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Preface

This volume grew out of lectures that I gave on several occasions. First versions
of the manuscript were prepared as handouts for students and later, in 2005,
became a preprint of the Collaborative Research Center Geometrical Structures in
Mathematics at the University of Miinster.

The present Lecture Notes Volume is a revised and slightly expanded version
of the earlier preprint. Although I kept the lecture-style presentation, I added more
motivation on basic ideas as well as some fundamental examples. To make the text
virtually self-contained, the theory of completed tensor products was included in a
separate appendix.

It is a pleasure for me to express my gratitude to students, colleagues and,
particularly, to M. Strauch for their valuable comments and suggestions. Also I
would like to thank the referees for their constructive remarks which, finally, made
the text more complete and easier to digest.

Miinster, Germany Siegfried Bosch
February 2014
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Chapter 1
Introduction

Analytic Functions over Non-Archimedean Fields

Classical rigid geometry may be viewed as a theory of analytic functions over local
fields or, more generally, over fields that are complete under a non-Archimedean
absolute value; complete means that every Cauchy sequence is converging. For
example, choosing a prime p, the field Q, of p-adic numbers is such a field. To
construct it, we start out from the field Q of rational numbers and complete it with
respect to its p-adic absolute value || ,, which is defined as follows: we set [0|, = 0,
and |x|, = p~" for x € Q* with x = p"{ where a,b,r € Z and p { ab. Then
| - |, exhibits the usual properties of an absolute value, as it satisfies the following
conditions:

x|, =0 x =0,
|xy|p = |x|p|)’|pv

|x+y|p max{|x|pv|Y|p}'

IA

Furthermore, | - |, extends to an absolute value on @, with the same properties.
The third condition above is called the non-Archimedean triangle inequality, it is a
sharpening of the usual Archimedean triangle inequality |x + y| < |x| + |y|.

This way, the field Q, of p-adic numbers might be viewed as an analog of
the field R of real numbers. There is also a p-adic analog C, of the field C of
complex numbers. Its construction is more complicated than in the Archimedean
case. We first pass from Q,, to its algebraic closure Qa,l,lg. The theory of extensions
of valuations and absolute values shows that there is a unique extension of | - |, to
this algebraic closure. However, as Q;lg is of infinite degree over Q,, we cannot

conclude that Q?,lg is complete again. In fact, it is not, and we have to pass from Q?,lg
to its completion. Fortunately, this completion remains algebraically closed; it is the
field C,, we are looking for.

S. Bosch, Lectures on Formal and Rigid Geometry, Lecture Notes 1
in Mathematics 2105, DOI 10.1007/978-3-319-04417-0__1,
© Springer International Publishing Switzerland 2014



2 1 Introduction

After the p-adic numbers had been discovered by Hensel in 1893, there were
several attempts to develop a theory of analytic functions over p-adic fields. At
the beginning, people were just curious about the question if there would exist a
reasonable analog of classical function theory over C. However, later when algebraic
geometry had progressed so that applications to number theory were possible, a
good theory of analytic functions, say over C,, became sort of a necessity. To
explain this, let us look at a typical object of arithmetic algebraic geometry like
a scheme X of finite type over Q or Z. Extending coefficients, we can derive from
it an R-scheme Xg as well as a Q ,-scheme X, for each prime p. There is a local-
global principle, which was already envisioned by Hensel when discovering p-adic
numbers. It says that, in many cases, problems over Q can be attacked by solving
them over R as well as over each field Q,. Some evidence for this principle is given
by the formula

1_[ |x]c=1 for xeQ*

cePU{oo}

where P stands for the set of all primes and |- | is the usual Archimedean absolute
value on Q. So, in the case we are looking at, we have to consider the schemes Xy
and Xgq, for each p. Sometimes it is desirable to leave the algebraic context and to
apply analytical methods. For example, extending coefficients from R to C, we can
pass from X to X¢ and then apply methods of classical complex analysis to X¢. In
the same way it is desirable to develop analytic methods for handling the schemes
Xc, obtained from Xg, by extending Q, to C,.

There is a nice motivating example, due to J. Tate, showing that analytical meth-
ods in the non-Archimedean case can give new insight, when dealing with objects
of algebraic geometry. Let K be an algebraically closed field with a complete non-
Archimedean absolute value | - |, which is assumed to be non-trivial in the sense that
there are elements a € K with |a| # 0, 1; for example, we may take K = C,,.
Then, using ¢ as a variable, look at the algebra

O(K*) = {Zc,@”; c, €K, lim |c,|r’ =0forallr > O}
|v]—o00

VEZ
of all Laurent series that are globally convergent on K*. Viewing @ (K™) as the
ring of analytic functions on K*, we can construct its associated field of fractions
M(K*) = Q(O(K*)) and think of it as of the field of meromorphic functions
on K*.

Now choose an element ¢ € K™* with |¢| < 1, and write M9(K™) for all
meromorphic functions that are invariant under multiplication by ¢ on K*, i.e.

MUK™) = {f € M(K™): f(q)) = f(D}.

Tate made the observation that M?(K*) is an elliptic function field with a non-
integral j-invariant, i.e. with |j| > 1. Furthermore, he saw that the set of K-valued
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points of the associated elliptic curve Ex coincides canonically with the quotient
K*/q”. Elliptic curves that are obtained in this way have been called Tate elliptic
curves since then. As quotients of type K*/q” are not meaningful in the setting of
algebraic geometry, Tate begun to develop a theory of so-called rigid analytic spaces
where such quotients make sense; cf. [T]. In fact, the existence of an analytical
isomorphism of type Ex ~ K*/q” is a characterizing condition for Tate elliptic
curves. The construction of such quotients in terms of rigid spaces will be discussed
in Sect. 9.2.

The nature of Tate elliptic curves becomes more plausible if we look at the
classical complex case. Choose w € C — R and consider I’ = Z & Zw as
a subgroup of the additive group of C; it is called a lattice in C. The quotient
C/I"' makes sense as a Riemann surface; topologically it is a torus, like a life-
belt. Furthermore, the field of meromorphic functions on C/I" may be identified
with the field of I'-periodic meromorphic functions on C. It is well-known that
the set of isomorphism classes of Riemann surfaces of type C/I" is in one-to-one
correspondence with the set of isomorphism classes of elliptic curves over C. In
fact, if p(z) denotes the Weierstral gp-function associated to the lattice I", we can
consider the map

C— Pz, z+— (p(2),9'(2), 1),

from C into the projective plane over C. It factors through C/I" and induces an
isomorphism C/I"” —= E¢ onto an elliptic curve E¢c C ]P%. The defining equation
of Ec in ]P’é is given by the differential equation of the Weierstrall gp-function.
Thus, we see that C/I" is, in fact, an algebraic object. Since the isomorphism
C/Z —=» C* provided by the exponential function induces an isomorphism
C/I' -~ C*/q” for g = >, we can also represent E¢ as the quotient C* /g%,
which is the analog of what we have in the case of Tate elliptic curves.

Returning to the non-Archimedean case, one can prove that, just as in the
classical complex case, isomorphism classes of elliptic curves correspond one-
to-one to isomorphism classes of Riemann surfaces of genus 1 in the sense of
rigid analytic spaces. However, among these precisely the elliptic curves with non-
integral j-invariant are Tate elliptic; all others are said to have good reduction. Tate
elliptic curves may be viewed as the correct analogs of complex tori. However, they
can only be represented from the multiplicative point of view as quotients K*/¢%,
since the additive point of view, as used in the complex case, does not work. The
reason is that the exponential function, if defined at all, does not converge well
enough.

The discovery of Tate elliptic curves was only the beginning of a series of
breathtaking further developments where rigid analytic spaces, or their equivalents,
played a central role. Mumford generalized the construction of Tate elliptic curves
to curves of higher genus [M1], as well as to abelian varieties of higher dimension
[M2], obtaining the so-called Mumford curves in the first and totally degenerate
abelian varieties in the second case. Sort of a reverse, Raynaud worked on the
rigid analytic uniformization of abelian varieties and their duals over complete
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non-Archimedean fields [R2]. As a culminating point, the results of Mumford and
Raynaud served as essential ingredients for the compactification of moduli spaces of
abelian varieties in the book of Faltings and Chai [FC]. All this amply demonstrates
the usefulness of analytic methods in the non-Archimedean case.

However, looking closer at the analytic methods themselves, we will see from
the next section on that it is by no means clear how to define general analytic
functions over non-Archimedean fields. There have been several attempts, among
them Krasner’s theory of analytical elements in dimension 1, but the only approach
that really has survived, is the one chosen by Tate in his fundamental paper Rigid
analytic spaces [T]. This theory was further developed by Grauert, Remmert, Kiehl,
Gerritzen, and others, and is today referred to as classical rigid geometry. It will be
the subject of the first part of these lectures and is described in detail in the book
[BGR], Parts B and C.

From the beginning on it was quite clear that rigid geometry is much closer
to algebraic geometry than to the methods from complex analysis. Therefore it is
not surprising that rigid analytic spaces can be approached via so-called formal
schemes, which are objects from formal algebraic geometry. This point of view
was envisioned by Grothendieck, but has really been launched by Raynaud, who
explained it in the lecture [R1]. The basic idea is to view a rigid space as the generic
fiber of suitable formal R-schemes, so-called formal R-models, where R is the
valuation ring of the base field under consideration. For a systematic foundation
of this point of view see the papers [F I, F II, F III, F IV], as well as the monograph
by Abbes [EGR].

Rigid geometry in terms of formal schemes will be dealt with in the second part
of these lectures. In contrast to classical rigid geometry, this approach allows quite
general objects as base spaces. But more important, one can apply a multitude of
well-established and powerful techniques from algebraic geometry. As a simple
example, the concept of (admissible) blowing-up on the level of formal schemes,
as dealt with in Sect. 8.2, is well suited to replace the manual calculus involving
rational subdomains, one of the corner stones of classical rigid geometry. Another
striking example is the openness of flat morphisms in classical rigid geometry,
see 9.4/2. The proof of this fact is unthinkable without passing to the formal point
of view. One uses the existence of flat formal models for flat morphisms of classical
rigid spaces, see 9.4/1, and then applies the openness of flat morphisms in algebraic
geometry.

To complete the picture, let us have a brief look at the main further branches
that grew out of classical rigid geometry, although these are beyond the scope of
our lectures. The situation is a bit like in algebraic geometry over a field K where,
in the early days, one has looked at points with values in an algebraic closure of
K and then, on a more advanced level, has passed to points with values in more
general domains over K. In fact, a classical rigid space X over a complete non-
Archimedean field K consists of points with values in an algebraic closure of K.
Furthermore, X carries a canonical topology inherited from the base field K
which, however, is totally disconnected. It is a consequence of Tate’s Acyclicity
Theorem 4.3/10 that any reasonable notion of structure sheaf on X requires the
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selection of certain admissible open subsets of X and of certain admissible open
coverings of the admissible open subsets of X by sets of the same type. Sheaves
on X are then considered relative to this additional structure, referred to as a
Grothendieck topology, that completely replaces the use of ordinary topologies. It
is this concept of employing Grothendieck topologies that corresponds to Tate’s use
of the label rigid for his analytic spaces.

The need to consider a Grothendieck topology instead of an ordinary topology
entails certain inconveniences. For example, there can exist non-zero abelian
sheaves on a rigid space, although all their stalks are zero. This is a clear indication
for the fact that there are not enough points on such a rigid space and that additional
points should be included. The first one to pursue the idea of looking for more
general points was Berkovich; see [Bel]. He started considering points with values
in fields that are equipped with a non-Archimedean R-targeted absolute value, also
referred to as a rank 1 absolute value. Thereby one gets a Hausdorff topology with
remarkable properties on the resulting rigid spaces that nowadays are referred to
as Berkovich spaces. In view of their pleasant topological properties such spaces
have become quite popular, although the construction of global Berkovich spaces
by means of gluing local parts is not as natural as one would like; see [Be2]. A more
rigorous approach to enlarge the point set underlying a rigid space was launched by
Huber [H], who replaced rank 1 absolute values by those of arbitrary rank. Just as
before, the resulting rigid spaces, called Huber spaces, come equipped with a true
topology which, however, will be non-Hausdorff in general.

There is a totally different approach to the problem of setting up an appropriate
scene on a classical rigid space. It is based on the formal point of view and remedies
many of the shortcomings we have to accept otherwise. Namely, starting out from
a classical rigid space X one considers the projective limit (X) = Ligly over all
formal models X of X. This is the so-called Zariski—-Riemann space associated to
X, as suggested by Fujiwara [F] and Fujiwara—Kato in the forthcoming book [FK].
In a certain sense, the Zariski—Riemann space of X is equivalent to the Huber space
associated to X, while the corresponding Berkovich space may be viewed as the
biggest Hausdorff quotient of (X ). This way we can say that the approach to rigid
geometry through formal schemes, as presented in the second part of these lectures,
is at the heart of all derivatives of classical rigid geometry, although the books
of Berkovich [Bel] and of Huber [H] provide direct access to the corresponding
theories without making use of methods from formal geometry. But let us point out
that, in order to access any advanced branch in rigid geometry, a prior knowledge of
Tate’s classical theory is indispensable or, at least, highly advisable.
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Chapter 2
Tate Algebras

2.1 Topology Induced from a Non-Archimedean
Absolute Value

We start by recalling the definition of a non-Archimedean absolute value.

Definition 1. Let K be a field. Amap |-|: K — Rx¢ is called a non-Archimedean
absolute value if for all a,b € K the following hold:

Q) la| =0 = a=0,
(ii) |ab| = lal|b],
(i) |a + b| < max{|al,|b|} .

One can immediately verify trivialities such as |1| = 1 and | — a| = |a|. To an
absolute value as above one can always associate a valuation of K. This is a map
v: K —— R U {00} satisfying the following conditions:

1) vie) =0 <= a=0
(i1) v(ab) = v(a) + v(b)
(iii) v(a + b) = min{v(a), v(b)}

Just let v(a) = —logla| for @ € K. This sets up a one-to-one correspondence
between non-Archimedean absolute values and valuations, as we can pass from
valuations v back to absolute values by setting |a| = e for a € K. Frequently,
we will make no difference between absolute values and valuations, just saying that
K is a field with a valuation. An absolute value | - | is called trivial if it assumes
only the values 0,1 € R. It is called discrete if | K*| is discrete in R.q. Likewise
a valuation is called trivial if v(K*) = {0}, and discrete if v(K™) is discrete in R.
Unless stated otherwise, we will always assume that absolute values and valuations
on fields are non-trivial.

In the following, let K be a field with a non-Archimedean absolute value | - |. As
usual, the absolute value gives rise to a distance function by setting d(a, b) = |a—b|

S. Bosch, Lectures on Formal and Rigid Geometry, Lecture Notes 9
in Mathematics 2105, DOI 10.1007/978-3-319-04417-0_2,
© Springer International Publishing Switzerland 2014



10 2 Tate Algebras

and, thus, to a topology on K. Furthermore, we can consider sequences or infinite
series of elements in K and define their convergence as in the Archimedean case.
In particular, K is called complete if every Cauchy sequence converges in K.

It has to be pointed out, however, that the non-Archimedean triangle inequality in
Definition 1 (iii) has far reaching consequences.

Proposition 2. Let a,b € K satisfy |a| # |b|. Then

la + b] = max{|al,|b|}.

Proof. Assume |b| < |a|. Then |a + b| < |a| implies
la| = |(a +b) —b| < max{|a + b|, |b|} < lal,
which is impossible. So we must have |a +b| = |a| = max{|a], |b|} as claimed. O

Lemma 3. A series ZSOZO a, of elements a, € K is a Cauchy sequence if and only
if the coefficients a, form a zero sequence, i.e. if and only if lim,_, o |a,| = 0.
Hence, if K is complete, the series is convergent if and only if lim, o |a,| = 0.

Proof. Choose ¢ > 0. We have to show there exists an integer N € N such that
>/ _.a,| < eforall j >i > N.Aslim_e |a,] = 0, we know there is an
N € N such that |a,| < & for all v > N. But then, for any integers j > i > N,
an iterated application of the non-Archimedean triangle inequality yields

j
1> ay| < max |a,| <e,
/ v=i..j
V=i

which had to be shown. ad

In terms of distances between points in K, the non-Archimedean triangle
inequality implies

d(y.z) <max{d(x,y),d(x,2)}  forx,y,z€K,

where this inequality is, in fact, an equality if d(x, y) is different from d(x, z); cf.
Proposition 2. In particular, given any three points in K, there exists one of them
such that the distances between it and the two remaining points coincide. In other
words, any triangle in K is isosceles. Furthermore, we can conclude that each point
of a disk in K can serve as its center. Thus, if an intersection of two disks is non-
empty, we can choose a point of their intersection as common center, and we see
that they are concentric.



2.1 Topology Induced from a Non-Archimedean Absolute Value 11

For a center ¢ € K and a radius r € R.( we can consider the disk around a
without periphery

D™ (a,r) ={x e K:d(x,a) <r},

which is open as well as closed in K; it is symbolically referred to as the open disk
around a with radius r. Similarly, we can consider the same disk with periphery,
namely

Dt (a,r) = {x € K;d(x,a) < r}.

It is open and closed just as well and symbolically referred to as the closed disk
around a of radius r. In addition, there is the periphery itself, namely

dD(a,r) = {x eK;d(x,a) = r}.

Certainly, it is closed, but it is also open since, due to Proposition 2, we have
D~ (x,r) C dD(a,r) for any x € dD(a,r). It is for this reason that the periphery
aD(0, 1) is sometimes called the unit tire in K.

The preceding considerations show another peculiarity of the topology of K:

Proposition 4. The topology of K is totally disconnected, i.e. any subset in K
consisting of more than just one point is not connected.

Proof. Consider an arbitrary subset A C K consisting of at least two different points
x,y.Foré§ = %d(x,y), set Ay = D7 (x,8) N Aand A, = A — A,. Then A, is
relatively open and closed in A4, and the same is true for A,. Furthermore, A4 is the
disjoint union of the non-empty open parts A; and A,. Consequently, A cannot be
connected with respect to the topology induced from K on A. O

We may draw some conclusions from the latter observation. Writing [0, 1] for the
unit interval in R, there cannot exist non-constant continuous paths [0, 1] — K.
Consequently, there is no obvious way to define line integrals, and it is excluded
that there exists a straightforward replacement for classical complex Cauchy theory,
providing the link between holomorphic and analytic functions. In fact, the concept
of holomorphic functions, defined through differentiability, and that of analytic
functions, defined via convergent power series expansions, differs largely. On the
other hand, it should be admitted that in certain contexts notions of integrals and
also line integrals have been developed.

Without making it more precise, we mention that a definition of holomorphic
functions via differentiability is not very rewarding. The class of such functions is
very big and does not have good enough properties. So the only approach towards
a reasonable “function theory” over non-Archimedean fields that might be left, is
via analyticity, i.e. via convergent power series expansions. However, it is by no
means clear how to proceed with analyticity. Let us call a function f:U —— K
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defined on some open subset U C K locally analytic if it admits a convergent
power series expansion locally around each point x € U. Then we cannot expect
any identity theorem for such functions, since non-empty open subsets of K are
not connected. For example, let us look at the case where U is a disk D~(0, 1) or
D*(0,1). Choosing a radius r with 0 < r < 1, we may write

U=|JD (a.r)

aceU

and get from it a partition of U into disjoint disks. On each of these disks, let’s
call them D;,i € I, we can consider an arbitrary convergent power series f;. Then
f:U —— K defined by f|p, = f; is locally analytic. In particular, we can take
the f; to be constant, and it follows that, on disks, locally analytic functions do
not necessarily admit globally convergent power series expansions. This shows that
locally analytic functions cannot enjoy reasonable global properties.

The basic principle of rigid analytic geometry is to require that analytic functions
on disks admit globally convergent power series expansions. We will discuss the
details of the precise definition in subsequent sections.

2.2 Restricted Power Series

As always, we consider a field K with a complete non-Archimedean absolute
value that is non-trivial. Let K be its algebraic closure. We will use the results of
Appendix A, namely that the absolute value of K admits a unique extension to K
and that, although K itself might not be complete, this absolute value nevertheless
is complete on each finite subextension of K /K. For integers n > 1 let

B"(K) = {(xl,...,xn) e K"; |xi| < 1}
be the unit ball in K".

Lemma 1. A formal power series

f=Y a0 = et by e K[G.... 0]

veN” veEN”
converges on B" (K) if and only if lim}y| o0 cv| = 0.

Proof. If f is convergent at the point (1,...,1) € B"(K), the series >, 6 s
convergent, and we must have lim),|— |cy| = 0 by 2.1/3. Conversely, considering
a point x € B"(K), there is a finite and, hence, complete subextension K’ of K/K
such that all components of x belong to K’. Then, if lim),| o |¢y| = 0, we have
lim,|— o0 |cy][x"| = 0, and f(x) is convergent in K" C K by 2.1/3, again. |
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Definition 2. The K-algebra T,, = K({1,...,C,) of all formal power series

Y ol €Kl o €K, lim |e,| =0,

|v]—o00
veEN”

thus, converging on B"(K), is called the Tate algebra of restricted, or strictly
convergent power series. By convention we write Ty = K.

That 7, is, in fact, a K-algebra is gisily checi«:d. Also it is clear that the canonical
map from T, to the set of maps B"(K) —— K is a homomorphism of K-algebras.
We define the so-called Gauf3 norm on T, by setting

|f| = max|e,| for f = ché'v'

It satisfies the conditions of a K-algebra norm, i.e. forc € K and f, g € T,, we have
|[fl=0= f =0,
lcf1 = lell f1,
Ifgl = 1/1gl,
|f + gl < max{| f].]gl}.

where, strictly speaking, only the submultiplicativity |fg| < |f||g| would be
required for a K-algebra norm. In particular, it follows from the multiplicativity
in the third line that 7, is an integral domain. The stated properties of the norm | - |
are easy to verify, except possibly for the multiplicativity. Note first that we have
Ifgl < |f|lg] for trivial reasons. To show that this estimate is, in fact, an equality,
we look at the valuation ring R = {a € K ; |a| < 1} of K; it is a subring of K
with a unique maximal ideal m = {a € K ; |a| < 1}. Thus, kK = R/m is a field,
the residue field of K, and there is a canonical residue epimorphism R — k,
which we will indicate by a —— @. Denoting by R((y,...,{,) the R-algebra of
all restricted power series f € T, having coefficients in R or, equivalently, with
| f] < 1, the epimorphism R —— k extends to an epimorphism

TR L) — k[G ] D el e Y &
For an element f € R(¢y,...,¢,) we will callf: 7 (f) the reduction of f. Note
that f = 0 if and only if | f| < 1. Now consider f,g € T, with | f| = |g| = 1.
Then f, g, and fg belong to R(¢y, ..., ,), and we have

n(fg) = f§ #0,

since K[y, ..., ¢,] is an integral domain. But then we must have |fg| = 1.
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For general f, g € T, the assertion |fg| = | f||g]| holds for trivial reasons if f
or g are constant. If both, f and g are non-constant, we can write f = c¢f’ and
g =dg' with | f| = |c|, |g] = |d|.and | f'] = |g'| = 1. Then

Ifel = ledf'g'| = lcd|| f'¢'] = |elld] = | fllgl.
which we had to show.

Proposition 3. T, is complete with respect to the Gauf3 norm. So it is a Banach
K-algebra, i.e. a K-algebra that is complete under the given norm.

Proof. Consider a series Y ;o f; with restricted power series f; = Y., ¢;,{" € T,
satisfying lim; oo f; = 0. Then, as |¢;,| < | f;|, we have lim; o |¢;,,| = O for all
v so that the limits ¢, = Y ;o ¢, exist. We claim that the series f = Y ¢,¢" is
strictly convergent and that f = Y 72/ fi.

Choose ¢ > 0. As the f; form a zero sequence, there is an integer N such that
|civ| < e for all i > N and all v. Furthermore, as the coefficients of the series
fo,--., fn—1 form a zero sequence, almost all of these coefficients must have an
absolute value smaller than . This implies that almost all of the absolute values
|ciy| with arbitrary i and v are smaller than & and, hence, that the elements c;,
form a zero sequence in K (under any ordering). Now, using the fact that the non-
Archimedean triangle inequality generalizes for convergent series to an inequality
of type

< ,max |ay|,

g

we see immediately that the power series f belongs to 7, and that f = Y 72 f;.
O

With the help of Proposition 3 we can easily characterize units in 7,,.

Corollary 4. A series f € T, with | f| = 1 is a unit if and only if its reduction
f € k[C1,....C,] is a unit, i.e. if and only if ]7 € k*. More generally, an arbitrary
series [ € T, is a unit if and only if | f — f(0)| < | f(0)|, i.e. if and only if the
absolute value of the constant coefficient of f is strictly bigger than the one of all
other coefficients of f .

Proof. 1t is only necessary to consider elements f € T, with GauB norm 1. If f
is a unit in T}, it is also a unit in R(¢y,...,&,). Then £ is a unit in k[¢y, ..., ¢,]
and, hence, in k*. Conversely, if ]7 € k*, the constant term f(0) of f satisfies
| f(0)] = 1, and we may even assume f(0) = 1. Butthen f isoftype f =1—g
with [g| < 1,and Y72, g’ is an inverse of f. O
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Proposition 5 (Maximum Principle). Let f° € T,. Then | f(x)| < | f| for all points
x € B"(K), and there exists a point x € B"(K) such that | f (x)| = | f].

Proof. The first assertion is trivial. To verify the second one, assume | f| = 1 and
consider again the canonical epimorphism 7: R{(¢y,..., () —— k[C1,...,C0].
Then f = s (f) is a non-trivial polynomial in n variables, and there exists a point
% € k" with k the algebraic closure of k, such that f (%) # 0. The theory of
valuations and absolute values shows that k may be interpreted as the residue field
of K, the algebraic closure of K. Writing R for the valuation ring of K and choosing
a lifting x € B”(K) of ¥, we can consider the commutative diagram

R(C1 .o Cn) — k[C1... . Cal
k

where the first vertical map is evaluation at x and the second one evaluation at X.
As f(x) € R is mapped onto f(X¥) € k and the latter is non-zero, we obtain
| f(x)| =1 =|f], which had to be shown. |

R

The Tate algebra 7, has many properties in common with the polynomial ring
in n variables over K, as we will see. The key tool for proving all these properties
is Weierstrafs theory, which we will explain now and which is quite analogous to
Weierstrall theory in the classical complex case. In particular, we will establish
Weierstrafs division, a division process similar to Euclid’s division on polynomial
rings. In Weierstral} theory the role of monic polynomials is taken over by so-called
distinguished restricted power series, or later by so-called Weierstraf3 polynomials.

Definition 6. A restricted power series g = ZSO:O gv¢, € T, with coefficients
gy € T,— is called ¢,-distinguished of some order s € N if the following hold:
(1) gsisaunitin T,—.

(i) |gs| = |gland|gs| > |gu|forv > s.

In particular, if g = > 00 ) g,¢” satisfies |g| = 1, then g is {,-distinguished of
order s if and only if its reduction g is of type

g = gsg,; + gs—lg}i_l +...+ §o§,‘f

with a unit g; € k*; use Corollary 4. Thereby we see that an arbitrary series g € T,
is £, -distinguished of order 0 if and only if it is a unit. Furthermore, for n = 1, every
non-zero element g € 7} is ¢;-distinguished of some order s € N.



16 2 Tate Algebras

Lemma 7. Given finitely many non-zero elements fi,...,f, € T,, there is a
continuous automorphism

i + % fori <n
0:Ty, — Ty, é‘i — é‘l é‘n
Ln fori =n
with suitable exponents ay, . ..,0,—1 € N such that the elements o(f1),...,0(f;)

are &,-distinguished." Furthermore, |o(f)| = | f| forall f € T,.

Proof. 1t is clear that we can define a continuous K-homomorphism o of 7, by
mapping the variables ¢; as indicated in the assertion. Then

T, T.. i G —¢yi fori <m
I fori =n

defines an inverse o~ of o, and we see that both homomorphisms are isomor-
phisms. As |o(f)| < |f]| for all f € T, and a similar estimate holds for 0!, we
have, in fact, |0 (f)| = | f| forall f € T,.

We start with the case where we are dealing with just one element f € T,.
Assuming | f| = 1, we can consider the reduction fof f, say ]7 = ey G’
where N is a finite subset of N”. Discarding all trivial terms of this sum, we may
assume that N is minimal, i.e. that ¢, # 0 for all v € N. Now choose ¢ greater than
the maximum of all v; occurring as a component of some v € N, and consider the
automorphism o of 7, obtained from ¢y = "', ..., @,_; = t. Its reduction & on
k[¢C1,...,¢,] satisfies

F() =Y G+ 5" Gar + Gy

vEN
— Z 5V§31v1+...+an_1vn_|+v,, + g,
vEN
where g € k[{1,...,¢,] is a polynomial whose degree in ¢, is strictly less than
the maximum of all exponents o;v; + ... + @y—1v,—; + v, with v varying over
N. Due to the choice of «y, ..., o,—, these exponents are pairwise different and,

hence, their maximum s is assumed at a single index v € N. But then
5(]7) = ¢y¢) + apolynomial of degree < sin ¢,.

As 5 # 0, it follows that o ( f) is {,-distinguished of order s.

"Later, in 3.1/20, we will see that homomorphisms of Tate algebras are automatically continuous.
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The general case of finitely many non-zero elements f1, ..., f, € T, is dealt with
in the same way. One just has to choose ¢ big enough such that it works for all f;
simultaneously. O

The reason for considering distinguished elements in 7, is that there is Weierstraf3
division by such elements, which is the analog of Euclid’s division on polynomial
rings.

Theorem 8 (Weierstrall Division). Let g € T, be {,-distinguished of some order s.
Then, for any f € T,, there are a unique series q € T, and a unique polynomial
r € T,—1[¢,] of degree r < s satisfying

f =qg+r.
Furthermore, | f| = max(|g||g|.|r]).

Proof. Without loss of generality we may assume |g| = 1. First, let us consider an
equation f = gg + r of the required type. Then, clearly, | f| < max(|q||g|, |r])-
If, however, | f| is strictly smaller than the right-hand side, we may assume that
max(|q||g|, |r]) = 1. Then we would have §g+7 = 0 with g # 0 or 7 # 0, and this
would contradict Euclid’s division in k [{1, . .., {,—1][{,]. Therefore we must have
| f] = max(|q||g|, |r|), and uniqueness of the division formula is a consequence.

To verify the existence of the division formula, we write g = Y °2  g,¢) with
coefficients g, € T,_; where g; is a unit and where |g,| < |g;| = |g| = 1 for
v > 5. Set & = max,~; |g,| so that ¢ < 1. We want to show the following slightly
weaker assertion:

(W) For any f € T,, there exist q, fi € T, and a polynomial r € T,_,[{,] of
degree < s with

f=qg+r+ fi,
lgl.1r| < | f1, [fil <elfl

This is enough, since proceeding inductively and starting with f; = f, we obtain
equations

fi=qig +ri + fit1, i €N,
lgil. [ri| < &' 1, | fivl <& £

and, hence, an equation

r=(Ca)e ()

0 (o]
i=0 i=0
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as required. To verify the assertion (W), we may approximate f by a polynomial
in T,—1[¢,] and thereby assume f € T,_[{,]. Furthermore, set g’ = > ;_, g:¢’,
where now g’ is a polynomial in ¢, that is ¢,-distinguished of order s and satisfies
|g’| = 1. Then Euclid’s division in T,,—;[{,] yields a decomposition

f=qg +r

with an element ¢ € T, and a polynomial r € T,,_[(,] of degree < s. As shown
above, | f| = max(|q|, |r|). But from this we get

f=qg+r+ fi

with fi = qg’ —qg. As [g — g'| = e and |g| < |f], we have | fi| < &| f], and we
are done. O

Corollary 9 (Weierstral Preparation Theorem). Let g € T, be {,-distinguished of
order s. Then there exists a unique monic polynomial w € T,_[{,] of degree s such
that g = ew for a unit e € T,. Furthermore, |w| = 1 so that w is {,-distinguished
of order s.

Proof. Applying the Weierstral division formula, we get an equation
n=4qg+r

with a series ¢ € T, and a polynomial r € T,,_; [, ] of degree < s that satisfies |r| <
1. Writing @ = ) —r, we see that w = gg satisfies || = 1 and is {,-distinguished
of order s. To verify the existence of the asserted decomposition of g, we have to
show that ¢ is a unit in 7;,. Assuming |g| = |¢| = 1, we can look at the equation
@ = g g obtained via reduction. Then both, @ and g, are polynomials of degree s in
¢y, and it follows that ¢ is a unit in k*, as @ is monic. But then ¢ is a unit in 7}, by
Corollary 4.

To show uniqueness, start with a decomposition g = ew. Defining r = { — o,
we get

(=gt

which by the uniqueness of Weierstra division shows the uniqueness of e~ and r
and, hence, of ¢ and w. m|

Corollary 10. The Tate algebra Ty = K (1) of restricted power series in a single
variable ¢y is a Euclidean domain and, in particular, a principal ideal domain.

Proof. Every non-zero element g € T is ¢;-distinguished of a well-defined order
s € N. Thus, in view of WeierstraB division, the map 77 —{0} — N that associates
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to g its order s of being distinguished is a Euclidean function. It follows that 77 is a
Euclidean domain and, in particular, a principal ideal domain. O

Monic polynomials w € T,,—1[{,] with |w| = 1, as occurring in Corollary 9, are
called Weierstraf3 polynomials in ¢,. So each {,-distinguished element f € T, is
associated to a Weierstral polynomial. Furthermore, if f is an arbitrary non-zero
element in T,, we can assume by Lemma 7 that the indeterminates ¢, ...,¢, € T,
are chosen in such a way that f is ¢,-distinguished of some order s.

Corollary 11 (Noether Normalization). For any proper ideal a & T,, there is a
K-algebra monomorphism T; — T, for some d € N such that the composition
Ty —— T, —— T,/a is a finite monomorphism. The integer d is uniquely

determined as the Krull dimension of T, /a.

Proof. Assuming a # 0, we can choose an element g # 0 in a. Furthermore,
applying a suitable automorphism to 7,, we can assume by Lemma 7 that g is
,-distinguished of some order s > 0. By Weierstrall division we know that any
f € T, is congruent modulo g to a polynomial r € T,_;[{,] of degree < s. In
other words, the canonical morphism 7,,_; — T,, —— T,,/(g) is finite; in fact
using the uniqueness of WeierstraB division, 7;,/(g) is a free T,,—1-module generated
by the residue classes of £0, ..., 571

Now consider the composition 7,y — T,,/(g) — T, /a and write a, for its
kernel. If a; = 0, we are done. Else we can proceed with a; and 7,,—; in the same
way as we did with a and 7,,. Then, as the composition of finite morphisms is finite
again, we will get a finite monomorphism 7, — T, /a after finitely many steps.

Finally, it follows from commutative algebra, see [Bo], 3.3/6, that the Krull
dimension of T, /a coincides with the one of T,;. However, the latter equals d, as
we will see below in Proposition 17. O

Looking at the proof of Corollary 11, it should be pointed out that the resulting
monomorphism 7; — T,,/a does not necessarily coincide with the canonical one
sending ¢; € T, to the residue class of ¢; in T,,/a. In fact, this canonical morphism
will, in general, be neither injective nor finite, as can be seen from simple examples.

Corollary 12. Let m C T, be a maximal ideal. Then the field T, /m is finite over K.
Proof. Using Noether normalization, there is a finite monomorphism 7; < T,,/m

for a suitable d € N. As T,,/m is a field, the same is true for 7,;. So we must have
d = 0and, hence, T; = K. O

A direct consequence of Corollary 12 is the following:

Corollary 13. The map
B"(K) —» MaxT,, x+——>m,={f¢€T,;f(x)=0},

from the unit ball in K" to the set of all maximal ideals in T, is surjective.
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Proof. Evaluation of functions f € T, at a point x = (x1,...,x,) € B"(K)
defines a continuous epimorphism ¢,:7, — K(x, ..., x,). Thus its kernel,
which equals m,, is a maximal ideal in 7,,.

Conversely, given any maximal ideal m C T,, the field K’ = T,/m is finite
over K by Corollary 12, and we can choose an embedding K’ —— K. We claim
that the resulting map ¢: 7, — K is contractive in the sense that |p(a)| < |a]
for all a € T,. Proceeding indirectly, we assume there is an element a € T, with
|@(a)| > |a|. Then a # 0, and we may assume |a| = 1. Write ¢ = ¢(a), and let

p =n"+ecn ™ +... +c € Kn]

be the minimal polynomial of o over K. If «y, ..., «, denote the (not necessarily
pairwise different) conjugates of @ over K, we have

p) =[]0 —ep.
j=1

All fields K(«;) are canonically isomorphic to K(«). As K is complete and the

absolute value of K extends uniquely to K(a), we get |o;| = |« for all j. In
particular, we have |¢,| = |«|" and
lejl < el <lal” =le;|  forj<r

as |a| > 1. Then, by Corollary 4, the expression p(a) = a” +cja’ ' +...+c,isa
unit in 7}, and, consequently, it must be mapped under ¢ to a unitin K’ C K. On the
other hand, the image ¢(p(a)) is trivial, as it equals ¢(p(a)) = p(a) = 0. Thus, we
obtain a contradiction and therefore have |p(a)| < |a| for all a € T,,. From this it
follows in particular, that ¢: 7, — K is continuous. But then, setting x; = ¢(¢;)
fori = 1,...,n, itis clear that the point x = (xy,..., x,) belongs to B"(f), that
¢ coincides with ¢, and, hence, that m = m(y, ). O

We want to end this section by deriving some standard properties of 7,.
Proposition 14. 7, is Noetherian, i.e. each ideal a C T, is finitely generated.

