e. Deligne’s theorem [D2]) these spaces
are pure of weight i when w ∈ U . Deligne calls this property pointwise purity of
F , and he formulates and proves the theorem for such sheaves. This is useful, since
it allows it allows him to modify F as the proof proceeds. We need to understand
what happens at points of Z for the extension j∗F . We can assume without loss
of generality that X is affine, so the 0th compactly supported cohomology of j∗F
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vanishes. Then the Grothendieck-Lefschetz trace formula expresses the L-function∏
u∈U

det(1− Frutdeg u,F)−1

︸ ︷︷ ︸
A

∏
z∈Z

det(1− Frztdeg z, j∗F)−1

︸ ︷︷ ︸
B

=
det(1− Fr t,H1

c (X, j∗F))

det(1− Fr t,H2
c (X, j∗F))

The information about eigenvalues at u ∈ U can be used to show that first factor
labelled A has no zeros or poles in the region |t| < q−i/2−1, and the right side has
no poles in the same region. Thus we may conclude that the second factor B on
the left has no poles in this region. We can use this to bound the eigenvalues λ
of Frz on j∗F for z ∈ Z by |λ| ≤ (qdeg z)i/2+1, or equivalently logQ |λ| ≤ i/2 + 1

where Q = qdeg z. By applying this to the nth tensor powers of F , he gets a similar
estimate on λn, whence

(4) logQ |λ| =
1

n
logQ |λn| ≤

i

2
+

1

n
→ i

2

This provides the basic foothold. It is now remains to refine this. To explain the
rest of the proof, suppose for simplicity that N2 = 0. We reduce the case where the
weights of on Fu, u ∈ U are 0 by twisting by a suitable character (when i is even we
can use a power of the cyclotomic character, in general see [D3, 1.2.7]), Then we just
have to check that the eigenvalues of Fry on GrMj satisfy |λ| = qj/2 for j = −1, 0, 1.

In fact, it is enough to treat the cases j = −1, 0, because GrM1
∼= GrM−1(−1). Then

(4) gives the estimate |λ| ≤ 1 on the eigenvalues of Fry on (j∗F)y = kerN = M0.
This bound applies to GrM0 . Applying the same reasoning to the dual F∗ gives
the opposite |λ| ≥ 1 on GrM0 , which takes care of this case. For GrM−1, we can also
apply the estimate |λ| ≤ 1. However, this can be dramatically improved by noting
that on the square F⊗F , GrM−1⊗GrM−1(−1) is a summand of GrM0 . Thus |λ2q| ≤ 1

or |λ| ≤ q−1/2. Dualizing gives the opposite inequality as before.

Building on this, Ito [I] and Scholze [Sc] proved

Theorem 4 (Ito). Conjecture 1 holds when char R = char R/m.

Theorem 5 (Scholze). Conjecture 1 holds when char R = 0 and X is a set theoretic
complete intersection in a smooth projective toric variety.

It may be worth remarking that the last condition, of being a complete inter-
section in a smooth projective toric variety, does impose strong restrictions. For
example, by weak Lefschetz, Hi

et(XK̄ ,Z`) = 0 when i is odd and different from
dimXK̄ .

Finally, I should mention that an earlier case of the conjecture, for relative
dimension 2 in mixed characteristic, was done by Rapoport and Zink [RZ].
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