Proof. Proceeding by induction, we can assume that 7,_; is Noetherian. Now,
consider a non-trivial ideal a C T,,. Then we can choose a non-zero element g € a
that, using Lemma 7, can be assumed to be ¢,-distinguished. By Weierstra$ division,
T,/(g) is a finite T, _;-module and, hence, a Noetherian T,_;-module, as T,_;
is Noetherian. Consequently, a/(g) is finitely generated over T,—; and, thus, a is
finitely generated on T,. O

Proposition 15. T, is factorial and, hence, normal, i.e. integrally closed in its field
of fractions.
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Proof. Proceeding by induction, we may assume that 7,,_; is factorial and, hence,
by the Lemma of GauB, that T,,_;[{,] is factorial. Consider a non-zero element
f € T, that is not a unit. Again, by Lemma 7, we may assume that f is
{,-distinguished and, by Corollary 9, that f is, in fact, a Weierstra} polynomial.
Now consider a factorization f = w; ..., into prime elements w; € T,—;[{,].
As f is a monic polynomial in £,, we can assume the same for wy, ..., ®,. Then,
as |w;| > 1, we have necessarily |w;| = 1 for all i, since | f| = 1. So the w; are
Weierstrall polynomials.

It remains to show that the w;, being prime in 7;,—1[{, ], are prime in T}, as well.
To verify this, it is enough to show for any WeierstraBl polynomial w € T, [{,] of
some degree s that the canonical morphism

Th—1 B'n]/(a)) - ,1/(60)

is an isomorphism. However this is clear, since both sides are free 7,,—;-modules
generated by the residue classes of ;‘2, el ;j_l, the left-hand side by Euclid’s
division and the right-hand side by Weierstral}’ division. So 7, is factorial.

To see that this implies 7, being normal, consider an integral equation

r r—1
(i) +a1(i) +...4+a=0
g g

for some fraction % € Q(T,) of elements f, g € T, and coefficients a; € T,,. Using
the fact that 7, is factorial, we may assume that the gcd of f and g is 1. But then,
since the equation

ff+af'g+.. . +ag =0

shows that any prime divisor of g must also divide f, it follows that g is a unit and,
hence, thatf eT,. O

Proposition 16. T, is Jacobson, i.e. for any ideal a C T, its nilradical rad a equals
the intersection of all maximal ideals m € Max T, containing a.

Proof. One knows from commutative algebra that the nilradical rad a of any ideal
a C T, equals the intersection of all prime ideals in 7, containing a. So we have
only to show that any prime ideal p C T, is an intersection of maximal ideals.

First, let us consider the case where p = 0. Let f € [, cmaer, ™ Then, by
Corollary 13, f vanishes at all points x € B”(K), and it follows f = 0 by
Proposition 5.

Next assume that p is not necessarily the zero ideal. Then, using Noether
normalization as in Corollary 11, there is a finite monomorphism 7; —— T, /p
for some d € N. One knows from commutative algebra that over each maximal
ideal m C T, there is a maximal ideal m’ C T,/p with m’ N T; = m. Thus,
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if ¢ C T, /p is the intersection of all maximal ideals in 7,,/p, we know g N Ty = 0.
Now, if q is non-zero, we can choose a non-zero element f € q. Let

ff+af"4+... +a =0

be an integral equation of minimal degree for f over T;. Then a, # 0. On the other
hand, we see that

ar=—f"—a1fr_l—---—arflfquTd=O

and, hence, is trivial. Thus, we must have f = 0 and therefore ¢ = 0, which
concludes our proof. O

Proposition 17. Every maximal ideal m C T, is of height n and can be generated
by n elements. In particular, the Krull dimension of T, is n.

Proof. Assume n > 1 and let m C 7, be a maximal ideal. We claim that
n = m N T, is a maximal ideal in 7,—,. Indeed, look at the derived injections
K —— T,_i/n —— T, /m. Since T, /m is finite over K by Corollary 12, the
same is true for 7,,—; /n. Then it follows from commutative algebra that 7,,_; /nis a
field. Therefore n is a maximal ideal in 7,,—;.

As the field 7,—;/n is finite over K, it carries a unique complete absolute value
| - | extending the one of K, just as is the case for 7, /m. Furthermore, we see
from Corollary 13 and its proof that the projections ¢’: T,y —— T,,—;/n and
¢: T, — T, /m are contractive in the sense that |¢’(a’)| < |a’| and |@(a)| < |a|
for all @’ € T,—; and a € T,. Therefore we can look at the following canonical
commutative diagram of continuous K-algebra homomorphisms

Tn—l(é‘n) Tn

w/l q)l (%)

(Tn—1/m){n) . Ty/m

where m maps ¢, onto its residue class in 7,,/m. We claim that ¢’ is surjective
and that its kernel is the ideal n7,, generated by n in 7,,_1(¢,) = T,. Then, since
(T,—1/n){&,) is an integral domain, it follows that n7}, is a prime ideal in 7},.

For the surjectivity of ¢’ we need to know that any zero sequence in T,,—;/n can
be lifted to a zero sequence in 7,,—;. This assertion can be derived from general
arguments on affinoid K-algebras in Sect. 3.1, or it can be obtained by a direct
argument as follows. Since 7,,—;/n is a finite-dimensional K-vector space, we can
choose a K-basis uy, ..., u, onit. Defining a norm on 7,,_; /n by setting

= max |¢], ¢; € K,
i=l1,..r
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we conclude from Theorem 1 of Appendix A that this norm is equivalent to the
given absolute value on 7,,_; /n. But then, choosing representatives of u, ..., u, in
T,—1, itis easy to lift zero sequences in 7,,_; /n to zero sequences in 7,,_;. Therefore
the homomorphism ¢’ of the above diagram will be surjective.

It remains to look at the kernel of ¢’. It consists of all restricted power series
[ =302, /&) € T,—1({,) with coefficients f, € n. In particular, we see that the
inclusion n - T,—1(&,) C ker¢’ is trivial. On the other hand, consider a restricted
power series f =Y oo £,¢0 € T,—1({,) such that f, € n for all v. We know from
Proposition 14 that the ideal n C 7, is finitely generated, but we need the stronger
result 2.3/7 implying that there are generators ay,...,a, of n with |a¢;| = 1 such
that for each v € N there are elements f,1, ..., f,, € T,— satisfying

| foil < 1 fols fVZvaiai~

i=1

Then, for fixed i, the elements f,;, v € N, form a zero sequence in 7,,_, and we
see that

/= i fey = i(z fuiar )y = Z(i il )ai € n-Tumi(G).
v=0

v=0 i=1 i=1 v=0

Therefore ker ¢’ = n- T,,—1({,), as desired.

Now it is easy to see that every maximal ideal m C 7, is generated by n elements.
Proceeding by induction on n, we may assume that n = m N 7,,_; is generated by
n —1elements ay,...,a,—1 € T,—; and, hence, that the same is true for the kernel
of the surjection ¢’ in the above diagram (x). Since (T,—1/n){,) is a principal
ideal domain by Corollary 10, the kernel of the surjection  is generated by a single
element. Lifting the latter to an element a,, € T,—({,), it follows that m is generated
by the n elements ay, ..., a,.

Next, to show htm = n, we look at the strictly ascending chain 7o & ... & T,
andsetn; = mN7; fori =0,...,n. Then,sincen,—; = n;NT;_, fori =n,..., 1,
we can conclude inductively as before that n; is a maximal ideal in 7; for all i. We
want to show that

ocml, ... T, ST, =m (k%)
is a strictly ascending chain of prime ideals in 7;,. To do this, we look at diagrams
of type (*) and construct for eachi = 1,...,n a canonical commutative diagram of

continuous K-algebra homomorphisms by just adding variables:

Ti—1(Gi){Civ1.- .. &) == Ti {li+1.....Cn)

74 @i l

(Tt /M) (G) i1 Gn) — (T3 /0) (i1 )
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As before, the maps ¢] and ¢; are surjections with kernels generated by n;_,
respectively n;, while 7; is a surjection having a certain non-trivial kernel. From
this we conclude that

n_ T, = kerg! C kerg; = n; T,

is a strict inclusion of prime ideals in 7, and, thus, that (xx) is, indeed, a strictly
ascending chain of prime ideals. In particular, we see that htm > n. On the other
hand, m can be generated by n elements, as we have seen, and this implies htm < n
by Krull’s Dimension Theorem; cf. [Bo], 2.4/6. Thus, we get htm = n, as desired.
O

2.3 Ideals in Tate Algebras

We know already from 2.2/14 that all ideals a C 7, are finitely generated.
Considering such an ideal a = (ay,...,a,), say with generators a; of absolute
value |a;| = 1, we can ask if any f € a admits a representation f = Y ;_, fia;
with elements f; € T, satisfying | f;| < | f|. If this is the case, we can easily deduce
that a is complete under the Gaufl norm of 7, and, hence, that a is closed in 7.
To establish these and other assertions, we will use a technique involving normed
vector spaces.

Definition 1. Let R be a ring. A ring norm on R is a map | - |: R —— Ry
satisfying
() la| =0<=a =0,
(ii) |ab| < |al|b],
(i) |a + b| < max{|al,|bl},
iv) 1] =1
The norm is called multiplicative if instead of (ii) we have
(ii") |ab| = |a||b|.
We claim that, instead of condition (iv), we actually have |1| = 1 if R is non-
zero. In fact, we have |1| < |1|? due to (ii) and, thus, |1| = |1|?, since |1| < 1 by

(iv). This implies |1| = 1 or [1| = 0. As 1 # 0 and, hence, |1| # 0 by (i) if R is
non-zero, we can conclude that [1| = 1 in this case.

Definition 2. Let R be a ring with a multiplicative ring norm | - | such that la| < 1
foralla € R.

(i) R is called a B-ring if

{a€R;lal =1} C R".
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(i) R is called bald if
sup{lal;a € Rwith |a] <1} < 1.
We want to show the following assertion:

Proposition 3. Let K be a field with a valuation and R its valuation ring. Then the
smallest subring R' C R containing a given zero sequence dao,di, ... € R is bald.

Proof. The smallest subring S C R equals either Z/ pZ for some prime p, or Z.
It is bald, since any valuation on the finite field Z/ pZ is trivial and since the ideal
{a € Z; |a| < 1} C Z is principal. If there is an ¢ € R such that |a,| < ¢ < 1 for
all n € N, we see for trivial reasons that S[ag,ay,...] is bald. Thus, it is enough
to show that, for a bald subring S C R and an element a € R of value |a| = 1,
the ring S [a] is bald. To do this, we may localize S by all elements of value 1 and
thereby assume that S is a B-ring. Then § contains a unique maximal ideal m, and
S=8 /m is a field. If the reduction @ € k is transcendental over S, it follows that
S [a] is bald for trivial reasons. Indeed, for any polynomial p = > _,¢;¢' € S[¢],
we have |p(a)| < lifand onlyif >, &;a’ = 0, i.e.if and only if &; = O for all i.
Thus, |p(a)| < 1 implies

Ip(a)] <sup{lc|;ce S, |c| <1} <1

and we are done.

It remains to consider the case where a is algebraic over S. Choose a polynomial

="+ "'+ ...+ ¢, € S[¢] of minimal degree such that its reduction
g annihilates @ or, in equivalent terms, such that |g(a)] < 1. Let ¢ < 1 be the
supremum of |g(a)| and of all values |c| for ¢ € S and |[¢|] < 1. Now consider
a polynomial f € S[¢] with | f(a)] < 1; we want to show | f(a)| < e. Using
Euclid’s division, we get a decomposition f = gg + r with ¢,r € S[{] and
degr < n = degg. Since |g(a)| < &, we may assume f = r. If all coefficients of
r have value < 1, this value must be < ¢ and we are done. On the other hand, if one
of the coefficients of r has value 1, the reduction 7 of r is non-trivial. But then we
have 7(a@) = 0, and this contradicts the definition of g, since deg7 < deg g and g,
annihilating @, was chosen of minimal degree. Thus, | f(a)| < 1 implies | f(a)| < &,
and we are done. O

Given a bald subring R* C R, for example as constructed in the situation of
Proposition 3, we can localize R’ by all elements of value 1 and thereby obtain
a B-ring R” C R that contains R’ and is bald. Furthermore, assuming R to be
complete, we may even pass to the completion of R”. As the completion of a B-ring
yields a B-ring again, we see that the smallest complete B-ring in R containing a
given bald subring of R, will be bald again.
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Next we want to look at vector spaces and norms on them. As a prototype, we
can consider a Tate algebra T, with its Gaufl norm and forget about multiplication.
In the following, let K be a field with a complete non-Archimedean valuation.

Definition 4. Let V be a K-vector space. Anormon V isamap |- |: V — R,
such that

(1) |[x]|=0<=x=0,

(i) [x + y| < max{|x[,|y[},
(iii) |ex| = |e||x| forc € K and x € V.

Definition 5. Let V be a complete normed K-vector space. A system (x,)ven Of
elements in V, where N is finite or at most countable, is called a (topological)
orthonormal basis of V' if the following hold.

(1) |x,| =1forallv e N.

(il) Each x € V can be written as a convergent series X = Y .y CyX, With
coefficients c, € K.
(iil) For each equation x =Y, .y cuX, as in (il) we have |x| = max,ey |¢,|. In

particular, the coefficients c, in (i1) are unique.

For example, the monomials ¥ € T, form an orthonormal basis if we consider
T, = K(Z) as a normed K-vector space. For any normed K-vector space V, we
will use the notations

Ve={xeV;|x| <1}
for its “unit ball” and
V=v/{xeV;lx| <1}
for its reduction.

Theorem 6. Let K be a field with a complete valuation and V a complete normed
K-vector space with an orthonormal basis (x,)yey. Write R for the valuation ring
of K, and consider a system of elements

yN=Zc,wxveV°, nweM,
veEN

where the smallest subring of R containing all coefficients c,,, is bald. Then, if the

residue classes y,, € v form a k-basis of V, the elements Yu form an orthonormal
basis of V.
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Proof. The systems (X,)yen and (¥,),em form a k-basis of V.So M and N have
the same cardinality, and M is at most countable. In particular, (y,).em is an
orthonormal basis of a subspace V' C V. Now let S be the smallest complete
B-ring in R containing all coefficients ¢,,,. Then S is bald by our assumption; let
e = sup{lal; a € S, |a| < 1}. Setting

Vg = /Z\Sy;u Vs =/Z\qu,
HEM VEN

where > means the completion of the usual sum, we have VS’ C Vs, and we claim
that, in fact, V{ = V. To verify this, let us first look at reductions. If m C .S denotes
the unique maximal ideal, we set

S =5/m, Vi = Vi/mVy, Ve = Vs/mVs.

Then S is a subfield of the residue field k of R, and we have

From V' = V and VSL C Vs we get VSL = Vz. The latter implies that, for any x,,
there is an element z, € V{ satisfying |x, — z,| < . Then, more generally, for any
x € Vg, there is an element z € V{ with |z| = |x| and |x — z| < ¢|x|. But then, as
V¢ and Vy are complete, we get V{ = Vs by iteration. |

Now we want to apply Theorem 6 to Tate algebras.

Corollary 7. Let a be an ideal in T,. Then there are generators ay,...,a, of a
satisfying the following conditions:

(1) lai| = 1foralli.
(ii) Foreach f € a, there are elements f,...,f, € T, such that

F=3fan =S

i=1

Proof. Let a be the reduction of a, i.e. the image of a N R(¢) under the reduction
map R({) — k[{] where R is the valuation ring of K. Then @ is an ideal in
the Noetherian ring k [{] and, hence, finitely generated, say by the residue classes
ai,...,d, of someelements ay, ..., a, € ahaving norm equal to 1. As the elements
’a;,v € N",i = 1,...,r, generate @ as a k-vector space, we can find a system
(¥,)uem of elements of type {"a; € a such that its residue classes form a k-basis
of d. Adding monomials of type £”, v € N", we can enlarge the system to a system
(¥,)wem such that its residue classes form a k-basis of k[{].
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On the other hand, let us consider the system ({"),ene of all monomials in 7;;
it is an orthonormal basis of 7, and its reduction forms a k-basis of k[¢]. Now
apply Proposition 3 and Theorem 6. To write the elements y,, as (converging) linear
combinations of the {", we need only the coefficients of the series ay,...,a,. As
these form a zero sequence, we see that (y,,),.epm is an orthonormal basis, the same
being true for ({V),enn.

We want to show that the elements ay,...,a, have the required properties.
Choose f € a. Then, since (y,)uenm is an orthonormal basis of T, there is an
equation f = > uem CuYp With certain coefficients ¢, € K satisfying [c,| < | f].
Writing 7 = 3_ c) Cuyp, the choice of the elements y,, 1 € M', implies that
we can write /' = Y_'_, fia; with certain elements f; € T, satisfying | f;| < | f].
In particular, f/ € a, and we are done if we can show f = f”. To justify the latter
equality, we may replace f by

f=r'= Z Cuyu €0

neEM—-M’'

and thereby assume ¢, = 0 for u € M’. Then, if f # 0, there is an index
we M — M withc, # 0. Assuming | f| = 1, we would get a non-trivial equation
f = > yem—mr Cu¥y for the element f € @, which however, contradicts the
construction of the elements y,. O

The proof shows more precisely thatelements ay, . ..,a, € awith|a;| < 1 satisfy
the assertion of Corollary 7 as soon as the residue classes dj, ..., d, generate the
ideal @ C k[¢]. Furthermore, the system (y,).em- is seen to be an orthonormal
basis of a. The reason is that (y,).em’ is part of an orthonormal basis of T,
and, as we have seen in the proof above, any convergent series Y pem’ Cuyu With
coefficients ¢, € K gives rise to an element of a.

Corollary 8. Each ideal a C T, is complete and, hence, closed in T,.

Proof. Choose generators aj, . ..,a, of a as in Corollary 7. If f = Y72 fi is
convergent in 7, with elements f) € a, there are equations f) = Y ._, fi;a; with

coefficients fy; € T, satisfying | f1;| < |fa|. But then f = Y1 (350, fai)ai
belongs to a and we are done. O

Corollary 9. Each ideal a C T, is strictly closed, i.e. for each f € T, there is an
element ay € a such that

|f —aol = inf | f —al.
aca

Proof. Going back to the proof of Corollary 7, we use the orthonormal basis
(Yu)pem of T, and write f = 3_ o) ¢,y with coefficients ¢, € K. AsM' C M
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is a subset such that (y,).em’ is an orthonormal basis of a, the assertion of the
corollary holds forap =} ey €y O

For later use, we add a version of Corollary 7 that applies to modules:

Corollary 10. Let N C T be a T,-submodule of a finite direct sum of T, with
itself, and consider on T, the maximum norm derived from the Gauf3 norm of T,.
Then there are generators X1, ...,x, of N as a T,-module, satisfying the following
conditions:

) |xi| =1foralli.
(ii) Foreach x € N, there are elements f1,...,f, € T, such that

.
x=Y fixi, |fil<Ixl.

i=1

Proof. Proceeding as in the proof of Corollary 7, we consider the reduction map
(R(£))* — (k[Z])* where R is the valuation ring of K. Writing N for the image
of N N (R(¢))*, we see that N is a k [¢]-submodule of (k[¢])* and, hence, finitely
generated, since k[{] is Noetherian. Thus, we can choose elements x|, ..., x, € N
of norm 1 such that their residue classes X, ..., X, generate N as k[¢]-module.
Consequently, there exists a system (y,),em’ of elements of type {'x; € N such
that their residue classes form a k-basis of N. Let ei,...,es be the “unit vectors”
in 7,;. Then it is possible to enlarge the system (y,).em’ to a system (¥,).em,
by adding elements of type {"e; in such a way that the residue classes of the y,,
W € M, form a k-basis of k[{]°. On the other hand, we have the canonical system

3 = (8%j)ven, j=1...s, Which is an orthonormal basis of 7} and which induces a
k-basis of (k[])°.
In order to represent the elements x;,7 = 1,...,s, in terms of the orthonormal

basis 3, using converging linear combinations with coefficients in K, we need
finitely many zero sequences in R, and the smallest subring R’ C R containing
all these coefficients is bald by Proposition 3. Since the elements y,, u € M’, are
obtained from xi,...,x, by multiplication with certain monomials ¢, v € N",
we see that y, € i\:zESR/Z for all u € M. Thus, by Theorem 6, (y,).em is an
orthonormal basis of 7,7, and it follows as in the proof of Corollary 7 that (y,).em’
is an orthonormal basis of N. Hence, x1, ..., x, are as required. a



Chapter 3
Affinoid Algebras and Their Associated Spaces

3.1 Affinoid Algebras

So far we have viewed the elements of 7, as functions B" (f) —+ K.IfacCT,
is an ideal, we can look at its zero set

V(a) = {x eB"(K): f(x) =0forall f ¢ a}

and restrict functions on B"(K) to V(a). Thereby we get a homomorphism
vanishing on a from T}, to the K-algebra of all maps V(a) — K. Thus, we may
interpret the quotient A = T}, /a as an algebra of “functions” on V' (a). However note
that, as we will conclude later from the fact that 7,, and, hence, A are Jacobson, an
element f* € A induces the zero function on V(a) if and only if f is nilpotent in A.
The purpose of the present section is to study algebras of type A = T,,/a, which we
call affinoid K-algebras.

Definition 1. A K-algebra A is called an affinoid K-algebra if there is an
epimorphism of K-algebras a: T,, — A for some n € N.

We can consider the affinoid K-algebras as a category, together with K-algebra
homomorphisms between them as morphisms. Let us mention right away that this
category admits amalgamated sums:

Proposition 2. Write 2 for the category of affinoid K-algebras and consider
two morphisms R A, and R Ay in U equipping A; and A
with the structure of R-algebras. Then there exists an R-object T together with
R-morphisms o1: Ay —— T and oy: Ay —— T in AU fulfilling the universal
property of an amalgamated sum:

Given R-morphisms ¢1: Ay —— D and ¢o: Ay —— D in 2, there exists a
unique R-morphism ¢: T — D in 2 such that the diagram

S. Bosch, Lectures on Formal and Rigid Geometry, Lecture Notes 31
in Mathematics 2105, DOI 10.1007/978-3-319-04417-0_3,
© Springer International Publishing Switzerland 2014
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Ay
01
o
¢
T Y. > D
0
02
A

is commutative.

The R-algebra T, which is uniquely determined up to canonical isomorphism,
is given by the completed tensor product A; ®g A» of Ay and A, over R; see the
Appendix B and its Theorem 6 for details on such tensor products.

A full discussion of completed tensor products would not be possible at this early
stage since it requires residue norms on affinoid K-algebras as well as the continuity
of homomorphisms between them, results to be proved only later in this section.
Moreover, it is appropriate to consider completed tensor products within a more
general setting, the one of normed modules, as is done in Appendix B.

We continue on a more elementary level by looking at some immediate conse-
quences of the results 2.2/11, 2.2/14, and 2.2/16:

Proposition 3. Let A be an affinoid K-algebra. Then:

(i) A is Noetherian.
(i1) A is Jacobson.
(iii)) A satisfies Noether normalization, i.e. there exists a finite monomorphism
T, — A for some d € N.

Proposition 4. Let A be an affinoid K -algebra and q C A an ideal whose nilradical
is a maximal ideal in A. Then A/q is of finite vector space dimension over K.

Proof. Let m = rad q. Applying Noether normalization, there is a finite monomor-
phism T, =< A/q for some d € N. However, we must have d = 0, since dividing
out nilpotent elements yields a finite monomorphism 7; <—— A/m. As A/m is a
field, the same must be true for 7. O

Affinoid K-algebras can easily be endowed with a topology (which is unique, as
we will see later). Just note that for any epimorphism «: 7,, — A, the Gauf3 norm
| - | of T,, induces a residue norm | - |, on A given by

ja(f)], = inf |f~al.

a€kero
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We can say that | f |, for some f € A is the infimum of all values | /| with f € T,
varying over all inverse images of f.

Proposition 5. For an ideal a C T,, view the quotient A = T, /a as an affinoid
K-algebra via the projection map o: T, — T,/a. The map |- |o: Tn/a — Rsg
satisfies the following conditions:

(1) |- |« is a K-algebra norm, i.e. a ring norm and a K-vector space norm, and it
induces the quotient topology of T, on T, /a. Furthermore, o: T, — T,/a
is continuous and open.

(ii) T,/a is complete under | - |4.
(iii) Forany f € T,/a, there is an inverse image f € T, such that | f|e = | f]. In
particular, for any f € T,/a, there is an element ¢ € K with | f |, = |c|.

Proof. That | - |, is a K-algebra norm is easily verified; note that | f|, = 0 implies
f = 0, since a is closed in T}, by 2.3/8. It follows more generally from 2.3/9 that
any f € T,/a admits an inverse image f € T, with | f| = |f|,. From this we
see immediately that ¢ maps an e-neighborhood of 0 € 7,, onto an e-neighborhood
0 € T,/a and, thus, is open. As it is continuous anyway, it induces the quotient
topology on 7,,/a. Finally, as we can lift Cauchy sequences in 7,/a to Cauchy
sequences in T,,, we see that T, /a is complete. O

Viewing the elements f of an affinoid K-algebra T},/a as K-valued functions on
the zero set V(a) C B"(K), we can introduce the supremum | f |5, of all values
that are assumed by f. The latter is finite, as can be seen from 2.2/5. However, to
be independent of a special representation of an affinoid K-algebra A as a certain
quotient T, /a, we prefer to set for elements f € A

| flsop = sup |f(x)|
x€Max A

Here Max A is the spectrum of maximal ideals in A and, for any x € Max A, we
write f(x) for the residue class of f in A/x. The latter is a finite field extension of
K by 2.2/12, and the value | f(x)| is well-defined, since the valuation of K admits a
unique extension to A/x. Usually |-|sup is called the supremum norm on A. However,
to be more precise, it should be pointed out that, in the general case, | - |s,p Will only
be a K-algebra semi-norm, which means that it satisfies the conditions of a norm,
except for the condition that | f|s,, = 0 implies f = 0. We start by listing some
properties of the supremum norm that are more or less trivial.

n

Proposition 6. The supremum norm is power multiplicative, i.e. | f"|sup = [/ [gyp

for any element f of an affinoid K-algebra.

Proposition 7. Let ¢: B — A be a morphism between affinoid K-algebras. Then
|@(D)|sup < |b|sup forall b € B.
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Proof. If m is a maximal ideal in A, the quotient A/m is finite over K by 2.2/12.
Thus, writing n = ¢~ (m) we get finite maps K =~ B/n < A/m and we see
that n is a maximal ideal in B. As |b(n)| = |@(b)(m)|, we are done. |

Proposition 8. On a Tate algebra T,, the supremum norm | - | coincides with the
Gauf3 norm | - |.

Proof. It follows from the Maximum Principle 2.2/5 that
|f1=sup{| f(x)]: x € B"(K)}

for any f € T,. To x € B"(K) we can always associate the maximal ideal of T},
given by m, = {h € T, ; h(x) = 0}, as we have seen in 2.2/13. Then evaluation at
x yields an embedding 7}, /m, — K, and we see that f(m,) = f(x) and, hence,
| f(mo)| = |f(x)|. Since x —— m, defines a surjection B"(K) — Max T,
by 2.2/13, we are done. O

Proposition 9. Let A be an affinoid K-algebra with a residue norm | - |, corre-
sponding to some K-algebra epimorphism a: T, —— A. Then | f|sp < | fla for
all f € A. In particular, | f |sp is finite.

Proof. Consider a maximal ideal m C A and its inverse image n = a~'(m) C T,,.
Fixing an element f € A, let g € T, be an inverse image satisfying | f|, = |g|.
Then

|[f)] = |sm)] < [g] = | /],

and, hence, |f|sup =< |f|05' .

Proposition 10. Let A be an affinoid K-algebra. Then, for f € A, the following
are equivalent:

(1) |f|sup =0.
(i1) f is nilpotent.

Proof. Condition (i) is equivalent to f € [(),emuxa ™ As A is Jacobson by
Proposition 3, the ideal (), cpax 4+ ™ €quals the nilradical of A. Thus, (i) is equivalent
to (ii). O

Next we want to relate the supremum norm |- |g, to residue norms |- |, on affinoid
K-algebras A. We need some preparations.

Lemma 11. For any polynomial

PO = +al "+ 4o =]]C-a)
j=1
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in K] with zeros ay, . .. o, € K, one has
1
max |o;| = max [¢;|7.
j=l.r i=l..r
Proof. As c; equals the ith elementary symmetric function of the zeros «;, ..., o,

up to sign, we get

el < max o]
j=Ll.r

fori = 1,...,r. On the other hand, assume that |ct;| is maximal precisely for
j=1,...,r. Then |c,’| = |oq] ... || and, hence,
1
lep| 7 = max |
j=l.r
so that we are done. O

If p=¢ 4+ ¢ + ...+ ¢, is a monic polynomial with coefficients ¢; in a
normed (or semi-normed) ring A, we call

o(p) = max |¢;|7
j=l.r

the spectral value of p. Thus we can say that, in the situation of Lemma 11, the
spectral value o(p) equals the maximal value of the zeros of p. The assertion of
Lemma 11 is true more generally if the coefficients of p and the zeros of p belong to
anormed ring A, whose absolute value is multiplicative. Without the latter property
we still have 0 (p) < max;—;_, |a;| for any polynomial p = ]_[;=1(§ —aj), as can
also be seen from the next lemma.

Lemma 12. Let A be a normed (or semi-normed) ring and let p,q € A[{] be monic
polynomials. Then the spectral value satisfies o (pq) < max(o(p),0(q))-

Proof. Let p = Y/ ya;{" " andg = Y| _ga;{"/ withag = by = 1. Then

m+n
—A
pqg = ZQ(WM ) L = Z aibj-
A=0 i+j=A

Now |a;| < o(p)i fori =0,...,mand |b;| < a(q)f for j =0,...,n. Thus,
i i A
leal < max_|a;|[b;| < max o(p)a(g) < max(o(p).o(q))
i+j=A i+j=A

for all A, and we see that o (pg) < max(c(p),c(q)). O
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Lemma 13. Let T; —— A be a finite monomorphism into some K-algebra A.
Let [ € A and assume that A, as a T;-module, is torsion-free.

(i) There is a unique monic polynomial p; = ¢" +a;{" '+ ...+ a, € T;[¢] of
minimal degree such that p s (f') = 0. More precisely, p s generates the kernel
of the T;-homomorphism

Ta[f] — A, {— [

(ii) Fixing a maximal ideal x € Max Ty, let yy,...,ys € Max A be those maximal
ideals that restrict to x on T,. Then

'rllaxv|f(yj)| = 'rllax.{a,-(x)ﬁ.
j=l..s i=l..r

(iii) The supremum norm of f is given by

1
|fisup = iglﬁ‘)‘(r|ai|slup'
Proof. First note that A/y, for any y € Max A4, is finite over K, due to the fact
that A is finite over T,. Therefore the values | f(y)| and | f |sup are well-defined for
f € A, even without knowing that A is, in fact, an affinoid K-algebra.
Starting with assertion (i), let us write F' = Q(7) for the field of fractions of T,
and F(A) = A ®r, F for the F-algebra obtained from A. Since A is torsion-free
over Ty, there is a commutative diagram of inclusions:

Ty —— A

|

F — F(A)

Now consider the F-homomorphism F[{] —— F(A), given by { —— f. Its
kernel is generated by a unique monic polynomial p, € F[{], and we claim that
pr € Tq[&]. To justify this, observe that there is a monic polynomial & € T, [{]
satisfying i (f') = 0, since A is finite and, hence, integral over T,. Then p ; divides
h in F[{], but also in T[], due to the lemma of Gauf3, which we can apply as
T, is factorial by 2.2/15. But then, by a similar argument, py must divide any
polynomial i € T, [{] satisfying i(f) = 0. Consequently, p ; generates the kernel
of Ty[{] — A, {— f.

Next, let us look at assertion (ii). The theory of integral ring extensions (or a
direct argument) shows that the restriction of maximal ideals yields surjections

Max A — MaxTy[f] — MaxTy.
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Thus, we may replace A by Ty [ f] and thereby assume A = T, [ f]. Now look at
the field L = T, /x, which is finite over K by 2.2/12. Writing f for the residue
class of f in A/(x) and P, for the residue class of ps in L[{], we obtain a finite
morphism L — A/(x) = L[{]/(P ;). Letay, ..., a, be the zeros of P in some
algebraic closure of L. Then the kernels of the canonical L-morphisms

A/(x)=L[ f] — L[], f— a.

(which might not be pairwise different) are just the maximal ideals of A/(x) and,
thus, coincide with the residue classes of the maximal ideals y;,...,y; € Max 4
lying over x. Using Lemma 11, we get

1
max | /()| = max |o;| = max |a,[’

and we are done.
Finally, assertion (iii) is a consequence of (ii). O

We need a slight generalization of Lemma 13 (iii).

Lemma 14. Let ¢: B —— A be a finite homomorphism of affinoid K-algebras.
Then, for any [ € A, there is an integral equation

fr4+bif . +b =0

l
with coefficients b; € B such that | f |sup = maX;=1_r |b;|sup-

Proof. Let us start with the case where A is an integral domain. Using Noether
normalization 2.2/11, there is a morphism 7} B for some d € N
inducing a finite monomorphism 7, —— B/ ker ¢. Then the resulting morphism
T, — A is a finite monomorphism and, since A is an integral domain, it does
not admit 7y-torsion. Applying Lemma 13 (iii), there is an integral equation
fr+af77" 4+ ...+ a = 0 with coefficients a; € Ty satisfying

1 . . . .
| flsup = max;=i._, |a;i|dup. Replacing each a; by its image b; in B we obtain
an integral equation f" + by f""' 4+ ...+ b, = 0 of f over B. As |b;|sup < |ailsup
1 . .
by Proposition 7, we get | f |sup > max;=1_, |b;|dup. However, the integral equation

of f over B shows that this inequality must, in fact, be an equality. Indeed, there
exists an index i such that

|fr|sup =< |bifr_i|sup =< |bi|sup|f gl;)i,

1
and it follows | f'|sup =< |b; |sup-

Next we consider the general case where A is not necessarily an integral domain.
As A is Noetherian by Proposition 3, it contains only finitely many minimal prime
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ideals, say pi, .. ., py, and we can interpret Max A as the union of the sets Max A/p ;,
J =1,...,5. Thus, we have | f |qop = max;—i_ | fj|sup, Writing f; for the residue
class of f in A/p;.

Now look at the induced maps B —— A —— A/p;. As we have seen at the
beginning, there are monic polynomials ¢i,...,qg, € B[{] such that ¢;(f;) = 0
and | f|sup = 0(q;) where o(g;) is the spectral value of ¢ ;. The product g .. . g
assumes a value at f that is nilpotent in A. Thus, there is a certain power g of
q1...qssuch that g(f) = 0in A, and we have

|f|sup = jn=1‘?XY |f/ |sup = jILl?XYU(‘]j) >0(q)

by Lemma 12. However, as above, the equation ¢( ) = 0 shows that this inequality
is, in fact, an equality. O

There are some important consequences of Lemmata 13 and 14.

Theorem 15 (Maximum Principle). For any affinoid K -algebra A and any f € A,
there exists a point x € Max A such that | f(x)| = | f |sup-

Proof. As in the proof of Lemma 14, we consider the minimal prime ideals
p1,...,ps of A. Writing f; for the residue class of f in A/p;, there is an index j
satisfying | f'|sup = | /7 |sup. Hence, we may replace A by A/p; and thereby assume
that A4 is an integral domain. But then we can apply Noether normalization 2.2/11
to get a finite monomorphism 7; —— A, and derive the Maximum Principle for A
with the help of Lemma 13 from the Maximum Principle 2.2/5 for Tate algebras. In
fact, if

ff+a f'+...+a =0
is the integral equation of minimal degree for f over T, we have
1
max | f(y;)| = max |a; (x)|’
J=l.s i=l.r
for any x € Max 7, and the points y;,...,y, € Max A restricting to x; cf.

Lemma 13 (ii). Then, by applying the Maximum Principle 2.2/5 to the product
aj...a, € Ty, we can find a point x € Max Ty such that

|a1(x)| ]a,(x)| = ‘(al...a,)(x)} = |a1...ar| = }aly...|ar|.

It follows |a; (x)| = |a;| for all i and, hence, if yi, ..., y, are the points of Max A4
restricting to x,

1 1
Jmax [ F )] = max fas (o] = max fa | = [ £,y

Therefore f assumes its supremum at one of the points y, ..., y;. O
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Proposition 16. Let f be an element of some affinoid K-algebra A. Then there is
an integer n > 0 such that | f[§,, € |K|.
Proof. Use Noether normalization 2.2/11 in conjunction with Lemma 14 and the
fact that the GauBl norm on Tate algebras assumes values in |K|. O

Using the methods developed in the proofs of Lemmata 13 and 14 in a direct way,
one can even show the existence of an integer n € N satisfying | /|2, € | K] for all
f € A simultaneously.

n
sup

Theorem 17. Let A be an affinoid K-algebra and let | - |, be a residue norm on A.
Then for any f € A, the following are equivalent:

() |flp < 1

(ii) There is an integral equation f™ + a; f™™' 4+ ... + a, = 0 with coefficients
a; € A satisfying |a; |, < 1.

(iii) The sequence | f"|y,n € N, is bounded; we say, f is power bounded (with
respect to | - |g).

In particular, the notion of power boundedness is independent of the residue norm
under consideration.

Proof. Leta: T, — A be the epimorphism that we use to define the residue norm
|| on A. By Noether normalization 2.2/11, there is a monomorphism 7, —— T,
such that the resulting morphism 7; —— T, — A is a finite monomorphism.
Then, by Lemma 14, any f € A with | {5, < 1 satisfies an integral equation

ff+af'+... +a =0

with coefficients a; € Ty where |a;|wp = |a;| < 1. As Ty —— T, is contractive
with respect to the supremum norm by Proposition 7 and, hence, with respect to
GauB norms, the images a; € A of a; satisfy |a;|, < 1, and the implication from (i)
to (ii) is clear.

Next, let us assume (ii). Writing A° = {g € A; |g|o < 1}, condition (ii) says
that f is integral over A°. But then A°[f] is a finite A°-module, and it follows
that the sequence | f" |y, n € N, must be bounded.

Finally, that (iii) implies (i), follows from the fact that | /{5, = [ /" |sup = [f" ]a3
use Propositions 6 and 9. O

Corollary 18. Let A be an affinoid K-algebra and let | - |, be a residue norm on A.
Then for any f € A, the following are equivalent:

@) | flawp <1
(ii) The sequence |f"|4,n € N, is a zero sequence; we say, f is topologically
nilpotent with respect to | - |y.
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In particular, the notion of topological nilpotency is independent of the residue norm
under consideration.

Proof. The assertion follows from Proposition 10 if | f|sp = 0. So let us assume
0 < |f|swp < 1. Then, by Proposition 16, there is an integer r > 0 such that
| /" |sup € |[K*|;let ¢ € K* with | f"|qp = |c| so that [c] < T and [¢™! f"|gp = 1.
As c™! £ is power bounded with respect to |-|, by Theorem 17, say |¢ ™" f™|, < M
for n € N and some M € R, we see that | |, < ¢"M and, hence, that f" is
topologically nilpotent. But then f itself is topologically nilpotent, and we see that
assertion (i) implies (ii). Conversely, assume lim, o | f"|, = 0. Then we must
have | f|sp < 1 since

|f|'§up = |fn|sup < |f"a
by Proposition 9. O

We are now in a position to show that all residue norms on an affinoid K-algebra
A are equivalent, i.e. they induce the same topology on A. In particular, this stresses
again the fact that the notions of power boundedness as in Theorem 17 and of
topological nilpotency as in Corollary 18 are independent of the residue norm under
consideration.

Lemma 19. Let A be an affinoid K -algebra and consider elements f,. .., f, € A.

(1) Assume there is a K-morphism ¢: K(C1,...,(,) — A such that (¢;) = f;,
i=1,....n Then | filswp < 1 foralli.

(ii) Conversely, if |filswp =< 1 for all i, there exists a unique K-morphism
©: K{(¢y,...,0,) —— A such that ¢(;) = f; for all i. Furthermore, ¢ is
continuous with respect to the Gauf3 norm on T, and with respect to any residue
norm on A.

Proof. As |&ilsup = |8i| = 1, assertion (i) follows from Proposition 7. To verify (ii),
fix a residue norm | - |, on A and define ¢ by setting

9"(2 gy’ ~~§;") =D oS

vEN” vEN”

Due to Theorem 17, | f;|sp < 1 implies that the f; are power bounded with respect
to any residue norm on A. From this we see immediately that ¢ is well-defined and
unique as a continuous morphism mapping ¢; to f;. Thus, it remains to prove that,
apart from ¢, there cannot exist any further K-morphism ¢’: K{¢;,....¢,) — A
mapping &; to f;. Let us first consider the case where A, as a K-vector space,
is of finite dimension over K. We show that, in this case, any K-morphism
¢ K(y,...,L,) — A is continuous. As is known for finite dimensional vector
spaces over complete fields, any K-vector space norm on A induces the product
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topology in the sense that any isomorphism of K-vector spaces A — K%, where
d = dimg A, is a homeomorphism; see Theorem 1 of Appendix A. Now viewing
T,/ ker¢’ as an affinoid K-algebra with canonical residue norm, it is enough to
show that the induced morphism 7,/ ker ¢’ —— A is continuous. However, the
latter is clear, since linear forms V' —— K on a finite dimensional normed vector
space V are continuous if V carries the product topology. Thus, ¢’ is continuous.
To deal with the general case, consider two K-morphisms ¢, ¢": T, —— A,
both mapping ¢; to f;. Then, choosing a maximal ideal m C A and some integer
r > 0, we know from Proposition 4 that A/m” is of finite vector space dimension
over K. Hence, by what we have seen before, the induced maps 7, —— A/m”
are continuous and, thus, coincide. Therefore it is enough to show that any f € A
satisfying f = 0 mod m” for all m € Max A and all » > 0 will be trivial. To do
this, apply Krull’s Intersection Theorem (see for example 7.1/2) to all localizations
Am, m € Max A. It states that (), oy M Am = 0. Therefore the image of f in any
localization Ay, is trivial and, thus, f itself must be trivial. O

Proposition 20. Any morphism B —— A between affinoid K-algebras is continu-
ous with respect to any residue norms on A and B. In particular, all residue norms
on an affinoid K-algebra are equivalent.

Proof. Choose an epimorphism 7, —— B and consider the resulting composition
T, —— B —— A. By Lemma 19 the latter is continuous with respect to any
residue norm on A. But then also B —— A is continuous. O

Alternatively, one can derive Proposition 20 from the Closed Graph Theorem
and the Open Mapping Theorem for Banach spaces (i.e. complete normed vector
spaces); see [EVT] for these results of functional analysis. The Open Mapping
Theorem can further be used to show that the supremum norm | - |s, on any
reduced affinoid K-algebra A is equivalent to all possible residue norms. However,
also this result can be obtained in a more direct way, using (sophisticated, though)
techniques of affinoid K-algebras. One shows that, after replacing K by a suitable
finite extension, the R-algebra {f € A; |f|wp =< 1}, divided by its nilradical, is
finite over { f € A; | f|, < 1} for any residue norm | - |, on A.

Let us add that, although affinoid K-algebras have been defined as quotients of
Tate algebras without taking into account any topology, their handling nevertheless
requires the use of a residue norm or topology. Otherwise, convergence will not
be defined, and we run already into troubles when we want to give explicit
constructions of simple things such as a morphism 7, — A from a Tate algebra
T, into some affinoid K-algebra A.

We end this section by an example underlining the usefulness of Proposition 20.

Example 21. Consider an affinoid K-algebra A and on it the topology given by any
residue norm. Then, for a set of variables § = (&1,....§,), the K-algebra
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A = {Y st € ALl 3a, € A, lim a, =0}

veEN"

is well-defined, independently of the chosen residue norm on A. It is called the
algebra of restricted power series in & with coefficients in A. We can even show that
A(£) is an affinoid K -algebra. Just choose an epimorphism «: K ({) — A for a
set of variables { = ({1, . ..,l») and extend it to a morphism of K-algebras

a: Tm+n = K(LS) - A(E)’

> (Z “u’vév)gﬂ — “(Z au,vf”)é“

peNm yenr weNm  peNn

which is, in fact, an epimorphism. The corresponding residue norm coincides with
the Gaufl norm on A(£) that is derived from the residue norm via o on A:

|2 @] = maxa],

veN”

3.2 Affinoid Spaces

Let A be an affinoid K-algebra. As we have seen, the elements of A can be viewed
as “functions” on Max A, the spectrum of maximal ideals of A. To be more specific,
let us define f(x) for f € A and x € Max A as the residue class of f in A/x.
Embedding A/x into an algebraic closure K of K, the value f(x) € K is defined
up to conjugation over K, whereas the absolute value | f(x)| is well-defined, as it is
independent of the chosen embedding 4/x — K.

In the following we will write Sp A for the set Max A together with its K-algebra
of “functions” A and call it the affinoid K-space associated to A. Frequently, we
will use Sp A also in the sense of Max A and talk about the spectrum of A. Usually,
points in Sp A will be denoted by letters x, y, ..., and the corresponding maximal
ideals in 4 by m,, m,,.... One might ask, why we restrict ourselves to maximal
ideals instead of considering the spectrum of all prime ideals in A, as is done in
algebraic geometry. There is a simple reason for this. In the next section, we will
introduce a certain process of localization for affinoid K-algebras, more precisely,
of complete localization, since we do not want to leave the context of affinoid
K-algebras. Similarly as in algebraic geometry, this localization process is used
in order to endow affinoid K-spaces with the structure of a ringed space. As only
maximal ideals behave well with respect to localization in this sense, we must
restrict ourselves to spectra of maximal ideals. For example, considering such a
localization A — Ag and a (non-maximal) prime ideal ¢ C Ag, it can happen
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that there is no prime ideal p C A satisfying q = pAs; see 3.3/22 for a detailed
discussion of such a phenomenon.

The Zariski topology on an affinoid K-space Sp A can be defined as usual. For
any ideal a C A we consider its zero set

V(a) ={x €SpA: f(x) =0forall f €a} ={x eSpA;acCm,}
and call it a Zariski closed subset of Sp A.

Lemma 1. Let A be an affinoid K-algebra, and consider ideals a,b C A as well as
a family (a;);e; of ideals in A.

(i) a Cb = V(a) D V(b).
() VQQier ) = i V(a).
@iii) V(ab) = V(a) U V(b).

The proof of (i) and (ii) is straightforward. So it remains to look at (iii). We have
V(a) U V(b) C V(ab) by (i). To show the converse, consider a point x € Sp A4 that
is neither in V(a), nor in V(b). So there are elements f € a and g € b such that
f(x) # 0and g(x) # 0. Then f, g ¢ m, and, hence, fg & m,, since m, is a prime
ideal. So fg(x) # 0, which implies x & V(ab). O

Assertions (ii) and (iii) show that there really is a topology on Sp A, namely the
Zariski topology, whose closed sets are just the sets of type V(a). Also note that,
for any epimorphism a: 7, — A, the map Sp4 — Sp T, m — a~'(m),
yields a homeomorphism with respect to Zariski topologies between Sp A and the
Zariski closed subset V(kera) C Sp T,,.

Proposition 2. Let A be an affinoid K-algebra. Then the sets

D_,r:{xeSpA;f(x);éO}, feA,
form a basis of the Zariski open subsets of Sp A.

Proof. First, the sets D ¢ are Zariski open, since they are the complements of the
Zariski closed sets V(f). Next, consider an ideal a = (fi,..., f;) C A. Then
V(a) = (i=; V(fi) by Lemma 1(ii), and its complement equals the union of the

opensets Dy, i =1,...,r. ad

As usual, we can associate to any subset ¥ C Sp A the ideal

id(Y)={f €A: f(y)=0forally e Y} =) m,.

yeyY

Clearly Y C Y’ implies id(Y) D id(Y'). We want to show that the maps V'(-) and
id(-) are inverse to each other in a certain sense.
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Proposition 3. Let A be an affinoid K-algebra and Y C Sp A a subset. Then
V(id(Y)) equals the closure of Y in Sp A with respect to the Zariski topology.
In particular, if Y is Zariski closed, we have V(id(Y)) = Y.

Proof. Writing a = id(Y), we have V(id(Y)) = ﬂfeu V(f) by Lemma 1 (ii).
On the other hand, the closure Y of Y equals the intersection of all closed sets
Y’ C Sp A containing Y. Since, again by Lemma 1 (ii), any such ¥’ may be written
as an intersection of sets of type V(g), we get

Y= () V=V =V(d).

gEAYCV(g) f€a

a

Theorem 4 (Hilbert’s Nullstellensatz). Let A be an affinoid K-algebra and a C A
an ideal. Then

id(V(a)) = rad a.

Proof. We have

id(V(e) =id(fx e SpA; acm}) = [ m,.

aCmy

and the intersection on the right-hand side equals the nilradical of a, since A is
Jacobson; cf. 3.1/3. |

Corollary 5. For any affinoid K-algebra A, the maps V (-) and id(-) define mutually
inverse bijections between the set of reduced ideals in A and the set of Zariski closed
subsets of Sp A.

Corollary 6. Consider a set of functions f;,i € I, of an affinoid K-algebra A. The
following are equivalent:

(1) The f; have no common zeros on Sp A.
(ii) The f; generate the unit ideal in A.

As in algebraic geometry, a non-empty subset Y C Sp A is called irreducible if Y
(endowed with the topology induced from the Zariski topology on Sp A) cannot be
written as a union Y; U Y, of two proper relatively closed subsets Y;,Y, & Y. One
shows that, under the bijection of Corollary 5, the irreducible Zariski closed subsets
of Sp A correspond precisely to the prime ideals in A. Furthermore, as affinoid
K-algebras are Noetherian, any Zariski closed subset ¥ C Sp A admits a unique
decomposition into finitely many irreducible closed subsets.
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Finally, let us point out that any morphism o: B —— A of affinoid K-algebras
induces an associated map

“6:SpA — Sp B, mt— o~ '(m).

We have used this fact already implicitly in Sect.3.1. Note that 6~ (m) C B is
maximal, since we have a chain of injections

K <~ B/o7'(m) — A/m

and since A/m is a field that is finite over K. The map “c:SpA —— Sp B
(together with its inducing homomorphism o) will be called a morphism of
affinoid K-spaces, more precisely, the morphism of affinoid K-spaces associated
to 0: B —— A. Frequently, we will write ¢:Sp A —— Sp B for a morphism
of affinoid K-spaces and ¢*: B — A for the inherent morphism of affinoid
K-algebras. In fact, ¢* may be interpreted as pulling back functions from Sp B
to Sp A via composition with ¢, as for any x € Sp A the commutative diagram

*

B ¢ A

.

B/myy) — A/my

implies
" (g)(x) = g(p(x))

forall g € B.

The affinoid K-spaces together with their morphisms form a category, which can
be interpreted as the opposite of the category of affinoid K-algebras. Since the latter
category admits amalgamated sums, see 3.1/2 and Theorem 6 of Appendix B, we
can conclude:

Proposition 7. For two affinoid K-spaces over a third one Z, the fiber product
X xz Y exists as an affinoid K-space.

3.3 Affinoid Subdomains

The Zariski topology on an affinoid K-space is quite coarse. In the present section
we want to introduce a finer one that is directly induced from the topology of K. We
can think of an affinoid K-space Sp A as of a Zariski closed subspace of Sp T, for
some n € N, and the latter can be identified with the unit ball B"(K), at least if K
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is algebraically closed. Thereby we see that the topology of the affine n-space K"
gives rise to a topology on Sp A that, as we will see, is independent of the particular
embedding Sp A —— Sp T,,; it will be referred to as the canonical topology of
Sp A. If K is not necessarily algebraically closed, we can proceed similarly by
viewing Sp 7, as the quotient of B"(K) by the action of Autx (K), providing Sp T},
with the quotient topology.

To give a more rigorous approach, consider an affinoid K-space X = Sp A
and set

X(fie)={xeX;|f(x)|=<¢}.
for f € Aand ¢ € R.,.

Definition 1. For any affinoid K-space X = Sp A, the topology generated by all
sets of type X(f;e) with f € A and ¢ € Ry is called the canonical topology of X.

Thus, asubset U C X is open with respect to the canonical topology if and only if
it is a union of finite intersections of sets of type X ( f; ¢). Writing X(f) = X(f; 1)

forany f € Aand X(f1,..., fr) = X(fi))N...NX(f) for f1,..., f, € A, we
can even say:

Proposition 2. For any affinoid K-space X = Sp A, the canonical topology is
generated by the system of all subsets X(f) with f varying over A. In particular,
a subset U C Sp A is open if and only if it is a union of sets of type X(f1,...,[)
for elements fi,...,f, € A,r € N.

Proof. For any f € A, the function | f|:Sp A — Rx( assumes values in |K]|.
Therefore, if ¢ € R.(, we can write

X(f:o= |J X(f:e)

& €|K*|, &' <e

For ¢’ € |[K*| we can always find an element ¢ € K* and an integer s > 0 such that
¢”® = |c|; see for example Theorem 3 of Appendix A. But then

X(f:e)=X(f*:6") = X(c' f)
and we are done. O

We want to establish a basic lemma that will enable us to derive the openness of
various types of sets.

Lemma 3. For an affinoid K-space X = Sp A, consider an element f € A and a
point x € Sp A such that ¢ = | f(x)| > 0. Then there is an element g € A satisfying
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g(x) = 0 such that | f(y)| = e forall y € X(g). In particular, X(g) is an open
neighborhood of x containedin {y € X ;| f(y)| = €}.

Proof. Let m, C A be the maximal ideal corresponding to x and write 7 for the
residue class of f in A/m,. Furthermore, let

P =¢" 4+l 4. e € K[E]

be the minimal polynomial of f over K and let
P@Q) =[]¢-a)
i=1

be its product decomposition with zeros o; € K. Then, choosing an embedding
A/m, — K,wehavee = | f(x)| = | f| = || for all i by the uniqueness of the
valuation on K.

Now consider the element g = P(f) € A. Then g(x) = P(f(x)) = 0 and we
claim:

y € X with |g(¥)| <& = |f())|=¢

In fact, assume | f(y)| # & for some y € X satisfying [g(y)| < &". Then, choosing
an embedding A/m, —— K, we have

|f(J’)—06i| = max(|f(y)’, ’Oli{) = |Otf| =¢

for all i and, thus,

g = [PSD)| =]/ —ai| =&,

i=1

which contradicts the choice of y. Therefore, if ¢ € K™ satisfies |c¢| < &", we have
| f(y)] = eforally € X(c'g). |

As a direct consequence of Lemma 3, we can state:

Proposition 4. Let Sp A be an affinoid K-space. Then, for f € A and ¢ € R, the
following sets are open with respect to the canonical topology:

x € SpA; f(x) # 0}

X €Sp Al f(x)] < e}
x € Sp As| f(x)] = &}
x € Sp 4| f(x)] = ¢}

—— -
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Proposition 5. Let X = Sp A be an affinoid K-space, and let x € X correspond
to the maximal ideal m,, C A. Then the sets X(f1,....f:) for fi,...,f, € my and
variable r form a basis of neighborhoods of x.

Proposition 6. Let ¢*: A —— B be a morphism of affinoid K-algebras, and let
©:Sp B —— Sp A be the associated morphism of affinoid K-spaces. Then, for
fi,...,fr € A, we have

e ((SPA(fis-- /) = SpBY@* (/1) -0 (1))

In particular, ¢ is continuous with respect to the canonical topology.

Proof. Each y € Sp B gives rise to a commutative diagram

*

A ¢ B

.

A/myy) — B/m,

with a monomorphism in the lower row. As we may embed the latter into K, we see
that | f(@(¥))| = |¢*(f)(y)| holds for any f € A. This implies

o~ (SpA)(f)) = (SpB)(¢* (/)
and, hence, forming intersections, we are done. O

Next we want to introduce certain special open subsets of affinoid K-spaces that,
themselves, have a structure of affinoid K-space again.

Definition 7. Let X = Sp A be an affinoid K -space.
(1) A subsetin X of type

X(fisonfr) ={x e X1 i) < 1)

for functions fi,...,f, € Ais called a Weierstra3 domain in X.
(i) A subsetin X of type

X(fisoosfrgihsegr D = {x e X5 [ i0)] = L]g; (0)| = 1}

for functions fi,...,[fr.&1,...,8s € A is called a Laurent domain in X.
(iii) A subset in X of type

x(L..2 F)] = o]}

fo,...,ﬁ)={x€X;

for functions fy, ..., f, € A without common zeros is called a rational domain
inX.
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Note that the condition in (iii), namely that fg, ..., f, have no common zero on
Sp A, is equivalent to the fact that these functions generate the unit ideal in A4.

Lemma 8. The domains of Definition 7 are open in X = Sp A with respect to the
canonical topology. The Weierstraf3 domains form a basis of this topology.

Proof. The openness of Weierstral3 and Laurent domains can be read from the
assertion of Lemma 3. In the case of a rational domain the same is true, as for
any x € X(%, - ﬁ) we must have fy(x) # 0, due to the fact that the f; are not

Jo
allowed to have a common zero on X. a

Let us point out that the condition in Definition 7 (iii), namely that the elements
fo,..., f+ € A have no common zeros on X, is necessary to assure that sets of type
X(%, . %) are open in X = Sp A. For example, look at X = Sp T} = Sp K({;)
and choose a constant ¢ € K such that 0 < |¢| < 1. Then the set

{xeX:

Gx)| < letix)|}

consists of a single point, namely the one given by the maximal ideal ({;) C T;.
However, in view of Proposition 5, such a point cannot define an open subset in X .

The domains introduced in Definition 7 are important examples of more general
subdomains, whose definition we will give now.

Definition 9. Ler X = Sp A be an affinoid K-space. A subset U C X is
called an affinoid subdomain of X if there exists a morphism of affinoid K-spaces
t: X' — X such that 1(X') C U and the following universal property holds:

Any morphism of affinoid K-spaces ¢:Y —— X satisfying ¢(Y) C U admits
a unique factorization through 1: X' —— X via a morphism of affinoid K-spaces
Y — X'

Lemma 10. In the situation of Definition 9, let us write X = Sp A and X' = Sp A,
and let 1*: A —— A’ be the K-morphism corresponding to 1. Then the following
hold:

(i) ¢ is injective and satisfies 1(X') = U. Hence, it induces a bijection of sets
X = U.
(ii) Forany x € X' and n € N, the map (* induces an isomorphism of affinoid
K-algebras A/mj ) — A jml.
(iil) For x € X' we have m, = m(hA'.

Proof. Choosing a point y € U, we get a commutative diagram
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A/

E g \7[/

Afml, —> A m A

A

Then Sp 4 /m’ is a one-point space that is mapped by “7 onto the point y € U, and
it follows from the universal property of ¢ or t* that 7 factors through (*: 4 — A’
via a unique K-morphism a: A" —— A/ m’. Now insert « into the above diagram:

A/

a
E g \n'

Afm? T At A

The upper triangle will be commutative, and we claim that the same holds for the
lower triangle, i.e. that 7’ = o o «. To justify this, note that the map of affinoid
K-spaces associated to 0 o w has image y € U, too. As o o & factors through
t*: A —— A’ viaboth, 7’ and ¢ o ¢, the uniqueness part of the universal property
of t* yields 7/ = o o c.

Now the surjectivity of 7’ implies the surjectivity of o. Furthermore, « is
surjective since 7 is surjective, and we have kern’ = m;’,A’ C kero. Thus, o
must be injective and, hence, bijective. For n = 1 we see that the ideal myA’ is
maximal in A’. Thus, the fiber of ¢ over y is non-empty and consists of precisely
one point x € X’ where m, = m, A’. This shows (i) and (iii). Then we get (ii) from
the bijectivity of o and from the fact that m, = m, 4" = m,(,) 4. |

When dealing with affinoid subdomains in the sense of Definition 9, we will
use Lemma 10 (i) and always identify the subset U C X with the set of X'. We
thereby get a structure of affinoid K-space on any affinoid subdomain U C X, and
this structure is unique up to canonical isomorphism. In fact, we can talk about the
affinoid subdomain X’ < X. Such a subdomain is called open in X if it is open
with respect to the canonical topology. Later in Proposition 19 we will see that any
affinoid subdomain X’ < X is openin X.

‘We now want to show that the domains listed in Definition 7 define open affinoid
subdomains in the sense of Definition 9.

Proposition 11. For any affinoid K-space X = Sp A, Weierstrafs, Laurent, and
rational domains in X are examples of open affinoid subdomains. These are called
special affinoid subdomains.

Proof. First, it follows from Lemma 8 that Weierstral, Laurent, and rational
domains are open in X . To show that they satisfy the defining condition of affinoid
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subdomains, we start with a Weierstra domain X(f) C X where f stands for a
tuple of functions fi,..., f, € A. Let A((y,...,¢,) be the affinoid K-algebra of
restricted power series in the variables (j, ..., over A, the topology of A being
provided by some residue norm; see Example 3.1/21. Then consider

A(f)=A(fi o ) = AL GG = fini =100,

as an affinoid K-algebra. There is a canonical morphism of affinoid K-algebras
t*: A —— A(f) and, associated to it, a morphism between affinoid K-spaces
t:Sp A(f) — X.We claim that ¢ has image in X( /) and that all other morphisms
of affinoid K-spaces ¢: Y —— X withim¢ C X(f) admit a unique factorization
through ¢.

To check this consider a morphism of affinoid K-spaces ¢:Y —— X and let
it correspond to a morphism of affinoid K-algebras ¢*: A —— B. Then, for any
y ey, we get
, i=1,...,r

lo* (D] = | fi ()

by looking at the inclusion A/m,,) — B/m, between finite extensions of K, as
induced from ¢*. Therefore, ¢(Y) C X(f) is equivalent to [¢*(f;)|swp < 1 for all
i. Since (*( f;) equals the residue class of ; in A(f'), we have | f;|wp < 1 by 3.1/9.
Thus, it follows that ¢ has image in X(f), and it remains to show the following
universal property for ¢*:

Each morphism of affinoid K-algebras ¢*: A —— B with |¢* (fi)|sup < 1 for
all i admits a unique factorization through 1*: A —— A(f).

However, this is easy to do. Given such a morphism ¢*: A — B, we can extend
it to a morphism A(¢) —— B by mapping ; to ¢*( f;) for all i. Then the elements
{; — f; belong to the kernel, and we get an induced morphism A(f) — B thatis
a factorization of p*: A —— B through (*: A —— A(f'). That this factorization
is unique follows from the fact that the image of A is dense in A( f).

Next, let us look at the case of a Laurent domain X (£, g~') C X where we use
tuples f = (f1,..., f;) and g = (g1, ..., gs) of elements of A. Then look at the
affinoid K-algebra

A(fe )y =Alh o S8
=A<§lﬂ~~'7§r7$]v-“7ss)/(§i_ﬁ’l_gjg:j;izl»”'»r;jzl»"‘7s)'

There is a canonical morphism of affinoid K-algebras 1*: A —— A{f,g~!) and,
associated to it, a morphism of affinoid K-spaces t:Sp A(f.g~') —— Sp A.
Similarly as before, a morphism of affinoid K-spaces ¢:Y —— X corresponding
to a morphism of affinoid K-algebras ¢*: A — B has image in X(f,g~") if and
only if

|<p*(ﬁ)(y)| <1, \(p*(gj)(y)\ > 1, forally € Y, alli and j.
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Of course, the inequalities involving the f; are equivalent to [@*(fi)|swp =< 1,
whereas the ones on the g; may be replaced by the condition that the ¢*(g;) are
units in B satisfying |¢p*(g;)!|sup < 1 forall j. Now consider the map ¢ in place of

¢ and use a bar to indicate residue classes in A{ f, g~'). Then one concludes from

=) =0, |Gl <1, i=1,...r

L*(gj)gj =1 |§i|sup§1a J=1...5,

similarly as before that ¢ has image in X( f, g~"). Thus, it remains to show:

Each morphism of affinoid K-algebras ¢*: A —— B, where |¢*(fi)|syp < 1,
i = 1,...,r,and ¢*(g;) is a unit in B with |p*(g;,) 'awp < 1, j = 1,...,s,
admits a unique factorization through 1*: A — A{f, g7 ).

So consider a morphism ¢*: A —— B with the properties listed above. We
can extend it to a morphism A(,§) —— B by mapping ¢; to ¢*(f;) and &; to
¢*(g;)~". As the kernel contains all elements ¢; — f; and all elements 1 — g;§;,
we get an induced map A(f,g~!) — B that is a factorization of ¢* through ¢*.
The latter is unique, as the image of A[g~'] is dense in A{f, g7").

Finally, let us look at a rational domain X (%) C X where we have written
f =C(fi,..., fr) and where fq, ..., f, € A have no common zero on Sp A. We set

fy_ N fr\ o
A(E>— A<E"”’E> = A 5)/ (i = foliii =1.....1)
and consider the canonical morphism of affinoid K-algebras t*: 4 —— A<}Lo)’ as

well as its associated morphism of affinoid K-spaces ¢: Sp A(%) — SpA.

Next, let ¢: ¥ —— X be any morphism of affinoid K-spaces with corresponding
morphism of affinoid K-algebras ¢*: A —— B. Then ¢ maps Y into X (%) if
and only if we have

l* (W] < |e*(fo)(»)|.  forally € Sp B andalli. (%)

As fo, ..., fr generate the unit ideal in A, the same is true for their images in B,
and we see that (x) is equivalent to

" (f) e B*.  |o*(f)- 9" ()7, =1 foralli, ()

where B* is the group of units in B. Now consider the map ¢ in place of ¢ and use
a bar to indicate residue classes in A(%) Then one concludes property () for ¢* in
place of ¢* from ‘

L*(f,) = L*(fo)gi! |gi|sup <1 i=1,...,r
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and it follows that ¢ has image in X (f—’;) As above, it remains to show that

1A — A(%) satisfies the following universal property:

Each morphism of affinoid K -algebras ¢*: A —— B with (x*) admits a unique
factorization through 1*: A — A(%).

To verify this, start with a morphism ¢*: A — B satisfying (**) and extend it
to a morphism A(¢;,....¢,) — B by mapping ¢; to ¢*(f;) - o*(fo)~!. As the
kernel contains all elements f; — fy{;, we get an induced morphism A(%) — B
that is a factorization of ¢* through ¢*. The latter is unique as the imagé of A[f;7']
is dense in A(%) |

Proposition 12 (Transitivity of Affinoid Subdomains). For an affinoid K-space X,
consider an affinoid subdomain V- C X, and an affinoid subdomain U C V. Then
U is an affinoid subdomain in X as well.

Proof. Consider a morphism of affinoid K-spaces ¢: Y —— X having image in U.
Then, as U C V and V is an affinoid subdomain of X, there is a unique factorization
oY V of ¢ through V ——— X. Furthermore, ¢’ admits a unique
factorization ¢”:Y —— U through U —— V, as U is an affinoid subdomain
of V. Then, of course, ¢” is a factorization of ¢ through U —— V —— X that,
using the uniqueness of factorizations through U —— V and V —— X, is easily
seen to be unique. O

Proposition 13. Let ¢:Y —— X be a morphism of affinoid K-spaces and let
X' < X be an affinoid subdomain. Then Y' = ¢~ '(X") is an affinoid subdomain
of Y, and there is a unique morphism of affinoid K-spaces ¢':Y' —— X' such that
the diagram

Y/(PX/
Yy —2 + x

is commutative. In fact, the diagram is cartesian in the sense that it characterizes
Y’ as the fiber product of Y and X' over X.

If X' is Weierstraf3, Laurent, or rational in X, the corresponding fact is true
for Y’ as an affinoid subdomain of Y. More specifically, if ¢*: A — B is the
morphism of affinoid K-algebras associated to ¢: Y — X, and if

f:(ﬁ""’fr)? g:(gl’”'?gs)’ h:(h()s""ht)

are tuples of elements in A, such that the h; generate the unit ideal in A, then
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e (X() =Y (" (/).
o7 (X(f.gTh) =Y (e* (e ()7,
-1 h _ @*(h)
¢ (X(E» - Y(w*(ho))'

Proof. In the case where X’ is a general affinoid subdomain of X, we use
the fact 3.2/7 that the category of affinoid K-spaces admits fiber products or,
equivalently, that the category of affinoid K -algebras admits amalgamated sums; cf.
Theorem 6 of Appendix B. Relying on the existence of the fiber product ¥ xy X',
it is easy to see that the first projection p: Y xy X’ —— Y defines ¢~ !(X’) as an
affinoid subdomain in Y. Just look at the commutative diagram

Y xx X' — X'

|

Yy —% +x.

p

It shows that p maps ¥ xy X’ into ¢! (X’). Furthermore, consider a morphism of
affinoid K-spaces ¥: Z — Y having image in ¢! (X’). Then the composition
@ oy:Z — X factors through X’ —— X, and the universal property of fiber
products yields a unique factorization of v via p: Y xy X’ — Y. Thus, p defines
Y’ = Y xy X’ as an affinoid subdomain of ¥ and we have Y’ = ¢~ !(X’) by
Lemma 10 (i).

The second projection ¢’: Y’ = Y xy X’ —— X’ is a morphism making the
diagram mentioned in the assertion commutative. That ¢’ is uniquely determined by
this property follows from the universal property of X’ as an affinoid subdomain of
X.

If p*: A —— B is the morphism of affinoid K-algebras corresponding to
¢:Y — X, we have for any y € ¥ a commutative diagram

*

A4 —2 B

A/my) — B/m,

with an injection of finite field extensions of K in the lower row. It follows
| fleOy)| = le*(f)(y)| for any f € A. As in Proposition 6, one deduces the
stated identities for the inverse of Weierstraf3, Laurent, and rational domains. In the
case of rational domains we use the fact that the images ¢*(ho), ..., ¢* (k) will
generate the unit ideal in B as soon as the elements Ay, ...,/ generate the unit
ideal in A. O
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The morphism of affinoid K-algebras ¢"*: A” —— B’ that in the setting of
Proposition 13 is associated to ¢’: Y’ — X', is obtained from ¢*: A — B
by tensoring the latter with A" over A, of course in the sense of completed tensor
products. If X’ is a special affinoid subdomain, ¢"* can be described in more explicit
terms. For example, for a WeierstraB domain X’ = X( /'), the map ¢’ is obtained
via the canonical commutative diagram

AR = f) — 2 BEO)/C - (f)),

and there are similar diagrams for Laurent and rational domains.

Proposition 14. Let X be an affinoid K-space and let U,V C X be affinoid
subdomains. Then U NV is an affinoid subdomain of X.If U and V are Weierstraf3,
resp. Laurent, resp. rational domains, the same is true for U N V.

Proof. Let ¢: U —— X be the morphism defining U as an affinoid subdomain
of X. ThenU NV = ¢~ (V) and we see that U N V is an affinoid subdomain of U
by Proposition 13. Hence, by Proposition 12, U N V is an affinoid subdomain of X .
Next let us consider the case where U and V' are rational subdomains of X, say
U =X(ﬁ,...,ﬁ),
Jo fo

with functions f;, g; satisfying (fo. ..., fr) = (1), as well as (go,...,gs) = (1).
The product of both ideals is the unit ideal again and we see that the functions f; g;,

V:X(%,...,%)

i=0,...,r,j =0,...,s have no common zero on X . Therefore
W:X(&; P=0,....r: ] :o,...,s)
fogo

is a well-defined rational subdomain in X, and we claim that it equals the
intersection U N V. Clearly, we have U NV C W since for any x € X the
inequalities | f; (x)| < |fo(x)|,i = 0,...,r and |g;(x)| < |go(x)], j = 0,...,s
imply [(fig;)(x)| < |(fogo)(x)| for all i, j. Conversely, consider a point x € X
such that [(fig;)(x)| < |(fogo)(x)| for all i, j. Then, as the f;g; have no common
zero on X, we must have ( fpgo)(x) # 0 and, hence, fo(x) # 0 and go(x) # 0. But
then the inequalities
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|(fig0) ()] < |(fogo)(x)

, i=1,...,r,

imply | f; (x)| < | fo(x)| for all i and, hence x € U. Similarly, we get x € V and

therefore x € U NV sothat wehave W C U NV and, hence, W =U N V.
Finally, that the intersection of Laurent or Weierstral3 domains in X is of the same

type again is trivial. O

Corollary 15. Let X = Sp A be an affinoid K-space. Each Weierstraf3 domain in
X is Laurent, and each Laurent domain in X is rational.

Proof. That Weierstral domains are Laurent is trivial. Furthermore, a Laurent
domain in X is a finite intersection of rational domains of type X (4) and
X (é) for suitable functions f, g € A. By Proposition 14, such an intersection is
rational. O

Proposition 16. Let X = Sp A be an affinoid K-space and U C X a rational
subdomain. Then there is a Laurent domain U’ C X such that U is contained in U’
as a Weierstrafs domain.

Proof. LetU =SpA’' =X (%, cees %) with functions f; having no common zero
on X. Then, as | f; (x)| < | fo(x)| for all i, we must have fy(x) # O forall x € U.
Consequently, the restriction fo|y of fj to U, which is meant as the image of f in A’
via the morphism A —— A’ given by the affinoid subdomain Sp A” —— Sp A4, is
aunitin A’. Applying the Maximum Principle 3.1/15 to ( fy|y) ", there is a constant
¢ € K* such that |cfy(x)| = 1 forall x € U. But then, setting U’ = X ((cfo)™"),
we have U C U’ and, in fact,

U=U(filvr-Solo)™eoos frlor - (folu)™)

where fo|y- is a unit on U’. So U is a Weierstra domain in U’ and U’ is a Laurent
domain in X, as claimed. ad

Proposition 17 (Transitivity of Special Affinoid Subdomains). Let X be an affinoid
K-space, V a Weierstrafs (resp. rational) domain in X, and U a Weierstrafs (resp.
rational) domain in V. Then U is a Weierstraf3 (resp. rational) domain in X . In view
of Proposition 16, the assertion does not extend to Laurent domains.

Proof. Let X = Sp A. Starting with the case of Weierstra3 domains, let us write
V = X(f) and U = V(g) for a tuple f of functions in A and a tuple g of
functions in A{ f), the affinoid K-algebra of V. As the image of A4 is dense in A{ f')
and as we may subtract from g a tuple of supremum norm < 1 without changing
U = V(g) (use the non-Archimedean triangle inequality), we may assume that g is
(the restriction of) a tuple of functions in A. But then we can write U = X(f, g)
and we are done.
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It remains to look at the case of rational domains. Solet V = X (% e, %) with
functions fp,..., f, € A having no common zero on X. Using the fact that U is a

Weierstrall domain in a Laurent domain of V, cf. Proposition 16, as well as the fact
that the intersection of finitely many rational domains is a rational domain again, cf.
Proposition 14, it is enough to consider the cases where U = V(g) or U = V(g™ ")
with a single function g in A(% e %), the affinoid algebra of V. As the image

of A[f;'] is dense in this algebra and as we may subtract from g a function of
supremum norm < 1 without changing V(g) or V(g~"'), we may assume that there
is an integer n € N such that f;' g extends to a function g’ € A. Then, as f; has no
zero on V', we have

V@) =VnixeX;|gW|=|f®.
Ve =VnixeX:|d®| =L}

Now applying the Maximum Principle 3.1/15 to f;™|y, we see that there is a
constant ¢ € K* such that | £’ (x)| > |c| for all x € V. But then we can write

V(g) =V N X(g—o/%) Ve =vn X(g, gi)

and it follows from Proposition 14 that V(g) and V(g~') are rational subdomains
of X. O

Using Proposition 5, we can conclude from Proposition 17 in conjunction with
Corollary 15 that, for any Weierstraf3, Laurent, or rational subdomain U of a rigid
K-space X, the canonical topology of X restricts to the canonical topology of U;
furthermore, U is open in X by Lemma 8. We want to generalize this to arbitrary
affinoid subdomains of rigid K-spaces.

Lemma 18. Let ¢: Y —— X be a morphism of affinoid K-spaces with associated
morphism of affinoid K-algebras ¢*: A — B, and let x € X be a point
corresponding to a maximal ideal m C A.

(1) Assume that ¢* induces a surjection A/m —— B/mB. Then there is a special
affinoid subdomain X' —— X containing x such that the resulting morphism
0" Y —— X' induced from ¢ on Y' = ¢~(X") is a closed immersion in the
sense that the corresponding morphism of affinoid K-algebras ¢'*: A’ — B’
is surjective.

(ii) Assume that ¢* induces isomorphisms A/m" —» B/m"B for all n € N.
Then there is a special affinoid subdomain X' — X containing x such that
the resulting morphism ¢':Y' — X' induced from ¢ on Y' = ¢~ (X’) is an
isomorphism.
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Proof. We start with a general remark. Since A/m is a field, we see that the
surjection A/m — B/mB is either an isomorphism or the zero mapping. Hence,
mB is either a maximal ideal in B or the unit ideal. Using this observation in
conjunction with Lemma 10 and Propositions 13 and 17, we see that we may replace
X without loss of generality by a special affinoid subdomain X’ C X containing x
and Y by Y/ = ¢~ 1(X').

In the situation of (i) we choose affinoid generators by, ..., b, of B over A.
Thereby we mean power bounded elements b; € B giving rise to a surjection

@*ZA<§1,...,§,«)4>B, é','}—>b,', i=1,...,r

extending ¢*. Note that such generators exist, since A # 0 and since B, as an
affinoid K-algebra, admits an epimorphism 7, —— B for some r € N. Let
my,...,m, generate the maximal ideal m C A. Then, as ¢* induces a surjection
A/m —— B/mB, there are elements ; € Aandc; € B,i = 1,....,r,
j =1,...,s, such that

N
b[—<p*(a,-)=Zc,»_,mj, i =1,...,r. (*)

j=1
Choosing a residue norm | - | on A, we consider on A((j,...,{,) the natural
(GauB) norm derived from | - | and on B the residue norm via @*. Further-

more, for any Weierstra domain X(f) C X, we can consider the morphism
¢ Y(o*(f)) — X(f) induced from ¢, as well as the resulting commutative
diagram

A(é‘la"'vé”')

o+

AW 8r) Blp™ (/).

Going back to the explicit construction of A{f) and B{(p*(f)) in the proof of
Proposition 11, we get residue norms on the algebras in the lower row such that
all morphisms of the diagram are contractive. Furthermore, @'* is surjective, just as
D% is.

Adjusting norms via constants in K* on the right-hand sides of the equations (%),
we can assume |c;;| < 1 forall i, j. As explained in the beginning, we may replace
X by a special affinoid subdomain X’ C X containing x. For example, we may take
X' =X(c'my,...,c7'm;) for some ¢ € K, 0 < |¢| < 1 and thereby assume that

b —¢*(@)| <|c| <1, i=1....r
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Then, as |b;| < 1, we have |¢*(a;)| < 1 and, in particular, [¢*(a;)|suyp < 1 foralli.
Now, if the fiber ¢! (x) is empty, there is an equation Y i_,mig = 1 with certain
elements g; € B, and we can take |c| small enough such that ¢~!(X’) is empty.
The assertion of (i) is trivial in this case. On the other hand, if the fiber ¢! (x) is
non-empty, it consists of a single point y € Y. Then we have

|ai ()] = |ai (e()| = [¢™ @)W = [¢™ (@], =1

for all i, and we can, in fact, replace X by X(ay,...,a,,c”'my, ..., c7\my),
thereby assuming

|a,-|§1, |bi—<p*(ai)|§|c|<1, i=1,...,r
Now by 3.1/5, the estimates above say that we can approximate every elementb € B
with |[b| < |c|' for some ¢ € N by an element of type ¢*(a) with a € A such that
t t+1 I3
jal = fels [p—¢"@] = e[ < e[

A standard limit argument shows then, that ¢*: A —— B is surjective.
It remains to verify (ii). As the assumption of (ii) includes the one of (i), we may
assume that ¢*: A —— B is surjective. Furthermore, we get

kerg* C m m”.
neN
By Krull’s Intersection Theorem (see 7.1/2), there is an element f € A of type
f = 1 —m for some m € m such that f annihilates the kernel ker ¢*. Since

A —— A({f7") factors through A[ '], the kernel of ¢* is contained in the kernel
of A —— A{f~!). Thus, there is a canonical diagram

¢ B

A(fTY —— Ble*(H)™)

where the square is commutative, as well as the upper triangle, and where ¢* and
@'* are surjective. But then, using the surjectivity of ¢*, also the lower triangle is
commutative. Now consider the morphisms

AL B e a7

whose composition equals the canonical morphism 4 — A(f~!). In other
words, the canonical morphism Sp A(f~!) < Sp A factors through Sp B. By
restriction to inverse images over Sp A{ f ') C Sp A4, we get morphisms

A(fTN) —= Blp*(HTH) — A(fT)
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whose composition is the identity. As A{ f~!) — B(p*(f)™!) is still surjective
and necessarily injective, it is an isomorphism. Thus, ¢: Y —— X restricts to an
isomorphism ¢”: Y (¢*(f)™!) —> X(f!),andas x € X(f '), we are done. O

Proposition 19. Let U —— X be a morphism of rigid K-spaces defining U as an
affinoid subdomain of X. Then U is open in X, and the canonical topology of X
restricts to the one of U.

Proof. By Lemma 10 (ii), the morphism U —— X satisfies the conditions of
Lemma 18 (i1). O

To characterize the structure of general affinoid subdomains in more precise
terms, we cite already at this place the following result:

Theorem 20 (Gerritzen—Grauert). Let X be an affinoid K-space and U C X an
affinoid subdomain. Then U is a finite union of rational subdomains of X.

A more general version of this theorem will be proved in Sect.4.2; see 4.2/10
and 4.2/12. However, it should be noted that, in general, a finite union of affinoid
subdomains of X, even of Weierstral domains, does not yield an affinoid subdomain
again.

To end this section, we want to explain why it is not advisable to consider the
spectrum of all prime ideals of a given affinoid K-algebra as the point set of
its associated affinoid K-space, as is the rule when dealing with affine schemes
in algebraic geometry. A first observation shows for a prime ideal p of some
affinoid K-algebra A that its residue field K, i.e. the field of fractions of A/p,
will in general be of infinite degree over K. In this case K, cannot be viewed
as an affinoid K-algebra since, otherwise, K, would be finite over K by Noether
Normalization 3.1/3 (iii). In addition, there is no obvious absolute value on K|, that
extends the one of K and satisfies the completeness property. So, in particular, it
will not be possible to consider affinoid algebras over K. Another, may be more
convincing reason for restricting to maximal ideals as points, consists in the fact that
non-maximal prime ideals do not behave well when we pass back and forth from an
affinoid K-space X to an affinoid subdomain U C X.

To exhibit such a behavior, let A — A’ be the morphism of affinoid K-algebras
corresponding to an affinoid subdomain U —— X. For a prime ideal p C A we
can consider the Zariski closed subset ¥ = V(p) C X. Then we see with the
help of Lemma 10 that the restriction of ¥ to U equals the Zariski closed subset
YNU = V(pA') of U.If p is a maximal ideal in A corresponding to a point x € U
then pA’ is maximal in A’. However, for a non-maximal prime ideal p C A, the
ideals pA’ or rad(pA’) do not need to be prime, even if V(p) N U # @. Just look at
the following example. Let X = Sp 7T} be the unit disk with coordinate function ¢
(the variable of 77) and consider the Weierstra3 subdomain

U={xeX:|[{(x) Cx)-D[=efcX
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for some value ¢ = |c| < 1 where ¢ € K. Then U is the disjoint union of the
Weierstrafl subdomains

Uy={xeX:|[{(x)|=<¢} U={xeX;

tx)—1] <e}

in X. Looking at corresponding affinoid K-algebras, one can conclude by a direct
approximation argument or, more easily, by applying Tate’s Theorem 4.3/1 (to be
proved in Chap. 4) that T;(c~'¢(¢ — 1)), the affinoid K-algebra of U, is the direct
product of two integral domains, namely the affinoid K-algebras corresponding to
U, and U,:

Ti(c™'8@— 1) = Tife ') x Ti{c™ (¢ — 1)

Therefore, working with full prime spectra instead of maximal spectra, we see that
the “generic” point of X, which corresponds to the zero-ideal in 77, gives rise to
two different points on U, namely the “generic” point of U; and the “generic” point
of U. 2.

This is the first problem we encounter when dealing with affinoid subdomains in
terms of full prime spectra instead of spectra of maximal ideals. But worse than that,
it can happen that there exist prime ideal points in an affinoid subdomain U C X
that are not visible at all on X. In terms of the corresponding morphism of affinoid
K-algebras A —— A’ this means that there can exist non-maximal prime ideals
p’ C A’ such that the prime ideal p = p’ N A C A does not satisfy pA’" = p’.
Interpreting this phenomenon on the level of Zariski closed subsets, we can start
with Y/ = V(p’) C U and see from 3.2/3 that Y = V(p N A) is the Zariski closure
of Y in X. Then, indeed, it can happen that the restriction ¥ N U is strictly bigger
than Y’ and, thus, that there is no Zariski closed subset in X that restricts to Y’ on
U. To give an example we first need to show:

Example 21. Assume that the valuation on K is not discrete. Then there exists a
non-trivial formal power series f =Y oo, ¢, € K[{] such that:

() the coefficients ¢, € K satisfy |c,| < 1 and, hence, f converges on the open
unit disk B, = {x € K ;|x| <1},
(ii) f has infinitely many zeros on IBSL.

Proof. We choose a sequence of coefficients ¢y, cy,... € K such that the corre-
sponding sequence of absolute values is strictly ascending and bounded by 1. Then
lim, 0,6’ = 0 foralle € R, 0 < ¢ < 1, and the series f = Zf‘;l ¢, ¢’
converges on IB%}F.

For ¢ € |K|,0 < ¢ < 1, let o(¢) be the largest index v where the sequence

leyle, v = 0,1,..., assumes its maximum. Note that o (¢) tends to infinity when
¢ approaches 1 from below. Now choose ¢ € K, 0 < |c| < 1, and set ¢ = |c|.
Using £ = ¢~!¢ as a new coordinate function, we can interpret the closed disk

B, = {x € IB%}i_; |x| < e} as the affinoid unit disk Sp K(£). Restricting f
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to B, yields an element f’ € K(£) that is £-distinguished of order o (¢). But then
" is associated to a WeierstraB polynomial of degree o (¢) by 2.2/9, and it follows
from 3.1/11 that f has o(¢g) zeros in B,. Thus, if ¢ approaches 1 and, hence, o (¢)
approaches infinity, we see that f has infinitely many zeros on BL, = (J,_,; B..
O

Example 22. Now, for K equipped with a non-discrete complete valuation as
before, we can construct an affinoid K-space X with an affinoid subdomain U C X
where U admits a non-maximal prime ideal point that is not induced by a point of
the same type on X. Let X = Sp7, = Sp K(¢1,{») be the two-dimensional unit
ball and consider the Weierstrall domains

X.={xeX;

t(x)|<efcX, ecl|K

O<e<l.

Then the affinoid K-algebra corresponding to X; is 4. = Tr(c;'¢1) ~ T, where
ce € K is a constant satisfying |c.| = ¢. Furthermore, let f € K[¢] be a formal
power series as constructed in Example 21. So f is non-trivial, converges on the
open unit disk B! , has infinitely many zeros on B! , and assumes values < 1. In
particular, &; + f(¢;) induces a well-defined element /i, € A, for each ¢ as before.
All elements A, are prime since the continuous morphism of K-algebras given by

A — Aoy O >0, L0+ f(),

is an isomorphism and, hence, 4./(h.) ~ K(c;'¢;) is an integral domain. As all
maximal ideals in A, are of height 2, cf. 2.2/17, we see clearly that the prime ideals
pe = heA:. C A, satisfy p, N Ay = p as well as pos A, = p, fore < ¢'.

Next write A = T, for the affinoid K-algebra corresponding to X and look at
some ¢ € |K|,0 < & < 1. Then the prime ideal p = p, N A C A is independent
of &. We claim that, in fact, p = 0. First, p cannot be maximal, since otherwise
pA: C p. would be maximal; use Lemma 10. Choosing an element & € p, the
inclusion pA, C p, shows that the image of 4 in A, is a multiple of /.. Now let us
restrict our situation to the Zariski closed subset Y = V() C X, a process that on
the level of affinoid K-algebras is realized by dividing out ideals generated by &5.
Then Y = Sp K({;) is the unit disk and the restriction ¥, = X, N Y gives rise to
the closed subdisk Sp K(¢1){c;'¢;) that is a WeierstraB domain in Y. Furthermore,
h, induces on Y, the element given by the series f, as we have to divide out the
ideal generated by ;. Remembering that the image of A in A, is a multiple of &,
and letting ¢ vary, we see that & restricts on each Y, to a multiple of f. Since f
has an infinity of zeros on the open unit disk IB%EF, the element 4’ induced by 4 on Y
must have an infinity of zeros as well. However, due to Weierstra$3 theory, see 2.2/9,
non-zero elements can only have finitely many zeros on Y. Hence, we must have
R’ = 0 and therefore & € ¢, - A so that if h varies over p we get p C &, - A. As
p and ¢, - A are prime ideals in A and ¢, - A is of height 1 by Krull’s Dimension
Theorem, see [Bo], 2.4/6, we get p = {, - A if p is non-trivial. Then we would have
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& € p, and, hence, p, = ;- A, for all € by an argument as before. However, /. is
not divisible by ¢, which means that the only remaining possibility is p = 0.

To conclude our example, fix some ¢ € |K|, 0 < & < 1, and consider the
morphism of affinoid K-algebras A —— A, corresponding to the Weierstral3
subdomain X, C X. Then it follows for the prime ideal p. C A, that there cannot
exist any ideal p C A satisfying pA, = p..



Chapter 4
Affinoid Functions

4.1 Germs of Affinoid Functions

Let X be an affinoid K-space. For any affinoid subdomain U C X we denote
by Ox(U) the affinoid K-algebra corresponding to U. Then, if U C V is an
inclusion of affinoid subdomains of X, there is a canonical morphism between the
corresponding affinoid K-algebras Ox (V') — Ox (U), which we might interpret
as restriction of affinoid functions on V to affinoid functions on U. More precisely,
Oy is a presheaf of affinoid K-algebras on the category of affinoid subdomains of
X. This means that @y associates to any affinoid subdomain U C X an affinoid
K-algebra Oy (U) and to any inclusion U C V of affinoid subdomains in X a
morphism of affinoid K-algebras pg: Ox (V) — Ox(U) (generally denoted by
f +—— f|u) such that for subdomains U C V C W of X the following conditions
are fulfilled:

(i) pff =id,
(i) pjf = ppopy-

The presheaf @y will be referred to as the presheaf of affinoid functions on X .
For any point x € X the ring

Oxx = lim Ox (V)

xeU

where the limit runs over all affinoid subdomains U C X containing X, is called
the stalk of Oy at x. Its elements are called germs of affinoid functions at x. To
give a more explicit characterization of Oy y, we can say that any germ f, € Ox .
is represented by some function f € Oy (U) for some affinoid subdomain U C X
containing x and that two functions f; € Ox(U;), i = 1,2, with x € U; N U,
represent the same germ f, € Oy . if and only if there is an affinoid subdomain
U C X suchthat x € U C U; N U, and pg‘ (fH) = pgz(fz). It is clear that the
construction of germs of affinoid functions is functorial in the sense that a morphism

S. Bosch, Lectures on Formal and Rigid Geometry, Lecture Notes 65
in Mathematics 2105, DOI 10.1007/978-3-319-04417-0_4,
© Springer International Publishing Switzerland 2014
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of affinoid K-spaces ¢: Y —— X induces a homomorphism
95 Ox ) — Ory,
for any y € Y. All such morphisms ¢ are local.

Proposition 1. Let X be an affinoid K-space and x € X a point corresponding
to the maximal ideal m C Ox(X). Then Oy is a local ring with maximal ideal
m@xyx.

Proof. For any affinoid subdomain U C X containing x, we know from 3.3/10 that
the morphism of affinoid K-algebras Oy (X) — Ox(U) induces an isomorphism
Ox(X)/m —=> Ox(U)/m0Ox (U). Thus, passing to the direct limit, we get a
surjective map Oy, — K’ where K/ ~ Oy (X)/m is a field that is finite
over K. The map may be viewed as evaluation at x, and we will use the notation
fr —— fx(x) for it. Its kernel n is a maximal ideal in Oy ,, and we claim that
n = mQOy,. Clearly we have mOy, C n. To show the converse, consider an
element f, € Oy, represented by some f € Oy (U) for some affinoid subdomain
U C X. Then, if f,(x) = 0 we must have f(x) = 0 and, hence, f € mOyx (U),
which implies f, € mOx .. Alternatively we could have used the fact that li)n
preserves exact sequences.

That n is the only maximal ideal in @y is easy to see. Consider an element
fx € Oy, — n represented by some f € Oy (U) for some affinoid subdomain
U C X.Then f(x) # 0 and, multiplying f by a suitable constant in K*, we
can even assume that | f(x)| > 1. But then U(f ') contains x and is an affinoid
subdomain of X such that f|ys—1) is a unit. Consequently, f; is a unitin Oy ., and
n is the only maximal ideal in Oy . O

Proposition 2. Let X = Sp A be an affinoid K-space and x € X a point
corresponding to the maximal ideal m C A. Then the canonical map A — Oy
decomposes into

A— Any — Ox

where the first map is the canonical map of A into its localization at m and the
second one is injective. Furthermore, these maps induce isomorphisms

A/m" = A /m" Ay — Oy, /m"Oxy, neN,
so that one obtains isomorphisms
A "> Ay —> Ox

between the m-adic completion of A and the maximal adic completions of Ay and
Oy x.
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Proof. For any affinoid subdomain Sp A’ C Sp A with x € Sp A’, the restriction
maps A — A" —— Oy, induce maps

T

A/m" 2 A /m" A 2 Ox,/m"Ox., neN,

and we claim that these are isomorphisms. For the g, this is clear from 3.3/10, and
it is enough to show the same for the compositions t, o 0,,. To do this, we may
vary Sp A" as a neighborhood of x and take it as small as we want. As any element
fx € Oy isrepresented by an element f € A’ if Sp A’ is small enough, we see that
7, © 0, is surjective. To show injectivity, consider an element f € A such that its
image fy € Oy is contained in m" Oy . Writing fy = Y \_, g - m; with germs
gxi € Oy, and elements m; € m”, we can assume that the g,; are represented by
functions g; € A’. Choosing Sp A" small enough, we can even assume that f[sp 4/
coincides with Y 7_, g; -m; on Sp A’. But then we have f|s, 4 € m" A’ and, hence,
by 3.3/10, even f € m". This shows that 7, o 0, is injective and, hence, bijective.
Alternatively, we could have used the fact that h_r)n is exact.

Forn = 1, we see again that m@y , is a maximal ideal in Oy , restricting to m on
A. AsmOy . is the only maximal ideal in Oy ,, it follows that the map A — Oy
decomposes into the canonical map A —— A, from A into its localization at m
and a map A, — Oyx,. As the canonical maps A/m" —— A, /m"A,, are
bijective, they induce a bijection

A= lim A/m" >+ lim Aw/m" An = An

n n

and we see that the map obtained from 4 —— A,, via m-adic completion is
bijective. In the same way the bijective maps 1, o 0,, give rise to a bijective map

A= LlnA/m - LLH(QX,x/m (9X.x = (9X,Xa

n n

which is the m-adic completion of A — Oy .. As A— @X,x is the
composition of A—os /I:n and AA — 0 X.x» also the latter map is bijective.
Finally, that A,, — Ox . is injective, follows from the fact that, due to Krull’s
Intersection Theorem (see 7.1/2), the composition Ay, —> Oy —> o Xx = A

is injective. a

We want to derive some direct consequences of the injectivity of the map
Am — Oy in Proposition 2.

Corollary 3. An affinoid function f on some affinoid K-space X is trivial if and
only if all its germs f, € Ox . at points x € X are trivial.
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Proof. Writing X = Sp A, the assertion is clear from the injections

A ] Aw=s []One
meMax A x€X
O

Corollary 4. Let X be an affinoid K-space and X = | J,¢; X; a covering by affinoid
subdomains. Then the restriction maps Ox (X) — Ox (X;) define an injection

Ox(X) = [Jox(x0).

iel

Corollary 5. For any affinoid subdomain X' = Sp A’ of some affinoid K-space
X = Sp A, the restriction map A — A’ is flat.

Proof. We use Bourbaki’s criterion on flatness; see [AC], Chap.IIl, § 5, no. 2.
For any maximal ideal m C A corresponding to a point in X', we know
from Proposition 2 that the map A —— A ,, gives rise to an isomorphism

—

A A:n + between m-adic completions. It follows from loc. cit. § 5.4, Prop. 4,
that A —— A/ ,, is flat. Varying m over the points of X', we see that A —— A’
is flat. O

Proposition 6. For any point x of an affinoid K-space X, the local ring Oy  is
Noetherian.

Proof. Let X = Sp A and let m C A be the maximal ideal corresponding to x.
Then the local ring Oy , is m-adically separated, i.e. [,y M Ox,x = 0. In fact,
consider an element f, € (),cy M"Ox x. There is an affinoid subdomain U C X
containing x such that f, is represented by some element f € Oy (U) and it follows
f e m"Ox(U) for each n € N by Proposition 2; we may write X = Sp A4 instead
of U again. Then it follows from Krull’s Intersection Theorem, see 7.1/2, that the
image of f in Ay, is trivial. In particular, f; = 0.

In the same way we can show for any finitely generated ideal a, C Oy, that
the residue ring Oy . /a, is m-adically separated. Indeed, fixing a finite generating
system of a,, we may assume that these generators extend to functions in A and,
hence, that a, is induced from an ideal a C A. Then we can interpret Oy /a,
as a stalk of the affinoid space Sp A/a and see that it is m-adically separated. The
latter says that finitely generated ideals in Oy , are closed with respect to the m-adic
topology on Oy .

Now consider an ascending sequence of finitely generated ideals

a1Ca2C...C(9X,x,
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as well as the corresponding sequence of ideals

A~

ﬁlcﬁzc...C(DX,X

where @; is the closure of @; in @X_X. We use that @X,X = A/:n is Noetherian,
as it is the maximal adic completion of a Noetherian local ring. So the chain
in Oy becomes stationary. As Oy, is m-adically separated, the canonical map
Oxx — O x.x is injective. But then the closedness of the ideals a; C Oy, implies
that also the chain in Oy, must become stationary. Thus, Oy , is Noetherian. O

4.2 Locally Closed Immersions of Affinoid Spaces

In the present section we want to characterize affinoid subdomains of affinoid
K-spaces in local terms and thereby provide a proof of the Theorem of Gerritzen—
Grauert 3.3/20.

Definition 1. A morphism of affinoid K-spaces ¢: X' — X is called a closed
immersion if the morphism of affinoid K -algebras ¢*: Ox(X) — Ox/(X') cor-
responding to ¢ is surjective. Furthermore, ¢ is called a locally closed immersion
(resp. an open immersion) if it is injective and, for every x € X', the induced
morphism ¢}: Ox o) — Ox « is surjective (resp. bijective).

For example, any morphism of affinoid K-spaces ¢: X’ —— X defining X’ as
an affinoid subdomain of X is an open immersion, due to the transitivity of affinoid
subdomains mentioned in 3.3/12. On the other hand, if ¢ is a closed immersion, one
can see using Proposition 10 of Appendix B or, alternatively, with the help of 3.3/13
that ¢ is, in particular, a locally closed immersion. Furthermore, any composition
of locally closed (resp. closed, resp. open) immersions is an immersion of the same
type again.

At first sight it is not clear that the definition of a locally closed or open immersion
X’ —— X will provide what is expected from such a terminology. However, we
can conclude from 3.3/18 that there exists a family of special affinoid subdomains
U C X,i el,suchthat X' C |J,;¢; U; and the restrictions X' N U; — Uj; are,
indeed, closed immersions, respectively isomorphisms. The Theorem of Gerritzen—
Grauert 3.3/20 will improve this fact and show that the U; can be chosen large
enough such that finitely many of them will suffice to cover X’.

Remark 2. Let ¢: Y —— X be a closed (resp. a locally closed, resp. an open)
immersion of affinoid K-spaces. Then, for any affinoid subdomain U C X, the
induced morphism gy: @~ (U) — U is an immersion of the same type.
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Proof. The assertion is immediately clear for locally closed and open immersions ¢,
since these are characterized locally on X, and since affinoid subdomains U C X
are open, due to 3.3/19. Concerning closed immersions ¢, the assertion is easily
derived for Weierstraf3, Laurent, or rational domains U C X, due to their explicit
description. The remaining case of a closed immersion ¢ and a general affinoid
subdomain U C X is settled with the help of 3.3/13 from the fact that fiber
products of affinoid K-spaces correspond to completed tensor products on the
level of affinoid K-algebras and that, for two morphisms of affinoid K-algebras
¢*: A — Band A —— A’, the resulting morphism

¢ ®idy:A =AR, A — BRy A
is surjective when @™ is surjective; use Proposition 10 of Appendix B. O

More generally, one can show that closed (resp. locally closed, resp. open)
immersions ¥ —— X are preserved under base change with any affinoid K-space
Z over X, that is, the resulting morphism Y xxy Z —— Z will be of the same type
again.

Proposition 3. Let ¢: X' ——— X be a locally closed immersion of affinoid
K-spaces where the corresponding homomorphism of affinoid K-algebras is finite.
Then ¢ is a closed immersion.

Proof. Writing X’ = SpA’ and X = Sp A, the morphism ¢ induces for every
x € X' a commutative diagram

A—— A

— Ox,9(x) = Ox,0(x)

Mo (x)
@* (7N ox ox
’ ’ a9
A Amx < (9X/,x < (9X/,x

where m, C A’ and my) C A denote the maximal ideals corresponding to x
and ¢(x). Furthermore, ¢ , ¢, and @7 are the canonical extensions of ¢*. The
injections in the middle of the first and second rows are due to 4.1/2, whereas
the remaining ones on the right follow from the fact that Oy 4 and Oy, as
Noetherian local rings (see 4.1/1 and 4.1/6) are maximal-adically separated. Since
@ is injective, m, C A’ is the only maximal ideal over my () C A, and we therefore
can view Ay, as the localization of A’ by the multiplicative system ¢* (4 — my(y)).
Thus, since ¢* is finite, ¢y, will be finite, too.

The same argument shows that the m,-adic topology of A:“x coincides with the
my(x)-adic one, when Ay, is viewed as an Ay, -module via ¢y . Then, by Krull’s
Intersection Theorem, im ¢y, is a closed submodule of A:m. Now, since ¢ is a
locally closed immersion, go;‘v and, hence, ¢ are surjective. As a result, im Pm, 18
dense in A:nx so that ¢, must be surjective, too.
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Now let B = A/ker*. Then ¢™* gives rise to a homomorphism of Noetherian
B-modules B A’ that, as the above reasoning shows, reduces to an
isomorphism when localized at any maximal ideal of B. Thus, by standard reasons,
B — A’ is an isomorphism, and ¢* is surjective. Therefore ¢ is a closed
immersion. O

Proposition 4. Let ¢: X' —— X be a morphism of affinoid K-spaces that is an
open and closed immersion. Then the image of X' is Zariski open and closed in X
and, in particular, ¢ defines X’ as a Weierstraf3 domain in X .

Proof. Using notations as in the preceding proof, let ¢*: 4 ——— A’ be the
morphism of affinoid K-algebras corresponding to ¢, and consider the induced
morphism ¢, : A, — Ay, atapoint x € X'. Then ¢* is surjective, since ¢
is a closed immersion, and ¢, _ is, in fact, bijective. Indeed, ¢, is surjective, since,
as above, we may view A, as the localization of A’ by the multiplicative system
¢* (A — my(x)). On the other hand, the commutative diagram

Amw(x) (9X,<p(x)

*

(/’:,X Px
i
Al > Oxr

in conjunction with the injectivity of ¢} yields the injectivity of ¢y, .

Now, since ¢y, is bijective, there is an element f € A such that f(x) # 0and ¢*
induces a bijection A[ f '] —=» A’[ f~!]. Thus, letting x vary over X', we can
conclude that ¢(X") is Zariski open in X . On the other hand, since ¢(X’) is Zariski
closed in X due to the fact that ¢ is a closed immersion, we see that A decomposes
into a direct sum A = A; @ A, such that ¢*: A —— A’ is the composition of the
canonical projection A — A; and an isomorphism A; — A’. Choosing some
unipotent element e € A that reduces to O on A, and to 1 on A5, as well as a constant
¢ € K with |c| > 1, it is easily seen that the projection A —— A, corresponds to
the Weierstra3 subdomain X(ce) —— X, and we are done. O

Next we introduce a particular class of locally closed immersions, so-called
Runge immersions.

Definition 5. A morphism of affinoid K-spaces ¢: X' — X is called a Runge
immersion if it is the composition of a closed immersion X' —— W and an open

immersion W —— X defining W as a Weierstrafs domain in X.

From Remark 2 we can immediately deduce:
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Remark 6. Let ¢: X' —— X be a Runge immersion of affinoid K -spaces. Then,
for any affinoid subdomain U C X, the induced morphism ¢y: ¢~ (U) — U is
a Runge immersion, too.

If 6:A —— A’ is a morphism of affinoid K-algebras, we call finitely many
elements Ky, ..., h, € A" asystem of affinoid generators of A’ over A (with respect
to 0) if o extends to an epimorphism

A({lv--~v§i1)4’14/s é'i — h;.
Of course, the h; € A’ are then necessarily power bounded.

Proposition 7. For a morphism of affinoid K-algebras 0: A —— A’ the following
are equivalent:

(i) The morphism of affinoid K-spaces ¢:Sp A* — Sp A associated to o is a
Runge immersion.
(ii) o(A) is dense in A’
(iii) o (A) contains a system of affinoid generators of A’ over A.

Proof. If ¢ is a Runge immersion, ¢(A) is dense in A’, since the corresponding fact
is true for closed immersions and for Weierstral domains. Next, choose a system
h, ..., h, of affinoid generators of A" over A. Then, if 0 (A) is dense in A, we can
approximate each A} by some /; € o(A) in such a way that, using Lemma 8 below,
hi,..., h, will be a system of affinoid generators of A’ over A. Finally, assume
that hy,...,h, € o(A) is a system of affinoid generators of A" over A. Then o
decomposes into the maps

A— Alhy,... b)) — A

where the first one corresponds to the inclusion of X(h1,...,h,) as a Weierstraf3
domain in X = Sp A and where the second is surjective and, hence, corresponds to
a closed immersion Sp A’ —— X(hy, ..., h,). Thus, ¢ is a Runge immersion. 0O

As a consequence we see that the composition of finitely many Runge immersions
or, more specifically, closed immersions and inclusions of Weierstral domains,
yields a Runge immersion again.

Lemma 8. Consider a morphism of affinoid K-algebras 6: A — A’ and a system
h = (h},....,h.) of affinoid generators of A’ over A. Fix a residue norm on A and

consider on A’ the residue norm via the epimorphism

T AL) — A, T,
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where we endow A({) = A(L,. ... ,) with the Gauf3 norm derived from the given
residue norm on A. Then any system h = (hy, ... ,h,) in A’ such that |k, — h;| < 1
for all i, yields a system of affinoid generators of A’ over A.

Proof. Since || < 1, due to our assumption, we have |h;| < 1 for all i and
therefore can consider the morphism

T AL) — A, L — h.

g € A = imn’ that there is some f € A{(y,...,¢,) satisfying | f| = |g| and
[m(f) — g| < ¢|g|.- Then an iterative approximation argument shows that m is
surjective.

Thus, start with an element g € A" and choose a 7-inverse f = )" . av¢” in
A(¢) with coefficients a, € A; we may assume | | = |g| by 3.1/5. Then

7 () gl =D @’ = Y an”

veEN” veEN”
= ’ Z a,(h’ —h™)| < smax|a\,| = 8|g|,
e veN”
as required. O

Next, we want to derive a certain extension lemma for Runge immersions. To
do this, let K, be an algebraic closure of K and write K} for its multiplicative
group, as well as |K| for the corresponding value group. Then |K| consists
of all real numbers ¢ > 0 such that there is some integer s > 0 satisfying
a® € K*. Furthermore, let X = Sp A be an affinoid K-space and consider functions
fiv..., fr,g € A generating the unit ideal. Then, for any ¢ € |K}|, we may
consider the subset

X, ={xeX;

fj(x)| < E}g(x)}, j= 1,...,r} C X.
If & = |c| for some ¢ € K*, the set X, is characterized by the estimates

o] < g™, j=1....n

and therefore defines a rational subdomain in X. Given a morphism of affinoid
K-spaces ¢: X' — X, we set X! = ¢~ '(X,) and consider the morphism
@e: X! — X, induced by ¢.

Extension Lemma 9. Assume that the morphism ¢g: X éo — X,, defined as
before is a Runge immersion for some gy € |K|. Then thereis an ¢ € |K|, € > &,
such that ¢.: X — X, is a Runge immersion as well.
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Proof. Write X = SpA and X' = Sp A’, as well as X, = Sp 4, and X/ = Sp 4.,
for & € |K}|. Replacing X by X» and X' by X/, for some ¢’ € | K|, &' > &, we
may assume that all X, and X/ are Weierstra domains in X and X', respectively.
Then, for ¢ € |K|, ¢ > &9, we have a canonical commutative diagram

*«

4—2 A
A —%

.
2,

Agfy —— A;O
where the vertical maps all have dense images, since, on the level of affinoid spaces,
they correspond to inclusions of Weierstra domains. Now let /’ = (A}, ..., h) be
a system of affinoid generators of A" over A. Then h’ gives rise to a system %/, of
affinoid generators of A over A, as well as to a system /; of affinoid generators
of A over Ag,.

Let us restrict ourselves for a moment to values ¢ € |K*|. In particular, we assume
go € |K™|. Fixing a residue norm on A, we consider on A’ the residue norm with
respect to the epimorphism

m AL, .. ) — A o —

and on each A, the residue norm with respect to the epimorphism

pei AleT ... e ) — A, nj — E,

where, strictly speaking, the element ¢ in the expression e~'n; has to be replaced by
a constant ¢ € K with |c| = & and where the elements ¢~ '7 ; have to be viewed as
variables. Then we can introduce on any A/, the residue norm via the epimorphism

ﬂs:Ae(é‘l,---»{n) - A(/g’ é‘i — h:

The latter equals the residue norm that is derived from the one of A via the
epimorphism

_ _ S
T ALy, e e ) —— AL & — ki, njHEf,

satisfying

kerz, = (kermw,gn — f1,.... &0 — fr).
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Now choose a system & = (hy, ..., h,) of elements in A’, having ¢*-inverses in 4,
and whose images in A7 satisfy

<1, i=1,...,n.

n

X, hi X4,
The latter is possible, since the image of A is dense in A; , due to the fact that X,
is a Weierstral domain in X and ¢,: X; —— X, is a Runge immersion. Then
it follows from Lemma 8 that /& gives rise to a system of affinoid generators of A’SO
over Ag,.

In order to settle the assertion of the Extension Lemma, it is enough to show that,
in fact,

<1, i=1,...,n, ()

h

x; ~ hily
for some & > &o. Then, using Lemma 8 again, 4|, is a system of affinoid generators
of A, over A, belonging to the image of A,, and it follows from Proposition 7 that
@e: X! — X, is a Runge immersion in this case.

To abbreviate, letd, = hj|x:—h;|x; € A, foranyi € {1,...,n}. Furthermore, fix
&1 € |[K*| with&; > &9 and choose an element g., € A(, &7'n) with 7, (g:,) = d,
where { = (¢1,...,¢,) andn = (1, ...,1n,). For e < gy, let g, be the image of g,
in A(¢,e7'n) so that 7,(g.) = d, for all ¢ < &;. Now, by the choice of /;, we have
|ds,| < 1. Thus, using 3.1/5, there is an element

go € kert,, = (kerm,gnm — fi,....gn — [)A({L. &5 ' n)

such that |g., + go| < 1. Approximating functions in A({, &;'n) by polynomials in
A(¢) [y '], we may assume that g is induced by an element

g1 €kert, = (kermw,gn — fi.....gn — fr) AL, 81_17]).

But then we may replace from the beginning g., by g., — g1 and thereby assume

gzl < 1.
Now let

g = Y. awl'n’ € A{l.e ')

pweN" veNr

with coefficients a,, € A. Since |g,, < 1|, we get max enn venr |a;w|el)”| < 1.
Passing from g to a slightly bigger & (not necessarily contained in |K*|), we still
have

— vl
|gel = e lauwle™ <1
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for ¢ > &g sufficiently close to gy. Thus, if such ¢ exist in |K*|, the series g, is a
well-defined element in A(¢, e~ 'n) satisfying |d.| < |g:| < 1 as required in ().
This settles the assertion of the Extension Lemma in the case where &y € |K*| and
the valuation on K is non-discrete.

In the general case, we can always enlarge the value group |K*| by passing to a
suitable finite algebraic extension L /K. This way, we can assume &y € |L*| and,
in addition, that the last step in the above argumentation works for some ¢ > &
contained in | L*|. In other words, the assertion of the Extension Lemma holds after
replacing the base field K by a suitable finite algebraic extension L in the sense that
we apply to our situation the base change functor

SpA+— SpA®x L

where & is the completed tensor product of Appendix B. Thus, it is enough to show
that a morphism of affinoid K -spaces X’ —— X is a Runge immersion if the corre-
sponding morphism of affinoid L-spaces X’ ® x L — X ® L has this property
or, equivalently, that a morphism of affinoid K-algebras A — A’ has dense image
if the corresponding morphism of affinoid L-algebras A ® x L — A’ & L has
dense image. However, the latter is easy to see. Since the completed tensor product
commutes with finite direct sums, see the discussion following Proposition 2 of
Appendix B, it follows that the canonical morphism A @ x L —— A ®g L is
bijective for any affinoid K-algebra A and any finite extension L /K. Now consider
a morphism of affinoid K-algebras 0: A —— A’, and let A” C A’ be the closure
of 0(A). Then the morphism o ®x L: A ®x L — A’ ® L factors through the
closed subalgebra A” @ x L C A’ ®k L. If 0 ® L has dense image, we see that
A” @ L coincides with A’ ® ¢ L and, hence, by descent, that the same is true for
A" and A’. Thus, we are done. O

Next, let us look more closely at the structure of locally closed immersions. We
begin by stating the main structure theorem for such immersions and by deriving
some of its consequences.

Theorem 10 (Gerritzen—Grauert). Let ¢: X' — X be a locally closed immersion
of affinoid K-spaces. Then there exists a covering X = |J;—, Xi consisting of
finitely many rational subdomains X; C X such that ¢ induces Runge immersions
i N (X)) — X fori=1,...r.

Corollary 11. [f, in the situation of Theorem 10, ¢: X' —— X is an open
immersion, then the maps ¢; define ¢~ (X;) as a Weierstraf3 domain in X;, for
i=1,...,r.

Proof. It is enough to show that a Runge immersion ¢: X’ — X that at the same
time is an open immersion, defines X’ as a Weierstral domain in X. Since ¢ is
the composition of a closed immersion X’ —— W and of a Weierstra} domain
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W —— X, we may assume W = X and thereby are reduced to the case where ¢
is a closed immersion. But then the assertion follows from Proposition 4. O

Corollary 12. Let X be an affinoid K-space and X’ C X an affinoid subdomain.
Then there exists a covering X = \J;_, X; consisting of finitely many rational
subdomains X; C X such that X; N X' is a Weierstraf3 domain in X; for everyi.In
particular, X' is a finite union of rational subdomains in X .

Proof. The inclusion X’ & X is an open immersion. Thus, we may apply
Corollary 11 and use the fact that all intersections X; N X are rational subdomains
of X by 3.3/17. O

To approach the proof of Theorem 10, we generalize the concept of Weierstral3
division introduced in Sect. 2.2. In the following, let A be an affinoid K-algebra and
¢ = (&,...,¢,) asystem of variables. For any point x € Sp A denote by m, C A4
the corresponding maximal ideal. Furthermore, given any series f € A((), let | f|
be the Gaul3 (or supremum) norm of the residue class of f in (4/m,)({).

A series f € A(C) is called &,-distinguished of order s at a point x € Sp A
if its residue class in (A/my)(¢) is ,-distinguished of order s in the sense of
Definition 2.2/6. Furthermore, if f is ¢,-distinguished of some order < s at each
point x € Sp A, we say that [ is {,-distinguished of order < s on Sp A. As a first
step, we generalize 2.2/7.

Lemma 13. Let f = ) . av(’ be a series in A(() such that its coefficients
a, € A have no common zero on Sp A. Then there is an A-algebra automorphism
o: A(C) —— A(C) such that, for some s € N, the series o (f) is {,-distinguished
of order < s on Sp A.

Proof. We may assume A # 0. For x € Sp 4, let ¢, — 1 be the least upper bound of
all natural numbers that occur in multi-indices v € N” satisfying |a, (x)| = | f|x-
We claim that

= sup i
x€Sp A

is finite. As the coefficients a, of f do not have a common zero on Sp A4, there
are finitely many indices v(1),...,v(r) € N” such that a,(y), ..., a,() generate the
unit ideal in A; see 3.2/6. Fixing an equation Y ;_, ¢;d,q) = 1, the coefficients
¢; € A have finite supremum norm by 2.2/5, and it follows that there is some y > 0
such that
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for all x € Sp A. However, since the a, form a zero sequence with respect to any
residue norm on A and, hence by 3.1/9, also with respect to the supremum norm on
A, we see that all 7, are bounded. Consequently, ¢ is finite.

Now, proceeding as in 2.2/7, we set o) = "1 ..., ay—1 = t and consider the
A-algebra automorphism

0 ALY — A(E), & — &+ g% fori <n

' fori =n

Then, as in the proof of 2.2/7, o'( f) is {,-distinguished of order < s = > /_, ¢" at
each point x € Sp A. O

Lemma 14. Let f € A(C) be ,-distinguished of order < s on Sp A. Then the set
{x € SpA; f is {,-distinguished of order s at x}
is a rational subdomain in Sp A.

Proof. We write f = Y 02 £,£” with coefficients f, € A(1,..., ¢ u—1). Leta, €
A be the constant term of f,. That f is {,-distinguished of some order s, < s at a
point x € Sp A means that
| folx < |fsx|x for v < sy,
| folx < |fs|x forv > sy, and
the residue class of f; isaunitin A/m, (), ..., {—1).

Since a,(x) is the constant term of the residue class of f, in A/m, (¢, ..., —1),
we see that |a, (x)| < | f,|x, which is, in fact, an equality for v = s, by 2.2/4. Thus
we get

jav@)| < [£l, = |/

jav@] = |A], <[4

L= |asx(x)| forv < s,

L= |asx(x)| forv > sy,

which shows, in particular, that a, (x) # 0. Thus, since f is {,-distinguished of
some order < s at each point x € Sp A, the elements ay, ..., a, cannot have a
common zero in Sp A. Therefore

U= {x eSpA; }a,,(x)| < |as(x)},v :O,...,s—l}

is a rational subdomain in Sp A, and the above estimates show that f is
¢, -distinguished of order s at a point x € Sp A if and only if x € U. O
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Proposition 15. As before, let A be an affinoid K-algebra and { = ({y,...,¢,)
a system of variables. Then, for any f € A(C) that is {,-distinguished of order
precisely s at each point x € Sp A, the canonical map

A Ga) — A/ ()
is finite.

Proof. We write f = Y o2 f,¢ with elements f, € A((i,...,u—1). Then, for
any x € Sp A, the residue class of f; in A/m((1,...,¢,—1) is a unit. Therefore
fs cannot have any zeros and, consequently, is a unit in A((y, ..., {,—1) by 3.2/6.
Replacing f by f,”' f, we may assume f; = 1 and, furthermore,

|fv|sup§ 1 for v <y,

| folwp <1 for v >s,

where | - |sp denotes the supremum norm on A(¢). Thus Z,, the residue class of £,
in A(¢)/(f), satisfies the following estimate:

|§_ns + fimtG T 4+ fo|Sup <1 (%)

Now choose a system of variables n = (7', 7,) = (M1,...,0m) Withm > s
large enough such that there exists an epimorphism t’: K(n') — A(1, ..., {i—1)
sending the first s variables 7i,...,7n, to fo,..., fs—1. Since |filsp =< 1, the

latter is possible due to 3.1/19. Furthermore, we can extend 7’ to an epimorphism
: K (n) — A(¢)/(f) by sending 1,, to the residue class Z,. Then, due to (x),
the polynomial 75, + ns—1n5 ! + ... + no € K(n) is a WeierstraB polynomial in
Nm satisfying |t(w)|sp < 1 and, by 3.1/18, there is some r € N such that the
image 7(w") has residue norm < 1 with respect to the epimorphism 7. Hence,
using 3.1/5, we can get an equation " = g + h with an element g € K(n)
of GauB norm |g|] < 1 and some &7 € kert. But then h = " — g is a
nm-distinguished element of the kernel ker 7, and it follows from the Weierstrafl
division formula 2.2/8 that t induces a finite morphism K(n') —— A{)/(f).
Consequently, A(¢y, ..., ,—1) — A(C)/(f) is finite, as claimed. |

After these preparations, we can start now with the proof of Theorem 10. Let
¢*: A — A’ be the morphism of affinoid K -algebras corresponding to the locally
closed immersion ¢: X’ — X. Furthermore, let (A’ : A) be the minimum of all
integers n such that there exists a system of affinoid generators of A" over A of
length n. We will proceed by induction on (A’ : A), setting n = (A’ : A). The case
n = 0is trivial. Then ¢* is an epimorphism, which means that ¢ a closed immersion
and, hence, also a Runge immersion.

For n > 1 consider an epimorphism 7: A({) — A’ extending ¢* where
indicates a system of variables ({i, ..., ,). We claim that there exists an element
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f =2 e v’ € kert C A(¢) whose coefficients a, € A do not have a common
zero on X. To justify this claim, consider for any x € X and its maximal ideal
m, C A the morphism

T A/m (&) — A /m, A,

obtained from t by tensoring with A/m, over A. Then t, has a non-trivial kernel,
due to the fact that ¢ is injective and, hence, A’/m, A’ is a local ring, whereas
A/m,(¢) is not local. Since ker t is mapped surjectively onto ker 7., we see that,
for each x € X, there exists an element g € ker r that is non-trivial modulo m,.
Thus, there are finitely many series g1,...,g, € kert C A({) whose coefficients
generate the unit ideal in A. Since A is Noetherian, we can find an integer d € N
such that the zero set in X of the coefficients of any g; is already defined by the
coefficients of g; with an index of total degree < d. Then, choosing some v € N”
with vy + ...+ v, = d, the series

f=g+g+...0"y,

belongs to ker r, and its coefficients will have no common zero on X .

Thus, our claim is justified and, applying Lemma 13, we can assume that
ker T contains a series f € A(¢) that is ¢,-distinguished of order < s on X,
for some s > 0. Now use Lemma 14 and let X©® = Sp A®) C X be the
affinoid subdomain consisting of all points x € X where f is {,-distinguished
of order s. We want to show that we can apply the induction hypothesis to the
restricted morphism ¢®): 971 (X®)) —— X that corresponds to the morphism
7 AY — A4’ ®,4 AW obtained from ¢* by tensoring with A®) over A.
Tensoring t in the same way, we get a morphism

r(“‘):A(“')(é‘) - A @A A®)

that is surjective by Remark 2 and extends 7. Let f© be the image of f in
AY(¢). Then £ is ¢,-distinguished of order s at all points x € X and, since
f©) e kert®, we can conclude from Proposition 15 that t*) gives rise to a finite
morphism

T A G — ARy AW

extending ‘L'(gs). Clearly, 7' corresponds to a locally closed immersion of affinoid

K-spaces, as the same is true for ro(s). But then /) must be surjective by

Proposition 3 so that (4’ ®4 A® : A®) < n — 1. Therefore we can apply the
induction hypothesis to ¢®: = 1(X®)) —— X and it follows that there is a
covering X = (J/_, X; consisting of rational subdomains X; C X such that
the induced maps ¢;: ¢~ '(X;) — X; are Runge immersions.
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Next, we want to apply the Extension Lemma 9 to the Runge immersions ¢;.
Due to the transitivity property of rational subdomains, see 3.3/17, the X; may be
viewed as rational subdomains in X. Thus, choosing functions in A that describe
X; as a rational subdomain in X, we can introduce rational subdomains X;, C X
for ¢ € |[K}| where X; | = X;, as in the context of the Extension Lemma. Then
we can fix an ¢ € |KJ|, & > 1, such that ¢; extends to a Runge immersion
(p,-,a:q)_l(X,;g) — X .. The latter works for i = 1,...,r, and we may even
assume that ¢ is independent of i . Now it is enough to construct rational subdomains
Vi,....,Vy C X — X with the property that

r 14
XZUXLSUUVA' ()
A=l

i=1

Let us justify this claim. If V), = Sp B,, the above epimorphism t: A{({) — A’
restricts to epimorphisms

‘CAIB)&({)HA/®ABA, )L=l,...,£,

so that (A’ ® 4 By : By) < n. Furthermore, the above series f € A(() induces
series fy € kerty, A = 1,...,4, that are {,-distinguished of order < s — 1 since
V3 N X® = @. Thus, proceeding with 7, in exactly the same way as we did with
the epimorphism 7: A{{) —— A’, we may lower the order of distinguishedness of
f until it is 0. But then f cannot have any zero. Thus, it must be a unit, and we can
conclude X’ = @ from f € kerr.

It remains to establish the covering (x). Starting with the case r = 1, we drop the
index i and write

X, = x(e' B 18
8i+1 8i+1
for ¢ € | K| and suitable functions g, ..., g¢+1 € A. Furthermore, let
Vi =XEEEL L a4,
& 8
for A = 1,...,£. Then the V, are rational subdomains in X, disjoint from X, and

the covering X = X, U U§=1 V) is as desired.
Finally, if » > 1, we construct as before rational subdomains V;, C X — X;
such that X — X; . C | J5_, Vis fori = 1,....r. Then

,
X—UX,"SC U VL/\[ ﬂ...ﬂVr_Ar,
i=1 Alyeeshr

and we can derive a covering of type (x) as desired. O



82 4 Affinoid Functions
4.3 Tate’s Acyclicity Theorem

Let X be an affinoid K-space and ¥ = Ty the category of affinoid subdomains
in X, with inclusions as morphisms. A presheaf & (of groups, rings, ...) on ¥ is
called a sheaf if for all objects U € ¥ and all coverings U = | J,;; U; by objects
U; € ¥ the following hold:

(S1) If fe¥FU)satisfies f|y, =0foralli € I, then f = 0.

(S2)  Given elements f; € ¥ (U;) such that fi|v,nv; = fjlv.nu, for all indices
i,j €, thereisan f € ¥ (U) (necessarily unique by (S;)) such that f'|y, = f;
foralli € I.

So if ¥ is a sheaf, we can say that, in a certain sense, the elements of the groups
(orrings etc.) ¥ (U) with U varying over ¥ can be constructed locally. In the present
section we are interested in the case where ¥ equals the presheaf @y of affinoid
functions on X. We know from 4.1/4 that condition (S;) holds for @x. However,
due to the total disconnectedness of the canonical topology on X, condition (S;)
cannot be satisfied for Oy, except for trivial cases. So, in strict terms, @ cannot be
called a sheaf. Nevertheless, we will see that O x satisfies the sheaf condition (S,) for
finite coverings U = | J,;¢; U;. This fact, which is a special case of Tate’s Acyclicity
Theorem, is basic for rigid geometry, and we will give a direct proof for it.

Sheaf conditions (S;) and (S;) can conveniently be phrased by requiring that the
sequence

Ox(U) — [oxW) — [] oxWinUy),
iel i.jEl
()
(fi |UfﬂUj)i,_/el

(fJ |UiﬁUj)i,jel

f— (f|Ui)iEI’ (fi)iel e

be exact for every U € ¥ and every covering i1 = (U;);e; of U by sets U; € T. Note
that a sequence of maps A — B — C is called exact if A is mapped bijectively
onto the subset of B consisting of all elements having same image under the maps
B —= C. For a presheaf ¥ on X and a covering 4 = (U;);e; of X by affinoid
subdomains U; C X, we will say that # is a $l-sheaf, if for all affinoid subdomains
U C X the sequence (x) applied to the covering U|y = (U; N U);¢y is exact.

Theorem 1 (Tate). Let X be an affinoid K-space. The presheaf Ox of affinoid
functions is a M-sheaf on X for all finite coverings 4 = (U;);e; of X by affinoid
subdomains U; C X.

The proof will be done by reducing to more simple coverings where, finally,
a direct computation is possible. We begin by discussing the necessary reduction
steps. Consider two coverings i = (U;)iey and U = (V;);es of X. Then U is
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called a refinement of U if there exists amap t: J —— I such that V; C U, for
all j € J. In the following, ¥ will be any presheaf on X.

Lemma 2. Let 4 = (U;)ier and U = (V;)jes be coverings of X by affinoid
subdomains where 0 is a refinement of L. Then, if ¥ is a U-sheaf, it is a I-sheaf
as well.

Proof. We will show the exactness of (x) for the covering (; the proof for its
restriction |y on any affinoid subdomain U C X works in the same way. So
consider elements f; € ¥ (U;), i € I, such that fi|lv,nu, = filunu, for all
i,i’ € I.Choosing amap t: J —— [ suchthat V; C U(;), set g; = fi(j)ly, for
all j € J. Then we have

gilv,av, = (fehlvagynu, ) lviav,
= (feinlvanv. n)lvinw, = gjrlvav,,
and, as 7 is a U-sheaf, there is a unique element f € ¥ (X) such that f|y;, = g;

for all j € J. We claim that f|y, = f; foralli € I. To check this, fix an index
i € I. Then

(flo) v, = flunv, = gjluny,

for j € J. Furthermore,

Siluinv, = filvinv,gynv, = felvinvgnv, = &ilviny;

and, thus, we see that fi|y;,nv; = (f|v;)|v;nv;. Now, using the fact that F is a
J-sheaf when restricted to U;, we see that necessarily f|y, = f; foralli e I.
Clearly, f is uniquely determined by these conditions, and it follows that ¥ is a
$-sheaf. ]

Lemma 3. Let 4 = (U;)icr and U = (V;)jes be coverings of X by affinoid
subdomains. Assume that

() F is a*V-sheaf, and

(ii) the restriction of ¥ to V; is a |y, -sheafforall j € J.

Then ¥ is a $-sheaf as well.
Proof. Again, we will show the exactness of the sequence (x) for the covering il;
the proof for the restriction 4|y on any affinoid subdomain U C X works in the

same way. Thus, consider elements f; € ¥ (U;) such that f;|v,nv, = fi|v;nu, for
alli,i’ € I.Then, fixing j € J, we have

Silv.av v, = firlviauav;
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and condition (ii) implies that there exists a unique element g; € ¥ (V) such that
gj |UiﬂVj = filUiﬂVj foralli € I. FleIlg j,j/ e J,we get

gle;ﬂVjﬂer = fi|U,»m/_,»mVj, = g_j’|UiﬂVjﬂVj/

for all i € /. Hence, again by condition (ii), we have g; |ij//_, =g |ij/j,, and
by condition (i) there exists a unique element g € ¥ (X) satisfying g|y, = g; for
all j € J. Now by construction, g coincides with f;, when we restrict to U; N V;,
foralli € I, j € J. But then, by condition (i), we must have g|y, = f; for all
i € I. As g is uniquely determined by these conditions, as is easily verified, we see
that ¥ is a 4-sheaf. |

Next we want to look at particular types of coverings of our affinoid K-space
X = Sp A to which we want to apply Lemmata 2 and 3. We will call a finite
covering of X by affinoid subdomains an affinoid covering. Furthermore, choosing

elements fy,..., f, € A without common zeros, we can write
lJ,:X(ﬁﬁ) =0,....n,
fi Ji

thereby obtaining a finite covering {l = (U;);=¢.., of X by rational subdomains. £{
is called a rational covering or, more precisely, the rational covering associated to

Foueei frn

Lemma 4. Every affinoid covering 31 = (U;);e; of X admits a rational covering as
a refinement.

Proof. Using the Theorem of Gerritzen—Grauert in the version of 4.2/12, we can
assume that 41 consists of rational subdomains, say 3 = (U;);=1.., with

(M) ()
U = X(fl_(l) ’;i)).
fo fo
Now, consider the set I of all tuples (vq,...,v,) € N” with 0 < v; < r; and set
n
fV]--~Vu = 1_[ fvgl)
i=1
for such tuples. Writing I’ for the set of all (vy,...,v,) € I such that v; = 0 for at

least one i, we claim that the functions

Sorvns ..o el’,
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do not have a common zero on X and, thus, generate a rational covering ¥ on X.
To verify this, look at a point x € X where all these functions might vanish. Then
there is an index j such that x € U; and, hence, foj )(x) # 0. It follows that all
products

nf(l) O<vi <n,
i#]

must vanish at x. But this is impossible since, for each i, the functions fo(’), e, f,fl)
generate the unitideal in A = Oy (X). Thus, the rational covering U is well-defined.

It remains to check that ®U is a refinement of {. To do this, consider a tuple
(v1,...,v,) € I’ and look at the set

St otin
----- Vn =X( Bk a (/"Ll"~"/”l’ﬂ) € I/) em
S
where, for example, v, = 0. We want to show that X,
point x € X,,

v, C U,. Thus, choosing a

------

,, and an index w,, 0 < u, < r,, we have to show

D) < A" @] = [ A7)

There exists an index j such that x € U;. If j = n, nothing is to be proved. So

assume that j is different from n, say j = 1. Then it follows |f,fll)(x)| < |f0(l)(x)|
for0 < p; < ryand

([Troeol)-| ,f:?<x>|s|fo“’<x>|-(ﬂl L)) L] < [TA

i=1 i=1

as the tuple (0,v,, ..., v,—1, /,Ln) belongs to /’. Now, since [/ (')(x) does not

vanish, we can d1V1de by [1i= (’)(x) to obtain the desired 1nequahty showing
Xo..vy CU,. O

.....

It is necessary to consider another special class of coverings of affinoid K-spaces
X = Sp A. Choose elements f,..., f, € A. Then the sets

X(fO, . f), e {+1,—1},

form a finite covering of X by Laurent domains; it is called a Laurent covering or,
more precisely, the Laurent covering associated to fi, ..., f;.

Lemma 5. Let 3L be a rational covering of X . Then there exists a Laurent covering
U of X such that, for each V € 0, the covering |y is a rational covering of V
that is generated by units in Ox (V).
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Proof. Let fo,..., [, € Ox(X) be functions without common zeros on X
generating the rational covering 4. As f; is invertible on U; = X (L‘_’, ey %) and
since its inverse assumes its maximum on U;, we can find an element ¢ € K™ such
that

e < inf (max | £ (0)]).

Let U be the Laurent covering of X generated by the elements cfo, ..., cf.. We
claim that ®U is as desired. To justify this, consider a set

V= X((cfo)ao, ey (cfr)"‘") ey

where «y, ..., € {+1,—1}. We may assume that op = ... = @y, = +1 and that
0541 = ... =0, = —1 for some s > —1. Then
X(ﬁ““,ﬁ)ﬂVzﬁ
Ji Ji
fori =0,...,s,since

max| ] = el < max (o)

for x € V. In particular, we have

max | fi(x)| = max |f;i(x

i=04,,r|f;( )| i=S+l...r|fl( )|

for all x € V, and 4|y is the rational covering generated by fi+1|v,..., fr|v. By
construction, these elements are units in Ox (V). O

Lemma 6. Let 3 be a rational covering of X = Sp A that is generated by units
for-o s fr € Ox(X). Then there exists a Laurent covering U of X that is a
refinement of .

Proof. Let U be the Laurent covering of X generated by all products
Lif 0<i<j<mr

We claim that U refines 1. To verify this, consider a set V' € 2. Given elements
i,j e §={0,....r},wewrite i < jif|fi(x)] < |fj(x)| forall x € V.
The resulting relation < on S is transitive and total in the sense that, for arbitrary
i,j € S,wehave alwaysi < j or j < i.Thus, there is an element i; € S that is
maximal with respect to <, and it follows that
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Hence, U is a refinement of 4. a

We can now sum up the essence of Lemmata 2 to 6.

Proposition 7. Let ¥ be a presheaf on the affinoid K-space X. If ¥ is a $-sheaf
for all Laurent coverings 3\ of X, then it is a *U-sheaf for all affinoid coverings U
of X.

Proof. Start with a general affinoid covering U of X. We have to show that ¥
is a Y-sheaf, provided it is a $-sheaf for every Laurent covering 4 of X. By
Lemma 4 there is a rational covering refining U and we may assume that ¥ itself is
a rational covering, due to Lemma 2. Furthermore, using Lemma 3 in conjunction
with Lemma 5, we may even assume that ®0 is a rational covering that is generated
by units in Oy (X). But then, Lemma 6 in conjunction with Lemma 2 again reduces
everything to the case where 2 is a Laurent covering of X and we are done. O

Thus, we have seen that it is only necessary to do the proof of Theorem 1 for
Laurent coverings. In fact, combining Lemma 3 with an inductive argument it is
only necessary, to consider a Laurent covering generated by one single function
f € A= 0Ox(X). Then we have to show that the sequence

0> A Af)yx A(fY =2 A(f, F71y — 0,
o (Flxo flxg—n). (F8) o Flxrr = 8lxcrr

is left exact. The sequence is part of the following commutative diagram:

0 0

|

(&= NIA) x (1= f)Al) > € = AL — 0

| .

0 H A(Z) x Aln) ALy —— 0
0 LAY x ALY ’ Af ) ———0
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The symbols ¢,  denote indeterminates, &’ is the canonical injection, 8’ is given by
(h1(¢), ha(n)) —— h{(&) — ha(¢™Y), and §” is induced by §’. Furthermore, the
vertical maps are characterized by { —— f and n — f !, respectively. The
first column of the diagram is exact due to the definition of A(f) and A(f™'); cf.
the proof of 3.3/11. Also the second column is exact since

AL T = AL /€~ £l = fa)
= AL /€= f1=tn) = ALY/ €~ 1)

Clearly, ' is surjective. Since

(€= HALET) = = HAE) + (1= FEHACT),

the same is true for §”. Thus, the first row is exact. Furthermore, also the second row
is exact, since

0= 8’<iai§i,ibini) = iaz@i — ibzf_i
i=0 i=0

i=0 i=0

implies a; = b; = 0 fori > 0 and ay — by = 0. Finally, looking at the third
row, the injectivity of ¢ follows from 4.1/4, and the exactness of this row follows by
diagram chase. This concludes the proof of Tate’s Acyclicity Theorem in the version
of Theorem 1. O

Next, without giving proofs, we want to discuss the general version of Tate’s
Acyclicity Theorem. For more details see [BGR], Chap. 8. We consider an affinoid
K-space X and a finite covering 4l = (U;);¢; of it consisting of affinoid subdomains
U; C X. Furthermore, let us fix a presheaf ¥, say of abelian groups, on the
(category of) affinoid subdomains of X . Setting

Uiy = Uy N...N T,

for indices iy, ...,i; € I, we define the group of g-cochains on i with values
in ¥ by

i F)= [] FWi.i)

ig..ig€l
A cochain f € C4(4, ) is called alternating, if

Sinywinig = 880(T) fiy...,
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for indices ip,...,i; € I and any permutation 7 € &,y and if, furthermore,
fiou_,-q = 0 for indices iy, ...,i, that are not pairwise distinct. The alternating
g-cochains form a subgroup CJ (4, ) of C4 (L, F).

There is a so-called coboundary map

d:CI, F) — CIT (L, F),
given by

q+1

@1y = 20D S i
j=0

that satisfies 9" o d9 = 0 and maps alternating cochains into alternating ones,
as is easily verified (i; means that the index i; is to be omitted). Thus, we obtain a
complex

0— COW7) -2 '@, 7y - 2, 7y S L

which is called the complex of Cech cochains on $1 with values in % . In short, it is
denoted by C* (4, ). Similarly, there is the complex

2

0 1
0 — COWLF) ~20 Cl W, F) % C2(8U, F) 220 ..,

of alternating Cech cochains on I with values in %, denoted by C2(U, F).
Associated to these complexes are the Cech cohomology groups

HIY@, F) =kerd?/imd?™!,
HI(U, F) =kerd?/imdi™",
which are defined for ¢ € N (set d~! = 0 and d;! = 0). There is no difference,

working with all cochains or merely with alternating ones, as is asserted by the
following lemma:

Lemma 8. The inclusion C;(,F) —— C*(W,F) induces isomorphisms of
cohomology groups

HIGLF) =~ HYYF), qeN.

There is an immediate consequence:
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Corollary 9. If the covering i consists of n elements, we have

HIMF)=HIWF)=0 for g =>n.

The argument is, of course, that cl L, F) = 0 for g > n in the situation of
Corollary 9. The covering f of X is called ¥ -acyclic if the sequence

e 0 1
00— F(X) —> 'L F) 5 cla, 7) s

is exact where e: F (X) — C°(U, F) is the so-called augmentation map given by
f —— (flu)ier- Note that Ll is ¥ -acyclic if and only if ¥ satisfies the following
conditions:

(i) the sequence ¥ (X) — [l;e; F(Ui) — [1; jer ¥ (Uij)is exact, i.e.
satisfies the sheaf properties (S;) and (S,) for the covering 4l.
(i) HIW,¥) =0forg > 0.

Now we can state Tate’s Acyclicity Theorem in its general version:

Theorem 10 (Tate). Let X be an affinoid K-space and A a finite covering of X by
affinoid subdomains. Then L1 is acyclic with respect to the presheaf Oy of affinoid
functions on X .

The proof is the same as the one of Theorem 1; it is only necessary to establish
Lemmata 2 and 3 in a more general cohomological context. Then, as exercised
above, the assertion can be reduced to showing that for a Laurent covering of
X generated by a single function f € Ox(X), the augmented Cech complex of
alternating cochains

& 0 d° 1 d!
00— Ox(X) — C/(1,0x) — C, (11, 0x) — O

is exact.
Finally, if X = SpA and M is an A-module, we can consider the presheaf
M ® 4 Oy on the affinoid subdomains of X given by

U M ®,; 0x(U).

A simple argument shows that the assertion of Theorem 10 can be generalized to
this presheaf in place of Oy:

Corollary 11. Let X = Sp A be an affinoid K-space, M an A-module, and 3\ a
finite covering of X by affinoid subdomains. Then i is acyclic with respect to the
presheaf M ® 4 Ox.
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Proof. The assertion is a direct consequence of Theorem 10 if M is a free
A-module, ie. if M = A@ for some index set A. Indeed, in this case the
augmented Cech complex

£ 0 d° 1 d!
00— M — COL M ®, Oy) o C'ULM &4 Ox) 1 .

is just the A-fold direct sum of the complex

00— A2 COULOx) —2 Cl (8t Oy) o .
If M is not free, we can choose a short exact sequence of A-modules
0O— M —F — M — 0.
Associated to it is a sequence of augmented Cech complexes

0o— C* (ﬂ,M’@A(gx) —C® (ﬂ,F®A0x) — C

L[]
aug aug aug

WUM®,40x) — 0,

which is exact, since for every affinoid subdomain Sp A” —— Sp A the inherent
morphism A — A’ is flat; see 4.1/5.

Now consider the long exact cohomology sequence induced from the preceding
short exact sequence of Cech complexes. Since the complex Cae (L F ®4 Ox) has
trivial cohomology, the long exact cohomology sequence contains isomorphisms of

type

Hi (UM ®40x) —> HIF' (WM ®40x), ¢=0,
where Hfug denotes the gth cohomology of augmented Cech complexes. If &l
consists of n elements, we see from Corollary 9 that H.fug U, N ®4 Oy) is trivial
for ¢ > n and all A-modules N. In particular, we have Hfug(ﬂ, M ®,40x) =0 for
q > n. Furthermore, the preceding isomorphism implies H;’u?(Ll, M®,40x)=0.
Replacing M by an arbitrary A-module N, it follows that Hae (U, N ® 4 Ox) is
trivial for ¢ > n — 1. But then, by falling induction, we conclude that [ is acyclic
for M ® 4 Ox. a



Chapter 5
Towards the Notion of Rigid Spaces

5.1 Grothendieck Topologies

As we have already indicated at the end of Sect.2.1, the presheaf of affinoid
functions Oy on an affinoid K-space X cannot satisfy sheaf properties if we do
not restrict the multitude of all possible open coverings. In fact, Tate’s Acyclicity
Theorem in the version of 4.3/1 or 4.3/10 is somehow the best result one can
expect for general affinoid spaces, and we will base the construction of global
rigid K-spaces by gluing local affinoid parts on this result. As a technical trick,
we generalize the notion of a topology.

Definition 1. A Grothendieck topology ¥ consists of a category Cat¥ and a set
Cov ¥ of families (U; — U);ej of morphisms in CatX, called coverings, such
that the following hold:

(1) If @: U —— V is an isomorphism in Cat ¥, then (&) € Cov %.

(2) If (Ui — U)jeq and (Vi — Uj)jey, fori € I belong to Cov %, then the
same is true for the composition (Vj —— U; —— U)iey,jey;.

B) If (Ui — U)jey isin CovZT and if V.—— U is a morphism in Cat%, then
the fiber products U; xy V exist in Cat%, and (U; xy V. —— V);e; belongs
to Cov ¥.

We may think of the objects of Cat¥ as of the open sets of our topology and of
the morphisms of CatT as of the inclusions of open sets. Furthermore, a family
(Ui — U)je; of CovT has to be interpreted as a covering of U by the U;
and a fiber product of type U; xy V as the intersection of U; with V. Thinking
along these lines an ordinary topological space X is canonically equipped with a
Grothendieck topology: Cat ¥ is the category of open subsets of X, with inclusions
as morphisms, and Cov ¥ consists of all open covers of open subsets of X. However,
there are more general examples where the morphisms of Cat T are far from being
monomorphisms, like the étale topology, the fppf-topology, or the fpgc-topology

S. Bosch, Lectures on Formal and Rigid Geometry, Lecture Notes 93
in Mathematics 2105, DOI 10.1007/978-3-319-04417-0_5,
© Springer International Publishing Switzerland 2014
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in algebraic geometry. It should be pointed out that the “intersection” of “open” sets
is dealt with in condition (3) of Definition 1, whereas we have refrained from giving
any sense to the union of “open” sets. In fact, even in examples where the union of
“open” sets does make sense, such a union will not necessarily yield an “open” set
again.

The notion of a Grothendieck topology has been designed in such a way that the
notion of presheaf or sheaf can easily be adapted to such a situation:

Definition 2. Let ¥ be a Grothendieck topology and € a category admitting
cartesian products. A presheaf on T with values in € is defined as a contravariant
Sfunctor ¥:CatT — €. We call ¥ a sheaf if the diagram

FW) — [[FW) = [] #FW: xv Uy

iel i,jel
is exact for any covering (U; — U);e; in Cov %.

From now on we will exclusively consider Grothendieck topologies ¥ of a special
type. More specifically, the category Cat‘T will always be a category of certain
subsets of a given set X, with inclusions as morphisms. The objects of CatT
will be referred to as the admissible open subsets of X. Likewise, the elements
of Cov® are called the admissible coverings, and we will only consider those
cases where admissible coverings (U; —— U);¢; are, indeed, true coverings of
U by admissible open sets U;. To let the set X intervene, we will talk about a
Grothendieck topology T on X and call X a G-topological space. Of course, we
are interested in the case where X is an affinoid K-space, and in Grothendieck
topologies on X with respect to which the presheaf Oy of affinoid functions
is actually a sheaf. A straightforward possibility to define such a Grothendieck
topology is as follows:

Definition 3. For any affinoid K-space X, let Cat% be the category of affinoid
subdomains of X with inclusions as morphisms. Furthermore, let Cov T be the set
of all finite families (U; — U);e; of inclusions of affinoid subdomains in X such
that U = | J,¢; Ui. Then ¥ is called the weak Grothendieck topology on X.

That we really get a Grothendieck topology on X is easily verified. It follows
from 3.3/8 and 3.3/19 that all admissible open subsets of X (in the sense of the
weak Grothendieck topology) are open with respect to the canonical topology,
as introduced in 3.3/1. Furthermore, if ¢: Z —— X is a morphism of affinoid
K -spaces, the inverse image ¢~ '(U) of any admissible open subset U C X is
admissible open in Z by 3.3/13, and the inverse image of any admissible covering
in X yields an admissible covering in Z. To characterize such a behavior we will say
that the map ¢ is continuous with respect to the relevant Grothendieck topologies,
in this case the weak Grothendieck topology on Z and on X .
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It has to be pointed out that the presheaf @ x of affinoid functions on any affinoid
K-space X really is a presheaf in the sense of Definition 2, if X is equipped with
the weak Grothendieck topology. Even better, Tate’s Acyclicity Theorem 4.3/1 says
that Oy is a sheaf in this context.

There is a canonical way to enlarge the weak Grothendieck topology on affinoid
K-spaces by adding more admissible open sets and more admissible coverings in
such a way that morphisms of affinoid K-spaces remain continuous and sheaves
extend to sheaves with respect to this new topology. The resulting Grothendieck
topology is the strong Grothendieck topology on affinoid K-spaces, which we will
define now.

Definition 4. Let X be an affinoid K-space. The strong Grothendieck topology on
X is given as follows.

(1) A subset U C X is called admissible open if there is a (not necessarily finite)
covering U = J;c; Ui of U by affinoid subdomains U; C X such that for
all morphisms of affinoid K-spaces ¢: Z —— X satisfying ¢(Z) C U the
covering (¢~ (U;))ier of Z admits a refinement that is a finite covering of Z
by affinoid subdomains.

(ii) A covering V = jes Vi of some admissible open subset V- C X by means
of admissible open sets V; is called admissible if for each morphism of affinoid
K-spaces ¢: Z — X satisfying 9(Z) C V the covering (¢~ (V}))jes of Z
admits a refinement that is a finite covering of Z by affinoid subdomains.

Note that any covering (U;);e; as in (i) is admissible by (ii). It is easily checked
that the strong Grothendieck topology on X really is a Grothendieck topology such
that any finite union of affinoid subdomains of X is admissible open. Furthermore,
a direct verification shows that it satisfies certain completeness conditions. These
allow, as we will see, to construct Grothendieck topologies on global spaces from
local ones.

Proposition 5. Let X be an affinoid K-space. The strong Grothendieck topology is
a Grothendieck topology on X satisfying the following completeness conditions:

(Go) 9 and X are admissible open.

(Gy) Let (Uy)ier be an admissible covering of an admissible open subset U C X .
Furthermore, let V. C U be a subset such that V N U; is admissible open for all
i € I.ThenV is admissible open in X .

(Gy) Let (Uy)ier be a covering of an admissible open set U C X by admissible
open subsets U; C X such that (U;);e; admits an admissible covering of U as
refinement. Then (U;);e; itself is admissible.

Again, let X be an affinoid K-space. Then, if U C X is an affinoid subdomain,
the strong Grothendieck topology on X restricts to the strong Grothendieck
topology on U, viewed as an affinoid K-space of its own. More generally, we show:
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Proposition 6. Let ¢: Y —— X be a morphism of affinoid K-spaces. Then ¢ is
continuous with respect to strong Grothendieck topologies on X and Y .

Proof. Consider an admissible open set U C X and, furthermore, an admissible
covering 4 = (U;);e; of it where all U; are affinoid subdomains of X; such a
covering exists by Definition 4 (i). To show that V' = ¢~!(U) is admissible open in
Y, consider a morphism of affinoid K-spaces 7: Z —— Y such that t(Z) C V.
Then ¢ o 7 maps Z into U and we see that the covering (t7'¢ ™' (U;));e; of Z
is refined by a (finite) affinoid covering. But then, as the sets ¢! (U;) are affinoid
subdomains of Y covering V/, it follows that V' is admissible open in Y.

More generally, if (U;);e; is an arbitrary admissible covering of an admissible
open set U C X, the same argument shows that (¢~ '(U;));e; is an admissible
covering of ¢! (U). Thus, ¢ is continuous with respect to strong Grothendieck
topologies. O

Next we want to relate the strong Grothendieck topology of an affinoid K-space
to the Zariski topology.

Proposition 7. Let X be an affinoid K-space. For f € Ox(X) consider the
following sets:

U:{xEX;|f(x)}<l}
U={xeX;|fx)]>1}
U'={xeX;|f(x)|>0}

Any finite union of sets of this type is admissible open. Any finite covering by finite
unions of sets of this type is admissible.

Proof. We write /|K*| for the group of nth roots of elements in |K*| where
n varies over N. Choosing a sequence &, € /|K*| satisfying ¢, < 1 and
lim,o &, = 1, we have

o0

v =X

v=0

where we have used the notation
X&' f)={xeX; }f(x)} <&} =X('f)

for ¢ € K* being chosen in such a way that [c| = &/ for some integer r > 0.
To see that U is admissible open in X, consider a morphism of affinoid spaces
¢: Z —— X satisfying ¢(Z) C U. If ¢* is the associated homomorphism of
affinoid K-algebras, we have |¢*(f)(z)| = | f(¢(z))] < 1 for all z € Z and, thus,
by the Maximum Principle 3.1/15, |¢*( f)|ssp < 1. But then the covering
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o0

Z=Jo ' (X' ) = Z(r " 0" ()
v=0

v=0

admits a finite subcover, since Z (g} '¢*(f)) = Z for almost all v. This shows that
U is admissible open and that (X(g,! f))yen is an admissible covering of U.

That U’ and U” are admissible open is shown similarly. However, that finite
unions of sets of type U, U’, U” are admissible open requires a more sophisticated
application of the maximum principle, which we give below in Lemma 8. Along the
same lines one proves the assertion on admissible coverings. O

Lemma 8. Let A be an affinoid K-algebra and

f:(ﬁ""’fr)? g:(gl’”'?gs)’ h:(l’ll,...,h[)

systems of functions in A such that each x € Sp A satisfies at least one of the
equations

)] <1, |g(x)|>1,  |h(x)|>0.

Then there exist constants o,y € /|K*| where « < 1 < B, such that each
x € Sp A satisfies, in fact, one of the equations

[ fo =a, (g =p,  |h(x)] =y

Proof. The problem is local on X = Sp A in the sense that we may choose a (finite)
affinoid cover (U;);e; of X and verify the assertion for the restrictions of f, g, h
onto each U;. In particular, we may choose an o € /| K*|, @ < 1, and consider the
covering

X = X(Olfl_l, .. ,ozf,._l) u LrJ X(Ol_lfp).

p=1

As the assertion is clear on all affinoid subdomains X (™! J»), we may replace X
by X(ef;”", ..., af,""). Thereby we can assume that all f, are units in 4, and we
can look at the inequalities | fpfl(x)| > 1 instead of | f,(x)| < 1. Thus, replacing
the system g by (f;"',..., £, g1, .., gs), we have transferred our problem to the
case where the system f is not present and only g and A are of interest.

In this situation, /4, ..., cannot have a common zero on X(gy,...,gs). Thus
they generate the unit ideal in Ox (X(gy,...,gs)), and there isa y € /|K*| such
that max,—;_; |h;(x)| > y forall x € X(gy,...,gs). Equivalently, there is for any
x € X(y"'hy,...,y7'h) anindex o € {1,...,s)} such that |g,(x)| > 1. Hence,
considering the covering
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t
X=Xy 'h. ...y hy U XRD.

=1

we may replace X by X(y~'hy,....y 'h;). Thereby h can be dropped and we
might assume that only the system g is present.

In this special case, the functions gy, ..., g5 do not have a common zero on X,
and

Y= Ux(E )

o1 8o 8o

is a well-defined rational covering of X such that

max g5 ()| = |go(x)] > 1
forall x € X (2’:—;, e, %). But then we are done, since g;l assumes its maximum
on X(g—;, o, g—(’;) by the Maximum Principle 3.1/15. O

Since any Zariski open subset of an affinoid K-space X is a finite union of sets
of type U” as mentioned in Proposition 7, we can conclude from this result:

Corollary 9. Let X be an affinoid K-space. Then the strong Grothendieck topology
on X is finer than the Zariski topology, i.e. every Zariski open subset U C X is
admissible open and every Zariski covering is admissible.

We end this section by some remarks on how to construct global Grothendieck
topologies from local data.

Proposition 10. Let T be a Grothendieck topology on a set X such that conditions
(Go), (Gy), and (G3) of Proposition 5 are satisfied. Let (X;);e; be an admissible
covering of X. Then:

(i) A subset U C X is admissible open if and only if all intersections U N X;,
i € I, are admissible open.

(ii) A covering (U;) ey of some admissible open subset U C X is admissible if
and only if (X; NU;)jey is an admissible covering of X; N U, foralli € I.

The proof is straightforward. Assertion (i) is a direct consequence of condi-
tion (G ), whereas (ii) follows from (G,), since (X; N U);e; and (X; N U;)ier jes
are admissible coverings of U. O

Proposition 11. Let X be a set and (X;);e; a covering of X. Furthermore, let S;
be a Grothendieck topology on X;,i € I, such that conditions (Gy), (Gy), and (G;)
of Proposition 5 are satisfied. For alli,j € I, assume that X; N X is T;-open (i.e.
admissible open with respect to %;) in X; and that T; and T; restrict to the same



5.2 Sheaves 99

Grothendieck topology on X; N X ;. Then there is a unique Grothendieck topology
T on X such that the following hold:

(1) X; is T-openin X, and ¥ induces T; on X;.
(ii) % satisfies conditions (Gy), (G1), and (G») of Proposition 5.
(i) (X;)ies is a T-covering of X (i.e. admissible with respect to %).

Proof. Due to Proposition 10, there is at most one possibility to define T. Call a
subset U C X %-open if each intersection X; N U, i € I, is ¥;-open. Similarly, we
call a covering 4 = (U;) ey consisting of ‘T-open sets U; C X a T-covering if, for
eachi € I, the covering U|x, = (X; N Uj); ey is a T;-covering of X; N U. That T
is a Grothendieck topology as required is easily checked. O

5.2 Sheaves

In the following, let X be a G-topological space, i.e. a set with a Grothendieck
topology ¥ on it. As in 5.1/2 we define a presheaf of groups, rings, etc. on X
as a contravariant functor ¥ from Cat¥ to the category of groups, rings, etc.
Furthermore, ¥ is called a sheaf if for each admissible covering (U;);e; of an
admissible open set U C X the diagram

FU)— [[FU0) = [] FW xu U))

iel ijel

is exact.

We are, of course, interested in the case where X is an affinoid K-space.
Considering the weak Grothendieck topology on X, we have introduced the
presheaf Oy of affinoid functions on X, and we have seen from Tate’s Acyclicity
Theorem 4.3/1 that Ox even is a sheaf. One of the objectives of this section is to
pass on to the strong Grothendieck topology on X and to show that sheaves extend
canonically from the weak to the strong Grothendieck topology on X .

Let X be an arbitrary G-topological space again. For any presheaf ¥ on X and a
point x € X, we define

F. = lim F (U)

as the stalk of ¥ at the point x where the limit runs over all admissible open U C X
containing x. Next, let 0: ¥ —— ¥’ be a morphism of presheaves on X . Thereby
we mean a system of morphisms oy: F(U) —— F'(U) for U varying over all
admissible open subsets of X such that the oy are compatible with the restriction
morphisms of # and #’. Such a morphism induces for any x € X a morphism
oy: Fx — F on the level of stalks.
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Definition 1. Let ¥ be a presheaf on a G-topological space X. A sheafification of
F is amorphism ¥ —— F', where ¥’ is a sheaf such that the following universal
property is satisfied:

Each morphism ¥ — § where § is a sheaf, factors through ¥ —— ¥/ via
a unique morphism ¥’ —— §.

In the situation of Definition 1, ¥’ is called the sheaf associated to ¥ . Such a
sheaf can always be constructed, as we will see below. The classical construction
of associated sheaves on a topological space X is to consider the disjoint union
E = ][ cx Fx, which comes equipped with a canonical projection 7: E — X.
For any open subset U C X, amap f:U —— E is called a section of w if
m o f = 1id; so f associates to each point x € U an element f, € ¥,. Now let
F'(U) be the set of those sections f: U — E of 7 such that, for all x € U, there
are an open neighborhood U(x) C U of x and an element g € ¥ (U(x)) with the
property that g, = f, forall y € U(x). So ¥'(U) consists of all sections over U
that, locally, are induced from elements of the presheaf ¥, and it is easily checked
that # —— F’ is a sheafification of % .

For G-topological spaces X the classical construction cannot work properly,
since there can exist non-zero sheaves on X having zero stalks at all points x € X.
We give an example.

Example 2. Consider the unit disk X = Sp 7; over a field K that, for simplicity,
is supposed to be algebraically closed. Then, pointwise, we can identify X with the
closed unit disk around 0 in K. A subset U C X is called a standard set if it is
empty or of type

U=D%(ar)— U D™ (a;.r;)

i=1

for points @ € X, ay,...,a; € DV (a,r) and radii ry,...,r; < r in |K*|. We set
d(U) = r as well as d(@) = 0 and call this the diameter of U. Of course, every
standard set in X gives rise to an affinoid subdomain of X. Conversely, one can
show that every non-empty affinoid subdomain U C X is a finite and, in fact,
unique disjoint union of standard sets; see [BGR], 9.7.2/2. Let us write d(U) for the
maximum of all diameters of the occurring standard sets.

Now we can define a sheaf of abelian groups ¥ on X by setting

Z ifdU) =1

FO=1 0 itaw <1

with the obvious restriction morphisms. Then it is easily checked that ¥ is a sheaf
with respect to the weak Grothendieck topology on X. The reason is that for any
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affinoid subdomain U C X and a finite covering U = |J/_, U; by affinoid
subdomains U; C U one has

d(U) = max d(U;).

i=l,...,n

In particular, due to the restrictiveness of allowed coverings on X, there is no
admissible affinoid covering (U;);e; of X itself satisfying d(U;) < 1 for all i
that would force all global sections of ¥ to vanish. The same is true for affinoid
subdomains U C X satisfying d(U) = 1. Therefore, indeed, ¥ is a non-zero sheaf
having zero stalks at all points of X.

Returning to the construction of sheafifications on arbitrary G -topological spaces
X, we will assume that ¥ is at least a presheaf of abelian groups so that techniques
from Cech cohomology can be used, for example as presented in [BGR], Chaps. 8
and 9. For any admissible open subset U C X we set

749 T — 1 q
H (U,J*)—llr_)nH o, 7)), q €N,

where the direct limit runs over all admissible coverings tl of U, using the relation of
being finer as a partial ordering. Clearly, the ordering is directed since any two such
coverings (U;)ier, (V) jes admit a common admissible refinement, for example
(Ui N V})ier jes. To execute the direct limit, we use, of course, the fact that, for
a refinement U of some admissible covering i of U, there is always a canonical
morphism H?(U, ¥) —— HY(*U, F) (which, for the purpose of sheafifications,
will only be needed for ¢ = 0). Furthermore, varying U, we get the presheaf
H9(X, F) that associates to an admissible open subset U C X the cohomology
group HY(U, ¥ |v)- Note that, for any admissible covering (U;);e; of some admissi-
ble open subset U C X, we have a canonical morphism % (U) — H°(4, ¥) and,
hence, varying 4, a canonical morphism ¥ (U) — H O(UJ F). The morphisms
of the latter type give rise to a canonical morphism ¥ —— H°(X, ¥).

Proposition 3. Let ¥ be a presheaf (of abelian groups, rings, etc.) on a G-topo-
logical space X .

(i) The presheaf ¥+ = ij(X,jT) satisfies sheaf property (S1) of Sect. 4.3, i.e.
the canonical map ¥ *(U) — [1,¢; F T (Uy) is injective for any admissible
covering (U;);e; of an admissible open subset U C X.

(ii) If F satisfies sheaf property (S1) of Sect. 4.3, then ¥+ satisfies (S1) and (S5)
and, thus, isv a sheaf.

(i) F+ = HOUX,HX,F)) is a sheaf, and the composition of canonical
morphisms ¥ —— FT —— F 1% is a sheafification of ¥ .

The proof will be omitted; it is straightforward, although a little bit technical;
cf. [BGR], 9.2.2/3 and 9.2.2/4. As an application of the existence of associated
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sheaves, we can define as usual the sheaf image of a morphism 0: ¥ —— § of
abelian sheaves, i.e. of sheaves of abelian groups. It is the sheaf associated to the
presheaf U —— oy (¥ (U)) where U varies over all admissible open subsets of
X . Similarly, the quotient ¥ /% of an abelian sheaf ¥ by a subsheaf ¥; is defined
as the sheaf associated to the presheaf U —— ¥ (U)/Fy(U).

Finally, we want to attack the problem of extending sheaves from the weak to the
strong Grothendieck topology on affinoid K-spaces.

Proposition 4. Let X be a set with Grothendieck topologies T and X' such that:

(1) ¥ is finer than %.
(i1) Each ¥'-open set U C X admits a T -covering (U;);e; where all U; are
T-openin X.
(iii) Each ¥'-covering of a S-open subset U C X admits a T-covering as a
refinement.

Then each T-sheaf ¥ on X admits an extension ' as a ¥'-sheaf on X. The
latter is unique up to canonical isomorphism.

We give only some indications on how to construct . Consider the presheaf ¥’
with respect to T’ on X that is given by

U— lim H(4, 7)
g

where the limit runs over all ¥’'-coverings ${ = (U;);e; of U consisting of T-open
sets U;. Due to condition (iii), ¥ is an extension of . Using the fact that ¥ is a
sheaf, it is easily checked that ¥ " is a sheaf as well. In fact, we may interpret ¥’ as
the sheaf #°(X/, F), just observing that, in order to construct the latter object, we
need only to know ¥ on the T-open subsets of X.

As a direct consequence, we can state:

Corollary 5. Let X be an affinoid K-space. Then any sheaf ¥ on X with respect
to the weak Grothendieck topology admits a unique extension with respect to the
strong Grothendieck topology. The latter applies, in particular, to the presheaf of
affinoid functions ¥ = Oy, which is a sheaf with respect to the weak Grothendieck
topology by 4.3/1.

Extending @Ox with respect to the strong Grothendieck topology on X, we will
call the resulting sheaf the sheaf of rigid analytic functions on X and use the
notation Oy for it again. Anyway, from now on we will always consider, unless
stated otherwise, the strong Grothendieck topology on affinoid K-spaces.
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5.3 Rigid Spaces

A ringed K-space is a pair (X, Ox) where X is a topological space and O a sheaf
of K-algebras on it. This concept can be adapted in a natural way to G-topological
spaces.

Definition 1. A G-ringed K-space is a pair (X,0x) where X is a G-topological
space and Oy a sheaf of K-algebras on it. (X,0x) is called a locally G-ringed
K-space if, in addition, all stalks Oy ., x € X, are local rings.

A morphism of G-ringed K-spaces (X,0x) — (Y,Oy) is a pair (¢,p*) where
¢: X —— Y is a map, continuous with respect to Grothendieck topologies, and
where ¢* is a system of K-homomorphisms ¢3,: Oy (V) —— Ox (¢~ (V)) with
V varying over the admissible open subsets of Y. It is required that the ¢}, are
compatible with restriction homomorphisms, i.e. for V' C V the diagram

Oy (V) e 0y (67 (V)

| .

Oy (V') =5 Ox (¢ (V")

must be commutative.

Furthermore, assuming that (X ,0x) and (Y ,Oy) are locally G -ringed K -spaces,
a morphism (9,0*):(X,0x) — (Y,0y) is called a morphism of locally
G-ringed K-spaces if the ring homomorphisms

(P;:: 0Y,<p(x) > 0X,x> xeX,

induced from the ¢}, are local in the sense that the maximal ideal of Oy g is
mapped into the one of Oy .

For example, if X is an affinoid K-space, we can consider the associated locally
G-ringed K-space (X, Ox) where X, as a G-topological space, is endowed with
the strong G-topology and Oy is the structure sheaf on X, as introduced in 5.2/5.
As all stalks of @Oy are local rings by 4.1/1, (X, Oy) is even a locally G-ringed
K-space. Furthermore, it is more or less clear that each morphism of affinoid
K-spaces ¢: X —— Y induces a morphism (¢, ¢*): (X, 0x) —— (¥, 0Oy)
between associated locally G-ringed K-spaces. To justify this claim, note first that
¢ defines a continuous morphism of G-topological spaces if X and Y are endowed
with the strong G-topology; cf. 5.1/6. Next, consider an affinoid subdomain V' C Y.
Then ¢~ !(V) is an affinoid subdomain in X by 3.3/13. Therefore ¢ induces a
morphism of affinoid K-algebras ¢;i: Oy (V) —— Ox(¢~'(V)) that, varying V,
clearly is compatible with restriction of V. If, more generally, V is just an admissible
open subset in Y, we can choose an admissible affinoid covering (V;);e; of V' and
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obtain a well-defined morphism ¢3: Oy (V) — Ox (¢~ '(V)) in a similar way by
using the exact diagrams

Oy (V) — [[or(v) — [] orvinvy,

iel i.jel
Ox(¢7' () — []0x(e™' %) == [] Or(e™ V) ne™' (V).
iel i,jel

in conjunction with the maps

oy Oy (V;) — Ox(¢~' (V).
O, Or (ViN V) — Ox (¢~ (Vi N V)));

note that, just as the V;, all intersections V; N V; are affinoid subdomains of Y
by 3.3/14. Now, writing ¢* for the system of all maps ¢y}, it is easily seen that the
pair (¢, ¢*) constitutes a morphism of ringed K-spaces (X, Ox) — (¥, Oy).
That this morphism is, in fact, a morphism of locally G-ringed K-spaces, is seen
as follows. Consider a point x € X with maximal ideal m, C Oy (X) and
image ¢(x) € Y corresponding to the maximal ideal my) C Oy(Y). Then,
¢3:0y(Y) —— Ox(X), the map between affinoid K-algebras associated to ¢,
maps My(y) into my, as we have my(y) = (¢5)~!(m,) by definition. Consequently,
the morphism ¢}: Oy y(r) — Ox must map the maximal ideal of Oy, y(y), which
is generated by my(y) due to 4.1/1, into the maximal ideal of Oy ., which again due
to 4.1/1, is generated by m,. Hence, we have constructed a map from the set of
morphisms X —— Y between affinoid K-spaces X and Y to the set of morphisms
of locally G-ringed K-spaces (X,0y) —— (¥, Oy). We want to show that this
map is actually a bijection.

Proposition 2. Let X and Y be affinoid K-spaces. Then the map from morphisms
of affinoid K-spaces X — Y to morphisms of locally G-ringed K-spaces
(X,0x) — (Y ,0Oy), as constructed above, is bijective.

Proof. To exhibit an inverse of the above constructed map, associate to any mor-
phism of locally G-ringed K-spaces (¢, ¢*): (X,0x) — (Y, Oy) the morphism
of affinoid K-spaces X —— Y corresponding to the morphism of affinoid
K-algebras ¢5: Oy (Y) — Ox(X). To see that it really is an inverse, it is enough
to establish the following auxiliary result:

Lemma 3. Let X and Y be affinoid K-spaces. For every morphism of affinoid
K-algebras 6*: Oy (Y) —— Ox(X) there exists a unique morphism of locally
G-ringed K-spaces (¢,0*): (X,0x) — (Y ,0Oy) satisfying 3 = o*.
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Proof. Only the uniqueness assertion has to be verified. So consider a morphism of
locally G-ringed K-spaces (¢, ¢*): (X, Ox) — (Y, Oy) satisfying o5 = o™ for
a given morphism of affinoid K-algebras 6*: Oy (Y) —— Ox(X). Then for each
x € X, there is a commutative diagram

Oy (V) == 0x(X)

|,

Px
Oy,o(x) Ox,x -

Let m, C Oy (X) be the maximal ideal corresponding to x and my) C Oy (Y) the
maximal ideal corresponding to ¢(x). Since ¢} is local, it maps the maximal ideal
My(x) Oy () Of the local ring Oy 4y into the maximal ideal m, Oy , of the local ring
Ox . Hence, using the isomorphism Ox (X)/m, — Oy /m Oy, of 4.1/2, we
see that 0* maps myy) into my, so that we have my) = (6*)~!(m,). From this it
follows that ¢, as a map of sets, coincides with the morphism of affinoid K-spaces
X —— Y given by ¢*. Thus, at least ¢ is uniquely determined by o *.

To show that all maps ¢ are unique, we may restrict ourselves to affinoid
subdomains V' C Y. Then ¢~!(V) is an affinoid subdomain in X, and there is a
commutative diagram

o*=e}

Oy(Y)

Ox(X)

Oy ()~ 0x (67 (V).

the vertical maps being restriction homomorphisms. Since the first one corresponds
to the inclusion of the affinoid subdomain V' —— Y, it follows from the defining
properties of affinoid subdomains that ¢} is uniquely determined by 6* = ¢y. O

The assertion of Proposition 2 enables us to identify morphisms of affinoid
K-spaces with morphisms of their associated locally G-ringed K-spaces. In other
words, the functor from the category of affinoid K-spaces to the category of
locally G-ringed K-spaces that we have constructed is fully faithful. Therefore,
in general, we will make no notational difference between an affinoid K-space
and its associated locally G-ringed K-space, writing simply X instead of (X, Oy).
Also note that, due to our construction, an inclusion U < X of an affinoid
subdomain U into X gives rise to an open immersion of locally G-ringed K-spaces
(U,Oy) — (X, Oy). The latter means that U is an admissible open subset of
X, that Oy is the restriction of Ox to U, and that (U, Oy) — (X, Oy) is the
canonical morphism. Now it is easy to define global objects that look locally like
affinoid K-spaces.
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Definition 4. A rigid (analytic) K-space is a locally G-ringed K -space (X ,0x) such
that

(1) the G-topology of X satisfies conditions (Gy), (G), and (G) of 5.1/5, and
(ii) X admits an admissible covering (X;)ie; where (X;,Ox|x,) is an affinoid
K-space foralli € I.

A morphism of rigid K-spaces (X,0x) — (Y ,0Oy) is a morphism in the sense
of locally G-ringed K -spaces.

It follows for an admissible open subset U C X that the induced locally G-ringed
K-space (U,0Ox|y) is a rigid K-space again; we will call (U, Ox|y) an open
subspace of (X, Ox). In most cases, however, rigid K -spaces will simply be denoted
by a single symbol, say X, instead of (X, Ox). As usual, global rigid K-spaces can
be constructed by gluing local ones.

Proposition 5. Consider the following data:

(i) rigid K-spaces X;,i € I, and
(ii) open subspaces X;; C X; and isomorphisms @;;: X — Xj;, foralli,j € I,

and assume that these are subject to the following conditions:

(@) gjo@; =id, X; = X;, and ; = id, foralli,j € I,
(b) @; induces isomorphisms @g:X; N Xjp —> X;; N Xj that satisfy
@ijk = @kji © Qg foralli,j .k € 1.

Then the X; can be glued by identifying X; with Xj; via @y to yield a rigid
K-space X admitting (X;);e; as an admissible covering.

More precisely, there exists a rigid K-space X together with an admissible
covering (X])ier and isomorphisms ;: X; — X/ restricting to isomorphisms
Vit Xy — X[ N X such that the diagram

Yij

Xij Xl-/ﬂX}
S
Xy —2 X4 X

is commutative. Furthermore, X is unique up to canonical isomorphism.

The proof is straightforward. To construct X as a set, we glue the X;, using
the isomorphisms ¢;; as identifications. In more precise terms, we start out from the
disjoint union X" = [ [,; X; and call x, y € X’ equivalent,say x € X; and y € X;,
if p;j(x) = y. The relation we get is symmetric and reflexive by the conditions in (a)
and transitive by (b). Thus, we really get an equivalence relation ~ and can define
X as the quotient X’/ ~. Then we may view X as being covered by the X; and,
applying 5.1/11, we get a unique Grothendieck topology on it such that (X;);e; is
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an admissible covering of X . Next, one constructs the structure sheaf @y by gluing
the sheaves Oy, . In a first step one identifies rings of type Oy, (U) and O, (U), in
case U is contained in both, X; and X, just by using the isomorphism ¢;;. This way
one obtains a sheaf Oy on X with respect to some Grothendieck topology that is
weaker than the one we have to consider. In a second step one applies 5.2/4, thereby
extending Oy with respect to the Grothendieck topology we are considering on X .

a

More easy is the gluing of morphisms:

Proposition 6. Let XY be rigid K-spaces and let (X;)ie; be an admissible
covering of X. Furthermore, let ¢;: X; —— Y be morphisms of rigid K-spaces
such that ¢;i|x,nx;: Xi N X; —— Y coincides with ¢;|x,nx;: X;i N X; — Y
foralli,j € I. Then there is a unique morphism of rigid K-spaces ¢: X —— Y
satisfying ¢|x, = @; foralli € I.

The proof is straightforward by using the sheaf property of Q.

Corollary 7. Let X be a rigid K-space and Y an affinoid K-space. Then the
canonical map

Hom(X,Y) — Hom(Oy (Y),0x(X)), ¢ — ¢y,
is bijective.

Proof. The assertion follows from Proposition 2 if X is affinoid. In the general case
it is only necessary to consider a homomorphism ¢*: Oy (Y) —— Ox(X) and to
show that there is a unique morphism of rigid K-spaces ¢: X —— Y satisfying
¢y = o*. To do this, choose an admissible affinoid covering (X;);e; of X and
write o;* for the composition of o* with the canonical map Ox (X) — Ox(X;).
Again by Proposition 2, each 0;* corresponds to a morphism of affinoid K-spaces
@;: X; — Y, and one concludes with the help of Proposition 6 that the ¢; can be
glued to yield a unique morphism ¢: X —— Y, corresponding to ¢ *. O

Corollary 8. For two rigid K-spaces X,Y over a third one Z, the fiber product
X Xz Y can be constructed.

Proof. The category of affinoid K-spaces admits fiber products, since, dually, the
category of affinoid K-algebras admits amalgamated sums; see Appendix B. Thus,
we have

Sp A xspc Sp B = Sp(4 ®c B)
for morphisms of affinoid K-algebras C —— 4 and C —— B. But then one

can construct fiber products of global rigid K-spaces as usual by gluing local
affinoid ones. ]
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In the next section, dealing with the GAGA-functor, we will give another
application of Propositions 5 and 6.

Finally, let us briefly touch the subject of connectedness and of connected
components for rigid spaces, as we will need these concepts later (see the proof
of 8.4/4 (e)).

Definition 9. A rigid K-space X is called connected if there do not exist non-empty
admissible open subspaces X1,X, C X such that X, N X, = @ and (X1,X>) is an
admissible covering of X .

It follows from Tate’s Acyclicity Theorem 4.3/10 that an affinoid K-space Sp A
is connected if and only if A cannot be written as a non-trivial cartesian product of
two K-algebras. The latter amounts to the fact that Sp A is connected with respect
to the Zariski topology. In general, an affinoid K-space Sp A can be decomposed
into its Zariski-connected components. These are affinoid subdomains of Sp A and
define an admissible affinoid covering as they are of finite number, due to the fact
that affinoid algebras are Noetherian by 3.1/3 (i). To check whether or not a global
rigid K-space X is connected, one can consider an admissible covering (U;);ey
of X by non-empty connected admissible open subspaces U; C X. For example,
one may take the U; to be affinoid and connected. If there is no partition of J into
non-empty subsets Ji, J, C J such that

UU,ﬂUUi:@, (%)

i€eJ; i€y

then X is connected, otherwise it is not. Indeed, if there is a partition J = J; LI J,
satisfying (x), then X; = UieJ1 U; and X, = U,GJ2 U; are admissible open in X
by condition (Gp) of 5.1/5 and X = X; U X; is an admissible covering of X by
condition (G;) of 5.1/5. Conversely, assume there are admissible open subspaces
X1, X, C X satisfying X; N X, = @, which define an admissible covering of
X. Then consider an admissible covering (U;);e; of X consisting of connected
admissible open subsets. The admissible covering (X, X;) of X restricts to an
admissible covering (X; N U;, X, N U;) on each U;. Since U; is supposed to be
connected, we get X; N U; = U; or X, N U; = U; and, thus, U; C X or U; C X,.
This leads to a partition J = J; 11 J; such that (x) is satisfied.

To define the connected components of a rigid K-space X, write x ~ y for
two points x, y € X if there exist finitely many connected admissible open subsets
Up,...,U, C Xsuchthatx e Uy,y € Uy,and U;—y NU; # @ fori =1,...,n.

Proposition 10. Let X be a rigid K-space and consider the just defined relation
“~ 7 on it

(i) “~ 7 is an equivalence relation.
(ii) For any x € X the corresponding equivalence class Z(x) is admissible open
in X. It is called the connected component of X that contains x.
(iii)) The connected components of X form an admissible covering of X .
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Proof. First, that “ ~ ” is an equivalence relation is clear from the definition of
the relation. Next, consider an admissible open subset U C X that is connected
and assume U N Z(x) # @. Then we must have U C Z(x) by the definition of
Z(x). In particular, consider an admissible covering (U;);e; of X where all U; are
connected. It follows U; C Z(x) or U; N Z(x) = @, depending on i € J. Thus, we
can conclude from condition (Gy) of 5.1/5 that Z(x) is admissible open in X. By a
similar reasoning one concludes from condition (G;) of 5.1/5 that (Z(x)),ex is an
admissible covering of X. O

5.4 The GAGA-Functor

We want to construct a functor that associates to any K-scheme Z of locally finite
type a rigid K-space Z"€, called the rigid analytification of Z. The corresponding
functor in the classical complex case was first investigated by Serre in his funda-
mental paper [S]. Taking initials of the main words in the title, the functor has been
referred to as the GAGA-functor since.

Let us start by constructing the rigid version of the affine n-space A%. To do
this, we denote by T,,(r) for r > 0 the K-algebra of all power series ), a,¢" in
n variables ¢ = (¢, ...,&,) and with coefficients in K satisfying lim, a,r""! = 0.
Thus, T, (r) consists of all power series converging on a closed n-dimensional ball
of radius r. Now choose ¢ € K, |¢c| > 1. Then we may identify 7, = T,(|c|)
with the Tate algebra K {c™¢,...,c7'¢,). The inclusions

T, =T > 7 > 17O S5 . > K[¢]
give rise to inclusions of affinoid subdomains

B" =SpT” —— SpTH —» SpT? = ...

where Sp T,,(i) can be interpreted as the n-dimensional ball of radius |c’|.
Using 5.3/5, the “union” of all these balls can be constructed. The resulting rigid
K-space A" comes equipped with the admissible covering A" = [ J%, Sp T\,
and we refer to it as the rigid analytification of the affine n-space A’ In particular,
we will see that A" is independent of the choice of ¢ and that it satisfies the
universal property of an affine n-space in the category of rigid K-spaces. In a first
step, we want to show that, pointwise, A’I’grig coincides with the set of closed points

H n
in A%.
Lemma 1. The inclusions

TO>TO 57?5 . > K[{]
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induce inclusions of spectra of maximal ideals

Max Tn(o) C Max Tn(l) C Max Tn(z) C...CMaxK[{]
such that Max K [¢] = |2, Max 7,9,

Proof. As we have inclusions of affinoid subdomains Sp Tn(i) — Sp T,,(H_l) the
inclusions between maximal spectra of the above affinoid K-algebras are clear.
Next we show the following assertions:

(a) Let m C K(C) be a maximal ideal. Then ' = m N K[{] is a maximal ideal in
K[¢] satisfying m = m/ K ().

(b) Given a maximal ideal W' C K[{], there is an index iy € N such that
w K {c™'¢) is maximal in K {c™') = T,,(i)for alli > i.

Let us start with assertion (a). There is a commutative diagram

K[¢] K(¢)

K[t]/m" —— K(£)/m

with horizontal maps being injections. As K (¢)/m is a field that is finite over K
by 2.2/12, the same must be true for K[{]/m’, and it follows that m’ is maximal in

K[Z].

To see m = m’ K (¢), look at the following commutative diagram:

K[t]/m" —— K(§)/m'K ()

K[6]/m!

K(C)/m

As K[(] is dense in K({), and as finite-dimensional K-vector spaces are complete
(and, hence, closed if they are subspaces, see Theorem 1 of Appendix A), it
follows that the horizontal maps are surjective. As the lower horizontal map is
injective by definition of m’, it is, in fact, bijective. Then the upper horizontal
map is injective and, hence, bijective as well. Consequently, the right vertical map
is bijective, and assertion (a) is clear. Thereby we see that the canonical map
Max 7! —— Max K [¢] is a well-defined injection for i = 0 and, in a similar
way, for all 7.

To verify (b), consider a maximal ideal m’ C K [{]. Then, by the analog of 2.2/12
for polynomial rings, K [{]/m’ is a finite extension of K and, as such, carries a well-
defined absolute value extending the one of K. Choosing an integer iy € N such
that the absolute values of the residue classes §; € K[{]/ m’ of all components of
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¢ satisfy |Ej| < |c|, it follows that the projection K[¢{] — K[¢]/m’ factors
for i > iy through T = K{c™'¢) via a unique K-morphism TP — K[{]/mw
sending ¢; to E ;- The kernel m of the latter map is a maximal ideal in Tnm satisfying
m N K[¢] = m'. Consequently, (a) and (b) together imply that Max K[(] is the
union of the Max Tn(i). O

To construct the rigid analytification of an affine K-scheme of finite type, say of
Spec K [¢]/a with an ideal a C K[¢] and a system ¢ of n variables (y, ..., {,, we
proceed similarly by looking at the maps

T/(@) «— TV /(a) +— T,?/(a) ~— ... ~— K[{]/a
and the associated sequence of inclusions

Max T?/(a) = Max TV /(a) — MaxT?/(a) — ...
—— Max K[(]/a

where, again, we may interpret the first maps as inclusions of affinoid subdomains
Sp Tn(i) /(a) = Sp Tn(iﬂ) /(a), for all i. Furthermore, we see from Lemma 1 that
all maps into Max K [¢]/a are injective and that Max K [¢]/a equals the union of
all Max T,l(i) /(a). Thus, the union |72, Sp Tn(i) /(a) can be constructed as a rigid
K-space using 5.3/5, and we call it the rigid analytification of Spec K [{]/a.

We want to show that, for any K-scheme of locally finite type Z and its
analytification Z"#, there is a canonical morphism of locally G-ringed K-spaces
(t,0*):(Z rig @ zie) — (Z,Oz) where, of course, Z is provided with the Zariski
topology. Adapting 5.3/6 to our situation, the existence of such a morphism is a
consequence of the following auxiliary result.

Lemma 2. Let Z be an affine K-scheme of finite type and Y a rigid K-space. Then
the set of morphisms of locally G-ringed K-spaces (Y ,0y) — (Z,02) corre-
sponds bijectively to the set of K-algebra homomorphisms Oz(Z) — Oy (Y).

Proof. We can conclude similarly as in 5.3/2 and 5.3/7. Let us first consider the case
where Y is affinoid. Set B = Oy (Y) and C = Oz (Z) and consider a K-morphism
0:C —— B. By the usual reasoning involving 2.2/12, taking inverse images of
maximal ideals yields a map Max B — Max C —— Spec C and, thus, a well-
defined map ¢: Y —— Z that is easily seen to be continuous with respect to
Grothendieck topologies. For f € C and ¢ € K* there is a commutative diagram

c ? B

cr/ Ble-o(f)™)
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with a unique lower map, due to the fact that o(f) is invertible in B{e - o(f)™').
Thus, varying ¢ yields a commutative diagram

o

0z(Z) Oy(Y)
O0z(Zy) Oy (¢~ (Zy))

with a unique lower map; Z  is the part of Z where f does not vanish. From this
and the standard globalization argument one concludes that there is a morphism
of ringed K-spaces (¢, ¢*):(Y,0y) —— (Z,0z) satisfying ¢}, = o. The
morphism is a morphism of locally ringed K-spaces, as for any point z € Z and
its corresponding prime ideal p € C, the maximal ideal of the local ring Oz . = C,
is generated by p.

Just as in 5.3/2, it remains to show that there is at most one morphism of locally
G-ringed K-spaces (¢, ¢*): (Y, Oy) — (Z,Oz) satisfying ¢ = o. The proof
is the same as the one of 5.3/3. Finally, the generalization to the case where (Y, Oy)
is not necessarily affinoid is done as in 5.3/7. O

To show that rigid analytifications are independent of the choice of the constant
¢ € K and of the representation of K-algebras of finite type as quotients K [{]/a,
we want to characterize them by a universal property.

Definition and Proposition 3. Let (Z,07) be a K-scheme of locally finite type.
A rigid analytification of (Z.,0z) is a rigid K-space (Zrig,(Dan) together with a
morphism of locally G-ringed K -spaces (1,t*): (Zrig,(Dan) — (Z,0y) satisfying
the following universal property:

Given a rigid K-space (Y ,0y) and a morphism of locally G-ringed K-spaces
(Y,0y) — (Z,03), the latter factors through (1,L*) via a unique morphism of
rigid K-spaces (Y ,0y) — (Zrig,(Dan).

For example, the analytifications Z"® constructed above for affine K -schemes of
finite type, give rise to analytifications in the sense of this definition.

Proof. To show that the rigid analytifications as constructed in the beginning are
analytifications in the sense of the definition, we look at an affine K-scheme of
finite type Z = Spec K [¢]/a and consider its associated rigid K-space that is given
by Z" = (J72,Sp 7, /(a). The canonical morphisms K [¢]/a — T,,(l)/(a)
constitute a morphism Oz(Z) —— O ,:i(Z 1ig) and, using Lemma 2, the latter
gives rise to a well-defined morphism of locally G-ringed K-spaces

(L, 0*): (27,0 i) — (Z,07).
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We claim that (¢, *) satisfies the universal property of rigid analytifications. To jus-
tify this, look at a morphism of locally G-ringed K-spaces (Y, Oy) — (Z,0z)
where (Y, Oy) is arigid K-space that we may assume to be affinoid.

Using Lemma 2, the morphism (Y, Qy) (Z,0yz) corresponds to a
K-morphism o:K[Z]/a B where B = Oy(Y), and it is enough
to show that, for all i € N sufficiently large, there is a factorization
K[{]/a —— T,,(i)/(a) — B of o with a unique map Tn(i)/(a) — B.
Choose i € N such that the residue classes Ej € K[{]/a satisfy |(7(Ej)|sup <|c|"in

B. Then the K-morphism K [{] — B obtained from o extends uniquely to Tn(i),
and we see that o admits a unique factorization through T,,(') /(a), as claimed. O

Proposition 4. Every K-scheme Z of locally finite type admits an analytification
Z"¢ —— Z. Furthermore, the underlying map of sets identifies the points of Z"®
with the closed points of Z .

Proof. We know the assertion already if Z is affine. In the general case we
choose a covering of Z by affine open subschemes Z;, i € J. The latter
admit analytifications ¢;: Z;® —— Z;. It follows then from the definition of
analytifications that ; '(Z; N Z ;) — Z; N Z; is an analytification of Z; N Z ;
for all 7, j € J. Thus, we can transport the gluing data we have on the Z; to
the analytifications Z}¢ and thereby construct a rigid K-space Z"€ using 5.3/5.
By 5.3/6 we get a morphism of locally G-ringed K-spaces Z"¢ —» Z that is
easily seen to be an analytification of Z. Finally, the assertion on the underlying
map of point sets follows from the construction of Z", since the assertion is known
over the affine open parts of Z. O

The characterizing universal property of rigid analytifications shows that mor-
phisms between K-schemes of locally finite type admit analytifications as well.
Thus we can state:

Corollary 5. Rigid analytification defines a functor from the category of K-schemes
of locally finite type to the category of rigid K -spaces, the so-called GAGA-functor.

Relying on the relevant universal properties, one can even show that rigid
analytification respects fiber products, see Kopf [Ko], Satz 1.8. Furthermore, for
a K-scheme Z of locally finite type and its rigid analytification Z"¢, the maximal
adic completion of the stalk @z , at a point z € Z ng coincides canonically with
the maximal adic completion of the stalk @z, at the corresponding closed point
in Z; see [K06], Satz 2.1. One can conclude from this that the GAGA-functor is
faithful. However, it is not fully faithful since there exist K-schemes of locally
finite type ¥ and Z, for example take ¥ = Z as the affine line AL, such that
there are morphisms of rigid K-spaces Y"¢ —— Z" that cannot be viewed as
analytifications of morphisms ¥ — Z.
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Let us conclude the section by looking at some examples. First we want to show
that the analytification A%’ € of the affine n-space A’y satisfies the universal property
of an n-dimensional afﬁne space, namely that for any rigid K-space Y the set
of morphisms of rigid K-spaces ¥ —— A" "% is in one-to-one correspondence
with Oy (Y)", the n-fold cartesian product of the set of global sections on Y.
Indeed, composition with the canonical morphism of locally G-ringed spaces
A —~ A" of Definition 3 yields a bijection

Homg (Y, A”"8) —» Homg (Y, A’%)

between the set of rigid morphisms ¥ —— A'}gﬁg and the set of morphisms

Y —— A% of locally G-ringed spaces over K. Furthermore, by Lemma 2, we
get bijections

Homy (Y, A%) —~» Homg(K[¢1.....5,]. Oy (Y)) —=» Oy(Y)"

so that the desired property Homg (Y, A% ) — Oy (Y)" follows.

Let us have a particular look at the analytification A K“é of the affine 1-space A}
that is constructed by gluing the ascending sequence of affinoid spaces

SpT{” > SpT" v SpT}? s

where, for some ¢ € K with |¢| > 1, we may interpret Sp Tl(i) = K{c7¢) as the
disk with radius |¢|’ centered at the origin. Writing R© = Sp """ (¢ ¢=") for the
annulus with radii |¢|” and |¢|' ™!, we obtain for each i € N

spT*" =sp7” URD
as an admissible affinoid covering of Sp Tl(i+1) and, hence,

A =spT” U JR?
ieN

as an admissible affinoid covering of the analytification A;(‘rig. Thus, we could just as
well define the rigid analytification of AL by relying on such a covering consisting
of a disk and an infinite sequence of annuli. Removing the origin from AL, we get

A} — {0} as its analytification, and the latter admits

lr1g {O} U R®

i€Z

as a convenient admissible affinoid covering by annuli.



5.4 The GAGA-Functor 115

Let us assume for a moment that K is algebraically closed, but not spherically
complete. Not spherically complete means that there exists a descending sequence
Dy D> Dy D Dy D ...ofdisks of type D™ (a, r) in K, centered at points a € K and
with radii € | K], such that the intersection (), oy D; is empty. For example, it can
be shown that the field C,, for any prime p is not spherically complete. Interpreting
B! = Sp T as the unit disk, we may assume that all disks D; are contained in B!.
Then B! is covered by the ascending sequence of annuli B! — D; where all these
annuli may be interpreted as affinoid subdomains of B'. However, as this covering
does not admit a finite refinement, it is not admissible. On the other hand, we are
free to use the covering

D*.1) = J®B' - D))

ieN

in order to define an “exotic” structure of rigid K-space on the points of the unit
disk. In the same way the covering

K=J®' -D;)ul JR®

ieN i>1

leads to an “exotic” structure of rigid K-space on the affine line over K. But let
us point out that in more refined theories allowing additional points like Berkovich
or Huber theory, these “exotic” structures become quite natural as they give rise to
subspace structures on suitable subspaces of the unit disk or the affine line.

Finally let us look at the projective n-space

P% = Proj K[ o, ..., {y)

where (o, ..., {, denote variables and K is not necessarily algebraically closed any
more. Writing

A = K[EO é'n:l
G
for the homogeneous localization of K[{o,...,{,] by ¢, the projective n-space

[P is covered by the open affine subschemes U; = Spec A; ~ A’%. Accordingly,

the rigid analytification P'}grig admits an admissible covering consisting of the rigid
analytifications

USpK< —f§° .,—/?)fv ALTE =0, .,
;

JjEN

for some ¢ € K, |c| > 1. We claim that, in fact, P’2"® is already covered by the
unit balls
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k(L2

As a consequence, the latter covering is admissible, since it is a refinement of the
previous one. To justify that IP";g”g is a union of the n + 1 unit balls in U gg ,...,U ;ig,
consider a closed point x € P%, say with residue field L = K(x), and view it
as an L-valued point in P}, (L). As the latter set can be interpreted as the ordinary
projective n-space P"(L) = (L"T' — {0})/L*, we may represent x in terms of
homogeneous coordinates, say x = (xo : ... : Xx,) with components x; € L.
Extending the absolute value of K to L, which is finite over K, choose an index i
such that

>cu“g i=0... . .n

|x;| = max{|xol, . ... |x4l}.

7.rig -

Then x factors through Sp K (%’, .. i ) and, consequently, Py
balls as claimed.

is covered by unit



Chapter 6
Coherent Sheaves on Rigid Spaces

6.1 Coherent Modules

Consider an affinoid K-space X = Sp A and an A-module M. We can look at the
functor ¥ from affinoid subdomains in X to abelian groups that associates to any
affinoid subdomain Sp A’ C X the tensor product M ® 4 A". The latter is, of course,
an abelian group, but we can also view it as an A-module or even as an A’-module.
F is a presheaf on X with respect to the weak G-topology, and this presheaf is, in
fact, a sheaf, as we have already remarked within the context of Tate’s Acyclicity
Theorem in 4.3/11. In particular, using 5.2/4, we see that ¥ extends to a sheaf with
respect to the strong G-topology, again denoted by ¥ .

It follows from the construction that & is a so-called O y-module. This means
that, for any admissible open U C X, the abelian group ¥ (U) is equipped with an
Ox (U)-module structure, in a way that all these module structures are compatible
with restriction homomorphisms. We call ¥ the Ox-module associated to the
A-module M, writing ¥ = M ® 4 Ox. Note that we have

Flxr =M @4 A') @ Ox|x
for the restriction of ¥ to any affinoid subdomain X’ = Sp A" in X.

Proposition 1. Let X = Sp A be an affinoid K-space.
(1) The functor

- ®40x: M+— M ®,0x

from A-modules to O x-modules is fully faithful.
(ii) It commutes with the formation of kernels, images, cokernels, and tensor
products.

S. Bosch, Lectures on Formal and Rigid Geometry, Lecture Notes 117
in Mathematics 2105, DOI 10.1007/978-3-319-04417-0_6,
© Springer International Publishing Switzerland 2014
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(iii) A sequence of A-modules 0 — M' ——~ M —— M" —— 0 is exact if
and only if the associated sequence of O x-modules is exact:

00— M/®A(9X — M Q4 0O0xy — M”@A@X — 0
Proof. 1t is clear that the canonical map
Homy(M, M) — Homg, (M ®4O0x,M' ®4 Ox)

is bijective, since an Oy-morphism M ® 4 Oy — M’ ® 4 Oy is uniquely
determined by its inherent A-morphism

M=M®,0x(X) — M ®,0x(X)=M".

Thus, the functor - ® 4 Oy is fully faithful, which settles assertion (i). Furthermore,
by its construction, it commutes with tensor products.
Next, if

O— M — M — M'— 0
is an exact sequence of A-modules, the induced sequence
00— MRUuA —> MRI_yA — M0, A/ — 0
is exact for any affinoid subdomain Sp A’ C X, since the corresponding map
A — A’ is flat by 4.1/5. From this one easily concludes that the functor of taking
associated Oy -modules is exact, i.e. carries short exact sequences over to short exact
sequences. Then assertion (ii) becomes clear and, furthermore, also (iii), using the

fact that an A-module M is trivial if and only if M ® 4 Oy is trivial. O

Definition 2. Let X be a rigid K-space and ¥ an Oy -module.

(1) F is called of finite type if there exists an admissible covering (X;)ie; of X
together with exact sequences of type

(9;|Xi4>‘?7|xi4>0’ iel.

(ii) ¥ is called of finite presentation, if there exists an admissible covering (X;)ier
of X together with exact sequences of type

O%lx, — O%|y, — Flx, — 0, iel.

(iii) F is called coherent if ¥ is of finite type and if for every admissible open
subspace U C X the kernel of a morphism O% |y —— F |y is of finite type.
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For affinoid K-spaces X = Sp A, we have O} = A" ®,4 Ox. Furthermore,
as A is Noetherian, we conclude from Proposition 1 that kernels and cokernels
of morphisms of type @}, —— 0% are associated to A-modules of finite type.
Therefore we can state:

Remark 3. An Ox-module ¥ on a rigid K-space X is coherent if and only if
there exists an admissible affinoid covering A = (X;)ier of X such that ¥ |x, is
associated to a finite Oy, (X;)-module for alli € 1. More precisely, we will say that
F is {-coherent in this case.

There is a basic result that fully clarifies the structure of coherent modules on
affinoid K-spaces, see Kiehl [K1]:

Theorem 4 (Kiehl). Let X = Sp A be an affinoid K-space and ¥ an O x-module.
Then ¥ is coherent if and only if ¥ is associated to a finite A-module.

Before we give the proof, let us observe that this result allows a characterization
of coherent (@ y-modules as follows:

Corollary 5. Let X be a rigid K-space and ¥ an Ox-module on it. The following
are equivalent:

(1) F is coherent, i.e. ¥ is U-coherent for some admissible affinoid covering 1
of X.
(i) F is U-coherent for all admissible affinoid coverings i of X .

Proof. We have only to show that (i) implies (ii). So assume that ¥ is coherent.
In order to derive assertion (ii), we may assume that X is affinoid, say X = Sp A.
But then, applying Theorem 4, ¥ is associated to a finite A-module and (ii) is
obvious. o

To start the proof of Theorem 4, observe that the if-part of the assertion is trivial.
So assume that F is {-coherent for some admissible affinoid covering { of X. To
show that ¥ is associated to a finite A-module, we may apply Lemmata 4.3/4, 4.3/5,
and 4.3/6, and thereby restrict ourselves to the case where il is a Laurent covering of
X . Furthermore, using an inductive argument, it is only necessary to treat the case
where 4 is a Laurent covering generated by a single function f € A. Then it is
enough to establish the following facts:

Lemma 6. Let ¥ be 4-coherent. Then H' (41,5 ) = 0.

Lemma 7. Assume H'(U,F) = 0 for all $\-coherent Ox-modules ¥ . Then any
such module is associated to a finite A-module.
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Proof of Lemma 6. Let 4 = (U, Us) with Uy = X(f) and U, = X(f ). Due to
our assumption,

M, = ¥(U), M, = F(Uy), My =F U NU,y)

are finite modules over A(f), A(f~"), and A(f, f~"), respectively, and the Cech
complex of alternating cochains C,; (41, ¥) degenerates to

0
O"MIXMZL’MIQ’;’O.

Since H'(4, ¥) can be computed using alternating cochains, see 4.3/8, it is only
necessary to show that d°: M, x M, —— M, is surjective.

To do so, we fix an arbitrary residue norm on A and consider on A({), A(n), as
well as A(¢, n) the GauB norm, and on A{f), A{f~"), and A({f, f~") the residue
norms induced from the canonical epimorphisms

ALy — AD/CE- 1) = A(f),
Ay —  AM)/(fn—1) = A(f7),
ACn)y — AL/C— fifn—1) =A(f. 7).

Then all restriction morphisms of the commutative diagram

A(f

)
SN
% AL ST

b

are contractive. Choosing a constant 8 > 1, any g € A(f, ') can be represented
by a power series

(f

g =Y el € A{Ln)

where the coefficients ¢,, € A form a zero sequence satisfying |c,.,| < Blg|.
Thereby we see:

(%) Let B > 1. For any g € A(f. ™), there exist elements g* € A(f) and
g~ € A(f ") such that

gt <Blgl.  1g71<Blgl. g=¢& lunw + & lunu.
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Next choose elements V|, ...,v,, € M, and w},...,w, € M, generating M, as
an A( f)-module and M, as an A{ f ~!)-module. Using the fact that ¥ is {(-coherent,
the restrictions vy, ..., v,, of the vﬁ to U; N U,, as well as the restrictions wy, ..., w,
of the w/; to Uy N Uy, will generate M, as A(f, f~')-module. Now look at the

epimorphisms
(A(S)" — My, (AT — My, (AL )" — My,

given by mapping unit vectors to the v; € M, to the w’j € M,, and to the v; € M|,
respectively. Just as in the case of affinoid algebras, we can consider the attached
residue norms on M, M,, and M,, starting out from the maximum norms on
(AN, (A=), and (A(f, f~1))". These residue norms will be complete,
as any Cauchy sequence, for example in M, can be lifted to a Cauchy sequence
in (A{f))™. Furthermore, M, will be a normed A( f')-module in the sense that we
have |av| < |al||v| fora € A{f) and v € My; likewise for M, and M,,. Thus, using
a standard approximation procedure, the surjectivity of the coboundary morphism
d®: M, x M, — M, will be a consequence of the following assertion:

(xx) Let € > 0. Then there is a constant « > 1 such that for each u € M,, there
exist elements u™ € M, and u= € M, with

'] < alu

s e =eful, fu= @ lunn) = @ lune)| < elul.

To justify the assertion, recall that the elements v; as well as the w; generate M,
as an A(f, f~')-module. Hence, there are equations

n
Vi = E C,:,'Wj, i=1,...,m,
—

m
W_/szjlvl, j=1...,n,
=1

with coefficients ¢;;, dy € A(f, f~'). Using the fact that the image of A(f ') is
dense in A(f, '), there are elements c;; € A{f ") such that

max |e; — cp||du| < B,
ijl

where B > 1is aconstant as in (x) and where, in more precise terms, we should have
used the restriction cl.’jlumu2 in place of cl’J We claim that assertion () holds for

o=p? max(|c;j| +1).
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Indeed, consider any element u € Mj,, and write it as u = Z;"zl a;v; with
coefficients a; € A(f, f~!). Due to the choice of the norm on M},, we may assume
|a;| < Blu| for all i. Furthermore, using (), we can write

_ .+ —
a; = a; lv,nv, + a7 lvinu,

with elements al-+ € A(f),a; € A(f ") satisfying |a,-+| < Bla;| and |a; | < Bla;|.
Now consider the elements

m
ut =Y afv e M,

i=1

m n
- - 7.7
u = E E a; c;w; € M.

i=1j=1
We have
lut| < max |a;"| < max Bla;| < B*|ul < alul,
1 1

lu”| < max|a; [lej| < max Bla;| max |cj| < B|ul max |cj| < elul,
ij i ] y

and, omitting restrictions to U; N Us,

u= i(a?‘ +a )y =ut + i iai_c[jwj

i=1 i=1j=1

ut +u —i—ZZa;(cU—c{j)wj.

i=1j=I

Hence,
m n m
lu—ut —u"| = ‘Z DYy (e — chdav
i=1j=11=1
= max |a; [|c; — cilldpl < B*lulp~?e = elul,
which justifies assertion () and thereby the assertion of the lemma. O

Proof of Lemma 7. Here it is not necessary to make a difference between Laurent

and general affinoid coverings. Therefore, consider a covering Y = (U;)i=1. »
of X = Sp A consisting of affinoid subdomains U; = SpA; C X. Since ¥ is
$l-coherent, ¥ |y, is associated to a finite A;-module M;, i = 1,...,n. For x a

point in X, we denote by m, C A its corresponding maximal ideal and by m, Oy
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the associated coherent ideal of the structure sheaf Oy. Its product with ¥ yields
a submodule m,¥ C ¥ that is {-coherent, since its restriction to each U; is
associated to the submodule m,M; C M;; the latter is finite, since M; is a finite
module over a Noetherian ring. Then ¥ /m, ¥ is {-coherent by Proposition 1 and

0—>mF —>F —» F/mF —> 0

is a short exact sequence of ${-coherent @ x -modules.

If U’ = Sp A’ is an affinoid subdomain of X, which is contained in U; for some
index i, then the above short exact sequence restricts to a short exact sequence of
coherent modules on U’. More precisely, as the modules m, %, ¥, and ¥ /m, ¥
are {-coherent, their restrictions to U; are associated to finite 4;-modules and the
same is true for restrictions to U’ in terms of A’-modules. Thus, by Proposition 1,
the above short exact sequence leads to a short exact sequence of A’-modules

00— mFU) — FU) — F/m,FU') — 0.

In particular, U’ can be any intersection of sets in &I, and we thereby see that the
canonical sequence of Cech complexes

00— C*'MUmF) — C*UF) — C°UF/m;F) —> 0

is exact. As H'(4U, m,F) = 0 by our assumption, the associated long cohomology
sequence yields an exact sequence

0 — mF(X) — F(X) —» F/mF(X) — 0. (%)

Next we claim:

(%) The restriction homomorphism ¥ /m, ¥ (X) — F /m,F (U;) is bijective
for any index j such that x € U;.

To justify the claim, consider an affinoid subdomain U’ = Sp A" C X such that
¥ |y is associated to a finite A’-module M’ and write U’ N U; = Sp A’;. Then
F /m,|y- is associated to the quotient M'/m, M’, and the canonical map

M /oM — M /m.M Q@ A/j = M'/myM’ @4/ jim, &/ A;/mxA/j

is bijective for x € U;. This follows from 3.3/10 if x € U'NUj, since the restriction
map A’/m, A" — A’; /m, A’ is bijective then. However, the latter is also true for
x ¢ U’ since in this case the quotients A’/m A’ and A’ /m, A", are trivial.

Now if ¥ is known to be il-coherent, we look at the canonical diagram
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FlmeF (X) —— [[F/meF U) =——=2 [] #/m:F Ui Ui

i=1 i,i’=1

| |

n n
F o FU;) — [[F/mFUinU) = [] F/meF Ui N Uz NU)

i=1 ii’=1

with exact rows. By the consideration above, the middle and right restriction
morphisms are bijective. Thus, the same will hold for the left one, which settles
assertion ().

Looking at the commutative diagram

F(X)

F fmy(X)

M; = ¥ (Uj)

?/mx(Uj) = Mj/mej

for x € Uj, the exact sequence (*) shows in conjunction with (xx) that M; /m, M,
as an A;-module, is generated by the image of # (X). Hence, by the classical
Lemma of Nakayama, ¥ (X) generates M; locally at each point x € U;. But
then the submodule of M; generated by the image of ¥ (X) must coincide with

M ;. Therefore we can choose elements fi,..., f; € ¥ (X) such that their images
generate all modules M; = % (U;) simultaneously for i = 1,...,n. As a
consequence, the morphism of @y-modules ¢: 05, —— ¥ given by fi,..., f;

is an epimorphism of Ll-coherent O x-modules, and its kernel ker ¢ is a 4(-coherent
submodule of @% by Proposition 1.

We can work now in the same way as before with ker¢ in place of ¥ and
construct an epimorphism v: @% —— ker ¢, thus obtaining an exact sequence

o, e 0y, L F 0

of @ x-modules. Thereby we see that ¥ is isomorphic to the cokernel of ¥, and so
F is associated to the cokernel of the A-module morphism ¥ (X): A~ —— A° by
Proposition 1. The latter is finite and, hence, ¥ is associated to a finite A-module.
This finishes the proof of Lemma 7 and thereby also the proof of Theorem 4. O

If : X —— Y is a morphism of rigid K-spaces and ¥ an x-module,
we can construct its direct image % . In terms of abelian groups, the latter
sheaf associates to any admissible open subspace V' C Y the abelian group
F (e~ (V). Clearly, F (¢~ (V)) is an Ox (¢ ™" (V))-module and, via the morphism
@50y (V) — Ox (¢~ '(V)), also an Oy (V)-module. Thereby the sheaf ¢, F
inherits the structure of an Oy-module. The picture is quite simple for associated
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modules on affinoid K-spaces. So assume that ¢: X —— Y is a morphism of
affinoid K-spaces, say X = SpAandY = SpB,andlet ¥ = M ® 4 Oy for some
A-module M. Then the definition shows that ¢, ¥ coincides with the Oy -module
associated to M viewed as a B-module via the morphism ¢j:B —— A.
In particular, if ¢ is finite in the sense that A is a finite B-module via go;, it follows
that the direct image @4 F is coherent if the same is true for ¥ . The latter statement
is more generally true for so-called proper morphisms of rigid K-spaces, as we will
explain later.

Considering a morphism ¢: X —— Y of rigid K-spaces again, we may view
@« as a functor from @ x-modules to Oy-modules, a functor that is easily seen to
be left-exact. There is a so-called left-adjoint ¢* of @4, which is right-exact. Given
an Oy-module &, the Ox-module ¢*& is uniquely characterized (up to canonical
isomorphism) by the equation

Homg, (¢*&, F) = Homg, (&, ¢« F),

which is supposed to be functorial in ¥ varying over all Oy-modules. ¢*& is
called the inverse image of &. Of course, one has to show that an @ y-module ¢*&
satisfying these equations really exists. There is a general procedure for showing
the existence, which we will not explain at this place. We just look at the special
case where X and Y are affinoid, say X = SpA and Y = Sp B, and where & is
associated to a B-module N. In this situation, it is easy to see that the @ y-module
associated to N ®p A satisfies the above equations and, hence, must coincide
with ¢*&.

6.2 Grothendieck Cohomology

In the present section we will be concerned with O x-modules on rigid K-spaces
X . As usual, the cohomology of such modules is defined via derived functors. The
functors we want to consider are the section functor

rX.,): % —» I'X. %) = F(X),

which associates to an @ y-module ¥ the group of its global sections ¥ (X) and,
for a morphism of rigid K-spaces ¢: X —— Y, the direct image functor

Ot F — 0 F,
which associates to an Oy-module ¥ its direct image ¢.F . Both functors are

left-exact. To define their right-derived functors we need injective resolutions. For
shortness, let us write € for the category of O y-modules.
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Definition 1. An object ¥ € € is called injective if the functor Hom(-,¥) is exact,
i.e. if for each short exact sequence

0—8& —86—8"—0
in € also the sequence
0 — Hom(&”,¥) — Hom(&,¥) — Hom(&',¥) — 0
is exact.
As Hom(-, ) is left-exact, the sequence
0 — Hom(&”,¥) — Hom(&,%) — Hom(&’, %)
will always be exact, and we see that ¥ is injective if and only if for a given
monomorphism & < & any morphism & —— % admits a (not necessarily
unique) extension & — ¥ . Without proof we will use:
Proposition 2. The category € of Ox-modules on a rigid K-space X contains
enough injectives, i.e. for each object ¥ € € there is a monomorphism ¥ — 4

into an injective object d € C.

The assertion of Proposition 2 is true for quite general categories €; cf. Grothen-
dieck [Gr], Thm. 1.10.1.

Corollary 3. Every object ¥ € € admits an injective resolution, i.e. there is an
exact sequence

00— F — ' — g —» .
with injective objects Jii=01,....

Recall that, more precisely, the above exact sequence has to be viewed as a quasi-
isomorphism of complexes

where the lower row is referred to as an injective resolution of ¥ .
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Proof of Corollary 3. We choose an embedding ¥ < 4° of ¥ into an injective
object 4°, an embedding 4°/F ——— 4! into an injective object 4!, then an
embedding J'/im J° = 42 into an injective object 42, and so on. O

Now let us define right derived functors of the section functor I’ = I'(X,-)
and of the direct image functor ¢, the latter for a morphism of rigid K-spaces
¢: X —— Y. To apply these functors to an @ x-module ¥, choose an injective
resolution

1 2
0—= 40 S gt g2 ¢,

of ¥, apply the functor I" to it, thereby getting a complex of abelian groups

O{O Otl Dto
0 —— r(x, 4% 2% pex, gty 29 pix g2 D9

and take the cohomology of this complex. Then
RIT(X,F)=HYX,¥)=ker'(a?)/im ' (a?™")

is called the gth cohomology group of X with values in ¥ . Using the technique
of homotopies, one can show that these cohomology groups are independent of the
chosen injective resolution of ¥, and that RYI"(X,-) = H?(X,-) is a functor on
&; it is the so-called gth right-derived functor of the section functor I"(X, -). Note
that R°I"(X,-) = I'(X,-), since the section functor is left-exact. For ¥ = Oy,
the cohomology groups H?(X, ) may be viewed as certain invariants of the rigid
K-space X.

Similarly one proceeds with the direct image functor ¢., which might be viewed
as a relative version of the section functor. Applying ¢, to the above injective
resolution of ¥, we get the complex of Oy -modules

O{O *O{] *a2
0 —— (p*,ﬂo P (p*,ﬂl P (p*,ﬂz P
and
Ri@.(F) = ker pxa?/ im o™
is an Oy-module, which is called the gth direct image of ¥ . Clearly, R%¢.(F)
equals ¢« (¥), and one can show that R7¢,(¥) is the sheaf associated to the
presheaf

YOV Hi(p7' (V). Fl,~1v))-

Let us mention the existence of long exact cohomology sequences, writing @ for
a left-exact functor on €, such as the section functor or a direct image functor:
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Theorem 4. Let

0—=5 g Logr Lo

be an exact sequence of objects in €. Then there is an associated long exact
sequence:

D(a) (p(?) () ®($1/)

1

R'o(F) 220 Rig(F7)
2

RoF) X200, R

0 ——— &F)

1 o
Y, Rloy) K29,

2
Y, Ry K29,

There is, of course, the problem of computing derived functors or cohomology
groups. For example, for an injective object 4 € @ we have R°®(4) = &(J) and
Ri®(d) = 0 forg > 0since we can use 0 — 4 —— 0 as an injective resolution
of 4. In general, one can try to compute cohomology groups via Cech cohomology.
Below we give some details on this method, but for more information one may
consult Artin [A], Grothendieck [Gr], or Godement [Go].

If ¥ is an Ox-module, we define the Cech cohomology groups H4 (s, F) for
any admissible covering 4l of X as in Sect. 4.3. Then

a g Ty — 1 q frod
H(X,f)_h_;)nH L F)

where the limit runs over all admissible coverings of X, is called the gth Cech
cohomology group of X with values in ¥ . There is always a canonical morphism

HYX,¥) — HYX,F)

that it is bijective for ¢ = 0,1 and injective for ¢ = 2. To compute higher
cohomology groups via Cech cohomology, one needs special assumptions.

Theorem 5. Let 3 be an admissible covering of a rigid K-space X and let ¥ be an
O x-module. Assume H1(U,¥) = 0 for g > 0 and U any finite intersection of sets
in L. Then the canonical map

HIWUF) — HI(X,F)

is bijective for all g > 0.

Theorem 6. Let X be a rigid K-space, ¥ an Ox-module, and S a system of
admissible open subsets of X satisfying the following conditions:
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(i) The intersection of two sets in G is in G again.
(i) Each admissible covering of an admissible open subset of X admits an
admissible refinement consisting of sets in G.
(i) HYI(U,F)=0forqg>0and U € S.

Then the canonical homomorphism
HI(X,7) — HY(X,F)
is bijective for g > 0.

For example, let us look at an affinoid K-space X and let G be the system of all
affinoid subdomains of X. Then the conditions of Theorem 6 are satisfied for the
structure sheaf ¥ = Oy or for any O x-module associated to an Oy (X )-module;
for condition (iii), see Tate’s Acyclicity Theorem 4.3/10 and Corollary 4.3/11. Thus,
we can conclude:

Corollary 7. Let X be an affinoid K-space. Then
HY(X,0x) =0 for ¢ >0.

The same is true for any Ox-module ¥ in place of Oy that is associated to an
Ox (X)-module.

6.3 The Proper Mapping Theorem

We end the first part of these lectures by an advanced topic, Kiehl’s Proper Mapping
Theorem; its proof will follow in Sect.6.4. The theorem requires the notions of
properness and, in particular, of separatedness for morphisms of rigid spaces. In
order to introduce the latter concept, we adapt the definition of closed immersions,
as given in 6.1/1 for affinoid spaces, to the setting of global rigid spaces.

Definition 1. A morphism of rigid K-spaces ¢: X —— Y is called a closed
immersion if there exists an admissible affinoid covering (V;)jes of Y such that,
forall j € J, the induced morphism ! (V;) — V, is a closed immersion of
affinoid K-spaces in the sense of 4.2/1. The latter means that ¢; is a morphism of
affinoid spaces, say ¢~ (V;) =SpA; and V; = Sp B;, and that the corresponding
morphism of affinoid K -algebras B; — A is an epimorphism.

If p: X —— Y is a closed immersion in the sense of the definition, we can
view ¢«Ox as a coherent Oy-module as characterized in 6.1/3. Using Kiehl’s
Theorem 6.1/4 in conjunction with 6.1/1, one can show that the condition in
Definition 1 is independent of the chosen admissible affinoid covering (V;),ey.
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In fact, a morphism of affinoid K-spaces Sp A —— Sp B is a closed immersion if
and only if the corresponding morphism B —— A is an epimorphism. In particular,
we thereby see that Definition 1 extends the notion of closed immersions for affinoid
K-spaces, as given in 4.2/1.

Definition 2.

(1) A rigid K-space X is called quasi-compact if it admits a finite admissible
affinoid cover. A morphism of rigid K-spaces ¢: X —— Y is called quasi-
compact if for each quasi-compact open subspace Y' C Y its inverse image
@~ '(Y") is quasi-compact.

(i) A morphism of rigid K-spaces ¢: X —— Y is called separated (resp. quasi-
separated) if the diagonal morphism A: X —— X xy X is a closed immersion
(resp. a quasi-compact morphism).

(iii) A rigid K-space X is called separated (resp. quasi-separated) if the structural
morphism X —— Sp K is separated (resp. quasi-separated).

Of course, every separated morphism of rigid K-spaces is quasi-separated since
closed immersions are quasi-compact. As in algebraic geometry, one shows:

Proposition 3. Every morphism of affinoid K-spaces ¢:SpA — Sp B is
separated.

Proposition 4. Let o: X —— Y be a separated (resp. quasi-separated) morphism
of rigid K-spaces and assume that Y is affinoid. Then, for any open affinoid
subspaces U,V C X, the intersection U NV is affinoid (resp. quasi-compact).

In algebraic geometry, one knows for a morphism of schemes ¢: X —— Y that
the diagonal morphism A: X —— X xy X is always a locally closed immersion.
Furthermore, A is a closed immersion and, hence, ¢ is separated, if and only if the
image of A is closed in X xy X. In rigid analytic geometry the diagonal morphism
A: X —— X xy X is still a locally closed immersion, but the characterization of
separated morphisms is a bit more complicated; see [BGR], 9.6.1/7 in conjunction
with [BGR], 9.6.1/3:

Proposition 5. A morphism of rigid K-spaces ¢: X — Y is separated if and only
if the following hold:

(1) ¢ is quasi-separated.

(i) The image of the diagonal morphism A: X —— X Xy X is a closed analytic
subset in X Xy X, i.e., locally on open affinoid parts W C X xy X, itis a
Zariski closed subset of W .

Considering a rigid K-space Y as a base space, a morphism of rigid K-spaces
X —— Y is quite often referred to as a rigid Y -space. We need to introduce a
notion of relative compactness over such a base Y.
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Definition 6. Let X be a rigid Y -space where the base space Y is affinoid, and let
U C U’ C X be open affinoid subspaces. We say that U is relatively compact in
U’ and write U €y U’ if there exist affinoid generators fi,...,f» of Ox(U’) over
Oy (Y) (in the sense that the structural morphism Oy (Y) — Ox (U’) extends to
an epimorphism Oy (Y)({1,....L) — Ox(U’) mapping {; to f;) such that

Uc{xelU|fitx) <1}
or, in equivalent terms, such that there is an ¢ € /| K*|,0 < ¢ < 1, satisfying

UcU' (e fi,....e 1)

The notion of relative compactness behaves in a quite reasonable way:

Lemma 7. Let X1,X, be affinoid spaces over an affinoid K-space Y and consider
affinoid subdomains U; C X;,i = 1,2. Then:

) U ey X = Uxy X, Ex, X1 Xy Xo.
) U; €y X;,i =12, = U, xy U, €y X Xy Xo.
(i) U; €y X;,i = 1,2, = U NU, €y X1 N X, where, slightly different from
the above, X|,X, are open affinoid subspaces of an ambient rigid K-space X
over Y and the morphism X —— Y is separated.

Now we can introduce proper morphisms of rigid K-spaces. The definition is
inspired from compact complex Riemann surfaces that are viewed as manifolds
without boundary.

Definition 8. A morphism of rigid K -spaces ¢: X — Y, or X as a rigid Y -space,
is called proper if the following hold:

(1) ¢ is separated.

(ii) There exist an admissible affinoid covering (Y;)ie; of Y and for eachi € I two
finite admissible affinoid coverings (Xij)j=1-<-”i’(Xi;')j=l~~~’1i of o~ (Y;) such
that X;; €y, X for alli and j.

It can easily be shown that properness, just like separateness, behaves well with
respect to base change on Y and with respect to fiber products over Y'; cf. Lemma 7.
However, it is quite difficult to see that the composition of two proper morphisms
is proper again. To deduce this result, one uses the characterization of properness
in terms of properness on the level of formal models as we will study them in
Sect. 8.4; for details see Liitkebohmert [L] if K carries a discrete valuation, as well
as Temkin [Te] in the general case.

Of course, finite morphisms of rigid K-spaces are examples of proper mor-
phisms. Furthermore the projective space P, viewed as the rigid analytification
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of the corresponding K-scheme, is a prototype of a proper rigid K-space. More
generally, if ¢: X —— Y is a morphism of K-schemes of locally finite type, one
can show that the corresponding rigid analytification ¢"¢: X8 — Y™ is proper if
and only if ¢ is proper in the sense of algebraic geometry; see Kopf [K6], Satz 2.16.
On the other hand, an affinoid K-space will never be proper over K, unless it is
finite over K, as can be read from Kiehl’s theorem below.

We want to present now Kiehl’s version of the Proper Mapping Theorem, see
Kiehl [K2], as well as some of its applications. The proof of this theorem will be
postponed until the next section.

Theorem 9 (Kiehl). Let ¢: X —— Y be a proper morphism of rigid K-spaces
and ¥ a coherent O x-module. Then the higher direct images Rl (F),q > 0, are
coherent Oy-modules.

A basic lemma that has to be established on the way is the following one:

Lemma 10. If, in the situation of Theorem 9, Y is affinoid, say Y = Sp B, and if
Y’ = Sp B’ C Y is an affinoid subdomain, then

I'(Y Rip(F)) = Hi(¢ '(Y),F) = HI(X,F) ®5 B, g >0.

There are a lot of applications of the Proper Mapping Theorem, and before
concluding this section, we want to discuss some of them. Let ¢: X —— Y be
a proper morphism of rigid K-spaces. Then, for any closed analytic subset A C X
(i.e., locally on open affinoid parts of X, one requires that A is Zariski closed in X),
the image ¢(A) is a closed analytic subset of Y. Furthermore, there is the so-called
Stein Factorization of ¢: The coherent Oy-module ¢.(Oyx) gives rise to a rigid
K-space Y’ that is finite over Y. Thus, ¢ splits into a proper morphism X — Y’
with connected fibers and a finite morphism Y’ —— Y.

Finally, we want to present the subsequent theorems applying to the GAGA-
functor, dealt with in Sect. 5.4. Note that, for a K-scheme of locally finite type X,
any Ox-module F gives rise to an O yrg-module F ¢ on the rigid analytification
X" of X, and one can show that "¢ is coherent if and only if the same is true
for ¥ .

Theorem 11. Let X be a proper K-scheme and ¥ a coherent O x-module. Then the
canonical maps

HY(X,F) — HI(X"e Fre) g >0,

are isomorphisms.
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Theorem 12. Let X be a proper K-scheme and ¥ ,§ coherent O x-modules. Then
the canonical map
Home, (¥,9) — Homg . (F"¢,6"¢)

xrig (
is an isomorphism.

Theorem 13. Let X be a proper K-scheme and ¥' a coherent O yrg-module. Then
there is a coherent Ox-module ¥ satisfying ¥ "¢ = F'; furthermore, ¥ is unique
up to canonical isomorphism.

It should be mentioned that the last three theorems generalize to the relative
GAGA-functor where one works over an affinoid K-algebra as base instead of K.
For details, see Kopf [K6].

One may apply Theorem 13 to the case where X equals the projective n-space
[P% and where ¥ is a coherent ideal 4" C O yrie. As the zero sets of such coherent
ideals are precisely the closed analytic subsets of X rig,lwe obtain the analog of
Chow’s Theorem, namely that each analytic subset of P"* is algebraic.

6.4 Proof of the Proper Mapping Theorem

In this section we will prove Kiehl’s Theorem 6.3/9, which states that all higher
direct images of a coherent sheaf under a proper morphism are coherent again. To
give a short preview on the method we will use, consider a proper morphism of rigid
K-spaces ¢: X —— Y where Y is affinoid, and assume that the following (slightly
stronger) condition for ¢ is satisfied:

(1) There exist two finite admissible affinoid coverings {4 = (U;);=1...s as well as

B = (Vi)i=1...s of X suchthat V; €y U; foralli.

R

Note that a separated morphism ¢ is proper if and only if there is an admissible
affinoid covering of Y such that condition (1) is satisfied for the inverse images of
the members of this covering.

Now let ¥ be a coherent O y-module. As a main step of proof, we will show that
H1(X,¥) is a finite module over B = Oy (Y) for all ¢ > 0. Applying 6.2/5 in
conjunction with 6.2/7, we may look at Cech cohomology and use the fact that the
canonical morphisms

HIW, F) =+ HI(U,F) — HI(X,F), q=>0,

are isomorphisms. Thus, writing Z4(%0, ¥) for the kernel of the coboundary map
d?:Ci(0,F) — CIT(], F), it is enough to show that the maps
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f:C7ND, F) — ZUV. F), q=0,

(with C™1(0, F) = 0) induced by the coboundary maps of the Cech complex
C* (0, ¥) have finite B-modules as cokernels. Let

rt: 49U F) — ZUV, F), q=0,

be the morphisms induced from the restriction map C*(U, F) —— C*(U, F)
on the kernels of coboundary maps. Then, relying on the fact that associated maps
between cohomology groups are isomorphisms, as mentioned above, all maps

fl4+r:CT VW, F)® 29U, F) — Z9(T, F), q>0,

will be surjective. At this point a subtle approximation argument comes in. It says
that the map r? is suitably “nice” such that, when we disturb /¢ 4 r? by subtracting
r4, the resulting map f9, although not necessarily surjective any more, will still
have finite cokernel. It is this approximation step that we will discuss first.

In order to make the notion of “nice” maps more explicit, we introduce some
notation. As before, let B be an affinoid K-algebra that is equipped with a fixed
residue norm |- |. On B we will consider normed modules M that are complete. For
any such M let

M°={xeM;|x|y <1},

and, for any B-linear continuous homomorphism f: M —— N between two such
B-modules, set

| f(xX)| v
| ar

Using Lemma 1 of Appendix B we see that | £ is finite. In particular, we thereby
get a complete B-module norm on the space of all B-linear homomorphisms from
M to N. As usual, let R be the valuation ring of K.

|f|=sup

;x € M —{0};.

Definition 1. A continuous B-linear homomorphism f:M —— N is called
completely continuous if it is the limit of a sequence (f;);en of continuous B-linear
homomorphisms such that im( f;) is a finite B-module for all i € N. Furthermore,
if there is an element ¢ € R — {0} such that for all integers i € N the B®-module
cf ; (M °) is contained in a finite B°-submodule of N °, which may depend on i, then
[ is called strictly completely continuous.

We want to give a basic example of a strictly completely continuous
homomorphism.
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Proposition 2. Let f: B(¢) —— A be a K-homomorphism where A and B are
affinoid K-algebras and ¢ = ({4, ...,5,) a system of variables. Consider on B({)
the Gauf3 norm derived from a given residue norm on B and on A any residue norm
| - | such that f|p: B —— A is contractive. Then, if | f(§i)lsyp < 1 for all i,
the map f is a strictly completely continuous homomorphism of complete normed
B-modules.

Proof. Since | f({i)|sp < 1, we see from 3.1/18 that f(;) is topologically nilpotent
in A for all i, and it follows that ( f(¢")),ene iS a zero sequence in A.
Fori € Nset M; = P, =; B¢ so that B({) equals the complete direct sum

M = @ieNM,-. Furthermore, let f;: M — A be the B-module homomorphism

that equals f on M; and is trivial on the complement @_[EN, j#iM;j. Then, since
f(£") is a zero sequence in A, we can conclude that f = ) ', fi and, hence, since
the M; are finite B-modules, that f is completely continuous. In fact, choosing
¢ € R — {0} such that | £(¢")| < |c|™! for all v, we get ¢f; (M°) C A°, and we see
that f is strictly completely continuous, since f;(M°) = f;(M;®) and since each
M;° is a finite B°-module. O

We start the approximation process alluded to above by establishing a Theorem
of L. Schwarz.

Theorem 3. Let f,g: M —— N be continuous homomorphisms of complete
normed B-modules where, as above, B is an affinoid K-algebra equipped with a
certain residue norm. Assume that

(1) f is surjective, and
(ii) g is completely continuous.

Then the image im( f + g) is closed in N, and the cokernel N/im(f + g) is a
finite B-module.

Proof. We can view f as a continuous surjective linear map between K-Banach
spaces. Thus, by Banach’s Theorem, see [EVT], f is open and there exists a
constant € K* such that tN°® C f(M°). In other words, replacing 7 by ct for
some ¢ € K* with |[¢| < 1, we see for any y € N that there is some x € M
satisfying

f)y=y and  |x| < |7yl
Now consider the special case where |g| = «|t| for some o < 1. We claim that,

under such an assumption, f + g is still surjective. Indeed, given y € N — {0}, we
can pick x € M as before with f(x) = y, |x| < |t|7"|y|, and write

(f+9x)=y+)
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where y' = g(x) € N satisfies |y’| < «|y|. Then, proceeding with y’ in the same
way as we did with y, an iteration argument in combination with a limit process
shows that, indeed, f + g is surjective.

To deal with the general case, we use the fact that g is completely continuous and,
hence, can be uniformly approximated by an infinite sum of continuous B-linear
maps having module-finite image. By the just considered special case, we may
assume that this sum is, in fact, finite and, hence, that g has module-finite image.
Then M/kerg may be viewed as a finite B-module, and we can consider the
commutative diagram

M/kerg —L— N/f(kerg)

where the lower row is induced from f and, hence, all arrows are epimorphisms. It
follows that N/ f(ker g) is a finite B-module and, since

Sflkerg) = (f + g)(kerg) C (f + &) (M),

that the same is true for N/(f + g)(M).

To show that im( f + g) is closed in M, observe that ker g is closed in M and
that we can provide M/ ker g with the canonical residue norm derived from the
norm of M. Using the assertion of 2.3/10, one can show that any submodule of
such a finite B-module is closed. In particular, ker? is closed, and we can consider
the residue norm via f on N/f(ker g). On the other hand, we can assume, due
to Banach’s Theorem (see above), that the norm of N coincides with the residue
norm via f. Then it follows that the norm on N/ f (ker g) coincides with the residue
norm via N —— N/ f(ker g). In particular, the latter map is continuous. Since
(f 4+ g)(M) can be interpreted as the inverse of a submodule of N/ f(ker g), and
since any such submodule is closed, as we have seen, it follows that ( f + g)(M) is
closedin N. O

Recalling the maps
fi4+rt: VB, F)® 2 F) — Z9V,F), q=0,

as introduced in the beginning of the section, we would like to apply Theorem 3 to
the maps f = f9+ r? and g = —r?, for all g. Certainly, f is surjective then,
but we do not know if g will be completely continuous. Basing our information
about complete continuity upon the example given in Proposition 2, we need a slight
generalization of the Theorem of Schwarz, as follows:
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Theorem 4. Let f,g: M —— N be continuous homomorphisms of complete
normed B-modules where, as above, B is an affinoid K-algebra equipped with a
certain residue norm. Assume that

(1) f is surjective, and

(ii) g is part of a sequence M’ P oM £+ N L+ Nt of continuous
morphisms of complete normed B-modules where p is an epimorphism and
j identifies N with a closed submodule of N*, and where the composed map
j o g o pis strictly completely continuous.

Then the image im( f + g) is closed in N, and the cokernel N/im(f + g) is a
finite B-module.

The proof of Theorem 4 requires some preparations.

Lemma 5. Let E be a finite B®-module and E' C E a B®-submodule. Then, for any
constant 0 < a < 1, there is a finite B®-submodule E" C E’ such that aE' C E"
foralla € R with |a| < a.

Proof. If m: T, = K({) —— B with a system of variables { = ({y,...,{,) is an
epimorphism defining the chosen residue norm on B, then the induced morphism
7°:T,° = R({) — B° is surjective by 2.3/9. Thus, we may assume that B°
coincides with the algebra R(() of all restricted power series in ¢ having coefficients
in R. If R is a discrete valuation ring, R({) is Noetherian by Grothendieck and
Dieudonné [EGA I], Chap. 0, Prop. 7.5.2. Thus we are done in this case, since E is
Noetherian then.

To deal with the general case, assume that the valuation on K is not discrete.
There is a more or less obvious reduction step:

Let O ~ E; - E-—V. E, » 0 be an exact sequence of finite
B®-modules. Then the assertion of Lemma 5 holds for E if and only if it holds
for El and Ez.

In fact, the only-if part being trivial, assume that the assertion of the lemma holds
for E| and E,. Consider a submodule E/ C E, and set E| = E’' N E|, as well as
E) = Y(E’). Then, given a constant 0 < o < 1, fix some constant y satisfying
Ja < y < 1. There are finite submodules E/ C E| and E} C E} such that
cE{ C E{ and cE] C EJ for all ¢ € R with |¢c| < y. Lifting EY to a finite
submodule Eé’ C E’, we claim that the submodule E” = E{ + Eﬁ’ C E’ satisfies
the assertion of the Lemma. To justify this, pick some a € R with |¢| < « and
choose a constant ¢ € R such that y/|a| < |c| < y. It follows ¥ (cE") = cE; C EY
and, hence, cE' C E| + Eé’ . But then we have

aE' C *E' € o(E| + EJ) C Ell + B} = E”,

as required.
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Now, applying the above reduction step, we may assume that E is a finite free
R({)-module and, applying it again in a recursive way, that E coincides with R(()
itself. Then E’ is an ideal in R({). We will proceed by induction on n, the number
of variables. The case n = 0 is trivial, and the same is true for £/ = 0. Therefore
assume n > 0 and E’ # 0. Write 8 = sup{|h|; h € E'} where |-| denotes the Gaul3
norm on R(¢), and consider some g € E’ such that |g| > af, for a fixed constant
0 < a < 1. There is a constant ¢ € R satisfying |c| = |g|, and we see that
f = ¢ 'g is a well-defined element of GauB norm 1 in R(¢). Using 2.2/7,
we may apply a change of variables to K({) and thereby can assume that f
is {,-distinguished of some order s > 0. Then, by Weierstra Division 2.2/8,
R{(¢)/(f) is a finite R(¢’)-module where ¢’ = ({1,...,{,—1), and we can consider
the exact sequence

0 — (f) — R(&) — R()/(f) — 0.

As a finite R{{’)-module, R{{)/(f) satisfies the assertion of the lemma by the
induction hypothesis. Thus, by the argument given in the above reduction step,
it is enough to show that the assertion of the lemma holds for the submodule
E; = E'n(f) C (f). However, the latter is obvious from our construction.
Indeed, consider the submodule E{ = (g) C E|. Any h € E/ has GauBl norm
|h| < B and, hence, any & € aE| has GauB norm |h| < |a|f < aff < |g| by
the choice of g € E’. But then, as we are working within the free monogenous
R(¢)-module fR({) ~ R({), we see that aE} C (g) = E as required. O

Lemma 6. Let M —5+ N —L+ N% pe q homomorphism of complete normed
B-modules where j identifies N with a closed submodule of N*. Assume that M is
topologically free in the sense that there exists a system (e))ieca of elements in M
such that every x € M can be written as a converging series X = ) _, o, baex with
coefficients by € B satisfying max, e |b,| = |x| (and, hence, where the coefficients
b are unique).

Then, if j o g is strictly completely continuous, the same is true for g.

Proof. We may assume that the norm of N restricts to the one of N. Furthermore,
if j o g is strictly completely continuous, it is, in particular continuous, and we may
assume that j o g and g are contractive. Then g and j restrict to morphisms of
B°-modules

M® —» N° c— NF°,

Since j o g is strictly completely continuous, there exist continuous B-linear maps
hitM —— N' i € N, satisfying j o g = lim;ey /;, and there is a non-zero
constant ¢ € R such that ch; (M °) is contained in a finite B°-submodule of N#°
for each i. Adjusting norms on N and N¥ by the factor |¢|~!, we may assume ¢ = 1
and, hence, that /; (M ©), for each i, is contained in a finite B°-submodule of N*°.
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Now consider a constant o, 0 < o < 1, and assume that there is an element
a € R satisfying |a| = «. In order to show that g is strictly completely continuous,
it is enough to construct for each ¢, 0 < ¢ < 1, a B-linear continuous map
g’*M —— N such that

() |g—g'| <ea”!, and

(ii) ag’'(M°) is contained in a finite B°-submodule of N°.

To construct such an approximation g’ of g, let i € N be big enough such that
h = h; satisfies | j o g — h| < . By our assumption, & (M °) is contained in a finite
B°-submodule £ C N*°. Thus, using Lemma 5, there is a finite B°-submodule
E"” C h(M®) such that ah(M°) C E".

We will obtain the desired approximation g’: M — N of g by modifying the

approximation #: M —— N¥ in a suitable way. Fix generators yi, ..., y, of E”,
let x1,...,x, € M° be inverse images with respect to / such that y; = h(x;), and
setz; = g(x;)forj =1,...,r.Thenz; € N°and |y; —z;| < & forall j. Thus,

we have approximated the elements y; € N £ suitably well by certain elements
zj € N°. Now, using the fact that ah(M°) C E”, there are elements b;, € B,
j=1,...,r,A € A, such that

he) =) bpy;.  Ibpl <™,

Jj=1

and we can define a continuous B-linear map g’: M — N by setting
g'e) =) bz
j=1

Then, since |y; —z;| < ¢ for all j, we have

|g(ex) — g'(ex)| < max{|g(ex) — h(ex)|.|h(er) — &' (ex)|}

< max{a,oc_ls} =a'e
for all A and, hence, |g — g’| < a™'e. Since ag'(M°) C > 21 B°z; C N°, by the
construction of g’, we are done. m|

After these preparations, the proof of Theorem 4 is easy to achieve. First observe
that the epimorphism p: M” —— M is not really relevant, since composition
with such a continuous (and, hence, by Banach’s Theorem, open) B-linear map
p does not change the image of f + g. Assume first that M" is topologically free,
as needed in Lemma 6. Then, with the help of this lemma, the assertion follows
from Theorem 3. If M" is not topologically free, we can compose our situation
with a continuous B-linear epimorphism M —— M?" and apply the reasoning
used before. To obtain such an epimorphism, consider a bounded generating system
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(x2)2ea for M" as ordinary B-module, and let M" be the completion of B4,
the free B-module generated by A, with respect to the canonical maximum norm.
Then M" is topologically free, and there is a canonical continuous epimorphism
M" —— M?", as required. O

Going back to Kiehl’s Theorem 6.3/9, we consider a proper morphism of rigid
K-spaces ¢: X — Y and a coherent @ y-module ¥ . Then the higher direct image
R¢.(¥) is the sheaf associated to the presheaf

YOV —— Hi(p”'(Y'), F).

In order to show that R?¢. () is a coherent Oy -module in the sense of 6.1/3, we
may work locally on Y. In other words, we may assume that Y is affinoid and that,
as in the beginning of the present section, the following condition is satisfied:

(1) There exist two finite admissible affinoid coverings \ = (U;);i=1... s as well as
U = (V;)i=1...s of X such that V; €y U; foralli.

As a first step we show:

Proposition 7. Let ¢9: X —— Y be a proper morphism of rigid K-spaces where
Y is affinoid, and where condition () is satisfied. Let ¥ be a coherent O x-module.
Then H1(X,¥) is a finite module over B = Oy (Y) for all ¢ > 0.

Proof. Looking at the maps V; — U; —%+ Y, we can fix a residue norm on B, as
well as residue norms on Oy (U;) and Oy (V;) fori = 1,..., s in such a way that the
canonical maps B — Ox(U;) — Ox(V;) are contractive. As a result, we may
view Oy (U;) — Ox(V;) as a continuous homomorphism of complete normed
B-modules. Furthermore, we can extend B —— Oy (U;) to an epimorphism
B{¢,...,t,) — Ox(U;), for a number of variables {,...,¢,. Using the
GauBl norm derived from the residue norm of B, we view E; = B{((,...,¢,)
as a topologically free complete normed B-module. Since we have V; €y U;,
we may even assume that the image of each variable {; under the composition
E; —— Ox(U;) —— Ox(V;) has supremum norm < 1. Then it follows from
Proposition 2 that the latter composition is strictly completely continuous. From
this we can conclude:

For each q € N, there exists a topologically free complete normed B-module
E1 together with a continuous epimorphism p: EY —— C1(U, ) such that the
composition

E1 Ly CIU, F) > CI(T, F)

is completely continuous.

Indeed, to settle the case ¢ = 0, we consider the cartesian product of the maps
E; —— Ox(U;) —— Ox(V;) as introduced above. Since any intersection of
type Vi, N ... NV, lies relatively compact in the intersection U;, N ... N Uj,
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by 6.3/7 (iii), the same reasoning works for ¢ > 0. Also note that the restriction
of the above composition to the inverse image p~!'(Z4(4, )) remains strictly
completely continuous for trivial reasons.

In the beginning of the section, we have introduced the maps

fLCTND, F) — Z9(V, F), q=0,

(with C™1(0, F) = 0) given by coboundary maps, which are continuous. Also we
have shown that the maps

fI4r:CTNUF)® 294, F) — ZUV. F), ¢q=>0,

are surjective where r4: Z9(4, F) — Z9(*0, ) is the canonical restriction map
induced from the restriction map res: C4(, ) —— CY9(U, ), as considered
above. We view r?, in a more precise manner, as the map

ri:CI YU, F)® 24U, F) — ZI(V, F)

that is zero on the first component and given by restriction on the second. Then we
can conclude from the above statement that the composition

idxp

C' (U F)®p (ZIWF)) — CI' (V. F)® ZIWU. F)
L 7900, F) <Le U, F)

is strictly completely continuous, with id X p a continuous epimorphism and j the
canonical inclusion. But then, applying Theorem 4 to the epimorphism f? 4 r? in
place of f and to —r? in place of g, the cokernel of f7 = (9 4 r?) — r?, which
coincides with H9(X, ¥), is a finite B-module. O

As a next step, we want to show that in the situation of the above proposi-
tion the higher direct image sheaf RY¢.¥ is the sheaf associated to the finite
B-module HY(X, ¥). The proof of this fact is based on a formal function type
result. To explain it, choose an element b € B and consider the composition
L S /b'F where [b'] for some exponent i is given by multi-
plication with ¢*(b"). This composition is zero and so is the attached composition

Hix, 7) M) gox 7y v HUX,F /b F)

on the level of cohomology groups. Since HY9([b']) is just multiplication with
b’ in the sense of B-modules, as is easily checked, we get a canonical map
0 HI(X,F)/bHI(X,F) — HI(X,F /b’ F) and then, varying i, a canonical
map between associated inverse limits.
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Proposition 8. As in the situation of Proposition 7, let 9: X —— Y be a proper
morphism of rigid K-spaces where Y is affinoid and where condition (}) is satisfied.
Let ¥ be a coherent Ox-module and fix an element b € B = Oy (Y). Then the
canonical morphism

L 13 q frod iryq : q lrodl AR N rod
o:lim HY(X.5) /b HY(X.F) — lim HI(X.5 /b’ F)

1 1

is an isomorphism for all ¢ > 0.

For the proof of the proposition, we need to recall some notions applying to
projective systems. Let (M;);en be a projective system with connecting morphisms
fiitM; —— M; fori < j. The system (M;);en is said to satisfy the condition
of Mittag—Leffler if for every i € N there exists an index j, > i in N such
that f;(M;) = f;,(M,) for all j > jo. Furthermore, (M;);ey is called a null
system if, more specifically, for every i € N there is an index jo > i in N such
that f;(M;) = O for all j > jo. Note that any null system (M;);en satisfies
the condition of Mittag—Leffler and yields l(iLniGN M; = 0. Furthermore, an exact
sequence of projective systems 0 — M/ — M; — M/ —— 0 induces an
exact sequence of projective limits

0 —> limM/ —» limM; — limM/ — 0,
<— <— <—
ieN ieN ieN

provided the system (M/);en satisfies the condition of Mittag—Leffler. In general,
the functor lim is only left exact.
In the situation of the proposition, the canonical morphisms

HY(F) — HUF/V'F),  HUF)/b'HI(F) — HU(F /b F),

(where we have suppressed the rigid space X, as it won’t change for the moment)
can be inserted into exact sequences

0 — D — HY(F) — HI(F/b'F) — E; — 0,
0— D, — HY(F)/'HY(F) — HI(F/b'F) — E; — 0 ()

by adding kernels and cokernels. Then the kernels D;, resp. D;, form projective
systems again, and the same is true for the cokernels E;. Furthermore, we have
D; = D;/b'HI(F). We claim that the assertion of Proposition 8 will be a
consequence of the following facts:

Lemma 9. In the above situation, the projective systems (5,-),<€N and (E;);en are
null systems. Furthermore, that (D;);en is a null system follows from the fact that
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the filtration H1(¥) D Dy D Dy D ... becomes b-stable in the sense that there is
an index iy € N satisfying D; = b' = D, foralli € N,i > i,.

Let us first show how to deduce the proof of Proposition 8 from the lemma. Let H;
be the image of the canonical map

0 HY(F)/b'HU(F) — HI(F/b'F).
Then we can split 0; into the composition
0 HI(F)/b'HI(F) — H; — HI(F/b'F)
and deduce from the above exact sequence (x) the short exact sequences

0— D, — HY(F)/b'HY(F) — H; — 0,

0 — H — HY(¥/b'F) — E; — 0.

Passing to inverse limits, the first of these remains exact, since (D;);en, as a null
system, satisfies the condition of Mittag—Leffler. The same is true for the second
sequence, since all morphisms of the projective system (H;);en are surjective so
that, also in this case, the condition of Mittag—Leffler is satisfied. Since (D;); ey and
(E;)ien are null systems, we see that

15 q(q 19 (g : . : q(q | L T
o:lim HY(F)/b' HI(F) — lim H; — lim H'(F /b’ F)

1 1 1

is a composition of isomorphisms and, thus, an isomorphism, as claimed. a

It remains to prove Lemma 9. First, assume that the filtration Dy D Dy D ...1s
b-stable. Choosing iy € N such that D; = b'~0D; for all i > iy, we see that the
image of D; = D;/b' HI(¥) is trivial in HY(F)/b' = H4(F) for all i > iy so
that, indeed, (D;); e is a null system. Thus, it remains to show that the filtration of
the D; is b-stable and (E;);e is a null system.

To do this, let S = @,y Si = ;e b’ B be the graded ring generated by
the ideal S; = bB C B. The latter is Noetherian, since, as an algebra over the
Noetherian ring B, it is generated by b, viewed as a homogeneous element of
degree 1. Now consider the direct sum

MYU(F)=EPHIG'F)
ieN

as a graded S-module, where the multiplication by b € S; = bB is given by the
maps HY(b'F) — HI(b'*'F) derived from the maps b' F — b't1 F that,
in turn, are given by multiplication with b € B. We claim that:

MI9(F) is a finite S-module.
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If ¥ does not admit b-torsion, the assertion is trivial, since then multiplication
by b € B yields isomorphisms b'F —2» b't!F and therefore isomorphisms
Hi(b'F) " HI(b'T'F). Then M4(F), as an S-module, is generated by
H1(F), the part of degree 0 in M9(¥'), where HY(¥) is a finite B-module by
Proposition 7. It follows that M 9(¥) is a finite S-module.

If there is non-trivial b-torsion in ¥, the situation is slightly more complicated.
In this case, consider the kernels of the morphisms [b']: ¥ — %, which form an
increasing sequence of submodules of the coherent @ x-module ¥ . By a Noetherian
and quasi-compactness argument, the sequence becomes stationary at a certain
coherent submodule 7 C F. It follows that 7 is annihilated by a power of b,
and that the quotient ¥ /7 is without b-torsion. Now let 7; = 7 N b' ¥ . Then, by
the Lemma of Artin—Rees, see 7.1/4, the filtration 7y D 77 D ... is b-stable. Thus,
there is an index iy € N such that 7; = 0 for all i > i,. Since H?(7;) is trivial for
such i, it follows with the help of Proposition 7 that the graded S-module

N =D H(T)

ieN

is finitely generated over B and, hence, also over S.
Now observe that the short exact sequence

0—F — b'F — b'(F/T) — 0
induces an exact sequence
NI — MUF) — MIU(F/T).

By construction, ¥ /T is without b-torsion. Therefore M ?(F /T) is a finite S-mod-
ule, as we have seen above. Since also NY is a finite S-module, it follows that
M4(F) is a finite S-module, as claimed.

In order to justify the remaining assertions of the lemma, consider the exact
sequence

0 —bF —F —F/bF —0,
as well as the attached long cohomology sequence

. — HIP'F) — HUF) — HUF/H'F)
. Hq+1(bi37) ., Hq-i—l(:;;*) _

Then we have

D; =ker(H!(¥) — HY(F/b'F)) =im(HI(bD'F) — HI(F)).
E; =im(HY(F /b'F) — HIT'(b'F)),
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and it follows that D = @ieN D;, as an image of the finite S-module M9 (¥),
is a finite S-module itself. The latter means that the filtration Dy D Dy D ... is
b-stable.

Thus, it remains to show that (E;);ey is a null system. The characterization of
E; above says that the graded S-module E = P,y Ei, as a submodule of the
finite S-module M9 (F), is finite itself. Furthermore, each E; is annihilated by
b', as it is an image of Hq(.(F/bi.(F). Since E is a finite S-module, there is some
r € N such that " E = 0, viewing b" as an element of B = Sj. On the other
hand, using the fact that £ is a finite S-module and writing b; instead of b for
the corresponding element in S; = bB, one can find integers iy and s > r with
biE; = Ejy, foralli > iy. Let p;: Eiy — E; be the map induced by the
canonical map H4(F /b't*F) — HI(F /b' F), i.e. the canonical map given by
the projective system (E;);en. Then p; ((b{E;) = b°E;, as is easily checked, and
we see that

Pis(Eits) = pis(b1Ej)) =b'E; =0

fori > iy. Thus, (E;);ey is a null system. |
Finally, using the characterization of coherent modules as given in 6.1/3, the
assertion of Kiehl’s Theorem 6.3/9 will be a consequence of the following result:

Theorem 10. As in the situation of Proposition 7, let ¢: X —— Y be a proper
morphism of rigid K-spaces where Y is affinoid and where condition (}) is satisfied.
Let ¥ be a coherent Ox-module. Then, for any q € N, the higher direct image
Ri¢.(¥) equals the Oy-module associated to the finite B-module HY(X,¥), for
B =0y (Y).

Proof. We will proceed by induction on the Krull dimension d of B. The case
d = 0 is trivial, since then Y is a finite disjoint union of rigid K-spaces supported
at a single point each.

Therefore assume d > 0, and consider an affinoid subdomain Y’ = Sp B in
Y =SpB.Let X’ = X xy Y’. We have to show that the canonical morphism

HY(X,¥)®p B — HI(X', F)

is an isomorphism. In order to do this, it is enough to show that all localizations
HY(X,¥) ®p B, — HY(X',F) ®p B], at maximal ideals m’ C B’ are
isomorphisms or, since the m’-adic completion B\I’n, of B, is faithfully flat over
B:n' (see [AC], Chap.III, § 3, no. 4, Thm. 3 and no. 5, Prop. 9), that all morphisms
HY(X,¥)®p B!, — HI(X',¥) ®p B!, are isomorphisms.

Now consider a maximal ideal m’ C B’. Then it follows from 3.3/10, that there is
a (unique) maximal ideal m C B satisfying m’ = mB’. Furthermore, by 2.2/11, there
is a finite monomorphism 7, —— B, and we see that n = m N Ty is a maximal
ideal in 7. Choosing a non-zero element b € n C T,, we conclude from 2.2/9 in
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conjunction with 2.2/7 that B/(bh’) has Krull dimension < d for all i € N. Thus,
writing ¥; = Sp B/(b"), we may apply the induction hypothesis to the morphisms

pi: X xy Yy — Y;, i €N,

and the induced coherent sheaves ¥ /b’ ¥ on X xy Y;. Using identifications of type
HY(X xy Y;, ¥ /b'F) = HI(X, F /b' F), the canonical morphisms

HI(X,F/b'F)®p B — HI(X xy Y',F/b'F)

are isomorphisms by induction hypothesis.

Next we recall the exact sequence () from the proof of Proposition 8. Tensoring
it with B’ over B, we get the upper square of the following commutative diagram
where we have written X’ as an abbreviation for X xy Y':

D, ®p B’ » E; ®p B’
A

A

A 4

HY(X,¥)®p B'/(b) HY(X,F/b'F)®p B’

Y

HYUX', %) ®p B'/(b')

HYX' /b F)

The lower vertical maps are induced by restriction from X to X’, whereas the
lower horizontal morphism is the equivalent of the middle morphism in (), with X
replaced by X’. Taking inverse limits for i — oo, we get the commutative diagram

HY(X.F)®p B' — lim[H!(X, ¥ /b'F) ®p B’
ieN

HY(X',¥)®p B’

: q ! g iq
lim H(X', 7 /b' %)
ieN

where B’ is the b-adic completion of B’. Here we have used the fact that the b-adic
completion of a finite B’-module M’ is canonically isomorphic to M’ ® 5 B'; see
[AC], Chap. 111, § 3, no. 4, Thm. 3 (ii), or use the method of proof applied in 7.3/14.
Now observe that the projective systems (5,- ®p B')ieny and (E; ®p B');en are
null systems, since the same is true for (51')1'51\1 and (E;);en. Thus, the proof of
Proposition 8 shows that the upper morphism is an isomorphism. Similarly, by
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the same proposition again, the lower morphism is an isomorphism. Since the
right vertical map is an inverse limit of isomorphisms, it is an isomorphism, too.
Therefore we can conclude that the left vertical map is an isomorphism. Thus, the
canonical map

HI(X,F)®p B — HIX',F)
yields an isomorphism when we tensor with B’ over B’. But then, since b belongs
to the maximal ideal m" = mB C B’, the map from B’ to the m’-adic completion
B] , of B’ factors through the b-adic completion B’ of B’, and we see that the above
map gives rise to an isomorphism

HY(X,¥)®p B, =~ HI(X',¥)Qp B.,.

Thus, we are done. ad
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Chapter 7
Adic Rings and Their Associated Formal
Schemes

7.1 Adic Rings

In classical rigid geometry, one works over a field K, carrying a non-Archimedean
absolute value. The strategy of the formal approach to rigid geometry is to replace
K by its valuation ring R. For example, one starts with R-algebras R(y,...,{,) of
restricted power series having coefficients in R and considers quotients with respect
to finitely generated ideals. This way one obtains R-algebras that may be viewed
as R-models of affinoid K-algebras. In fact, taking the generic fiber of such an
R-model, i.e. tensoring it with K over R, yields an affinoid K-algebra.

We want to look at rings R that are more general than just valuation rings as
occurring above. Let us call a ring R together with a topology on it a topological
ring if addition and multiplication on R yield continuous maps R X R —— R;
of course, R x R is endowed with the product topology. There is a fundamental
example. Let R be an arbitrary ring (commutative, and with identity) and a C R
an ideal. There is a unique topology on R making it a topological ring such that
the ideals a”, n € N, form a basis of neighborhoods of 0 in R. Just call a subset
U C R open if for each x € U there is an n € N such that x + o" C U.
The resulting topology is called the a-adic topology on R. (In Grothendieck’s
terminology [EGA 1], this is the a-preadic topology; the latter is called adic if it
is separated and complete.) Note that all ideals a” are open and, being subgroups
of R, also closed in R. A topological ring R is called an adic ring if its topology
coincides with the a-adic one for some ideal a C R. Any such ideal a is called an
ideal of definition.

There are similar notions for modules. A module M over a topological ring R,
together with a topology on M, is called a topological R-module if the addition
map M x M —— M and the multiplication map R x M —— M are continuous.
Furthermore, for any R-module M and an ideal a C R, we can define the a-adic
topology on M: we endow R with its a-adic topology as described above and
consider on M the unique topology making it a topological R-module, for which

S. Bosch, Lectures on Formal and Rigid Geometry, Lecture Notes 151
in Mathematics 2105, DOI 10.1007/978-3-319-04417-0_17,
© Springer International Publishing Switzerland 2014
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the submodules a"M, n € N, form a basis of neighborhoods. Again, all these
submodules are open and closed in M.

Remark 1. Consider a ring R and an R-module M with a-adic topologies for some
ideal a C R.

(1) R is separated (i.e. Hausdorff) if and only ifﬂ:ozo a” =0.
(i) M is separated if and only ifﬂ:ozo a'M = 0.

Proof. We have (1,2, a" = 0 if and only if, for each x € R—{0}, there isann € N
such that x & a”. As a” is open and closed in R, assertion (i) follows by a translation
argument; (ii) is derived in the same way. O

For Noetherian rings, adic topologies have nice properties. Let us recall the basic
facts from Commutative Algebra.

Theorem 2 (Krull’s Intersection Theorem). Let R be a Noetherian ring, a C R an
ideal, and M a finite R-module. Then:

o0
ﬂ "M = {x € M ; there exists r € 1 + a with rx = 0}

n=0

Proof. Let M' = (\;2,a"M, and let xy,...,x, € M’ be a generating system of
M’ as an R-module. By the Lemma of Artin-Rees below, there is some integer
no € N, such that

M =d"MOM =a ™™ (@ M)NM')=a""M

for n > nyg. In particular, we have M’ = aM’, and there are coefficients aj € a
such that

p
X; = E ajx;, i=1,...,r.

Jj=1

Interpreting A = (8;; — a;;);; as a matrix in R™ and x = (x;); as a column vector
in M", the above equations can be written in matrix form as A - x = 0. Multiplying
from the left with the adjoint matrix A* of A yields

det(A) - x =A*-A-x=0

and, therefore, det(A) - M’ = 0. By construction, we have det(A) € 1 + a so that
any element of M’ is annihilated by an element in 1 + a.

Conversely, assume that # € M is an element which is annihilated by some
element of type 1 — a for a € a. Then
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u=au=a*u=...€ mu”M
n=0
and, hence, u € M’. Thus, M’ = (72, a" M is characterized as claimed. O

Corollary 3. Let R be a local Noetherian ring with maximal ideal m. Then R is
m-adically separated. The same is true for any finitely generated R-module M .

Lemma 4 (Artin—Rees). Let R be a Noetherian ring, a C R an ideal, M a finite
R-module, and M’ C M an R-submodule. Then there is an integer ng € N
such that

(@M)NM' =a""(@"M)ynM')
for all integers n > ny.

Proof. Consider Ry = P,y 0" as a graded ring and My, = P, y0"M as a
graded R.-module. The ideal a C R is finitely generated, since R is Noetherian,
and any such generating system will generate R, as an R-algebra, when viewed
as a system of homogeneous elements of degree 1 in R.. Thus, by Hilbert’s
Basis Theorem, R, is Noetherian. Furthermore, any system of generators for M
as an R-module, will generate M, as an R.-module. In particular, M, is a finite
R+«-module and, thus, Noetherian.
Now let M, = a"M N M’ for n € N and consider

éM,fEB@a”_’”M,;, m e N,
n=0

n>m

as an ascending sequence of graded submodules of M.,. Since M, is Noetherian,
the sequence becomes stationary. Thus, there is an index m = ny € N such that

! n—noag!
M, =da"""M,, forall n > no.

But then (a"M) N M’ = a" " ((a"* M) N M) for n > ny, as required. |

Corollary 5. In the situation of Lemma 4, the a-adic topology of M restricts to the
a-adic topology of M'.

Proof. We have
M Cc@M)yNM’ and @tMyNM ca"M’

in the situation of Lemma 4. O
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Apart from Noetherian rings we will look at valuation rings. Recall that an
integral domain R with field of fractions K is called a valuation ring if we have
x € Rorx™!' € Rforevery x € K.

Remark 6. Let R be a valuation ring.

(1) Every finitely generated ideal in R is principal.
(i) For two ideals a,b C R we have a C b or b C a.

In particular, R is a local ring.

Proof. For two non-trivial elements a, b € R we have ab™' € Rora 'b e R, ie.
b divides a or a divides b in R. This shows (i). To verify (ii) assume a ¢ b and
b ¢ a. Then there are elements @ € a — b and b € b — a. If a divides b, we have
b € a, and if b divides a, we must have a € b. However, both is excluded, and we
get a contradiction. O

The length of a maximal chain of prime ideals in a valuation ring R is called
the height of R. For example, starting with a non-Archimedean absolute value on
a field K, the corresponding valuation ring R = {x € K ; |x| < 1} is of height 1.
However, there are valuation rings of higher, even infinite height. For any prime
ideal p of a valuation ring R, the localization Ry, is a valuation ring again. In fact, the
map p —— R, defines a bijection between prime ideals of R and intermediate rings
between R and its field of fractions K. Let us mention without proof that the concept
of valuations and absolute values carries over to the field of fractions of valuation
rings of arbitrary height. Then I" = K*/R*, with its attached canonical ordering,
serves as the value group of K*, and the canonical maps v: K —— I U {00},
resp. | - |: K —— I' U {0} are viewed as a valuation, resp. an absolute value on
K. The valuation ring R is of height 1 if and only if I", together with its ordering,
can be realized as a subgroup of the additive group R, resp. the multiplicative group
R.o. In precisely these cases, the valuation corresponds to a valuation or a non-
Archimedean absolute value on K, as we have defined them in Sect. 2.1.

Any valuation ring R may be viewed as a topological ring by taking the system
of its non-zero ideals as a basis of neighborhoods of 0. Then R is automatically
separated, unless R is a field. We are only interested in valuation rings that are adic.

Remark 7. Let R be a valuation ring and assume that R is not a field. Then the
following are equivalent:

(1) R is adic with a finitely generated ideal of definition.
(i) There exists a minimal non-trivial prime ideal p C R.

If the conditions are satisfied, the topology of R coincides with the t-adic one for

any non-zero element t € p.

Proof. To begin, let us show that, for any non-unit ¢ € R, the ideal rad(¢) C R
is prime. To verify this, consider elements a,b € R satisfying ab € rad(¢), and



7.1 Adic Rings 155

look at the ideals rad(a) and rad(d). Using Remark 6 (ii), we may assume that
rad(a) C rad(b). Then b divides some power of a, and ab € rad(¢) implies
a € rad(t). Thus, rad(¢) is prime.

Now assume condition (i). Due to Remark 6 (i), the topology of R coincides with
the ¢-adic one for some non-zero element ¢ € R. As any non-zero ideal of R must
contain a power of 7, we see that any non-zero prime ideal in R will contain the ideal
rad(¢). The latter is prime by what we have shown and, thus, it is minimal among
all non-zero prime ideals in R.

Conversely, assume (ii), i.e. that there is a minimal non-zero prime ideal p C R.
Let # € p be a non-zero element and let a C R be any non-zero ideal. We have to
show that a contains a power of ¢. To do this, we may assume that a is principal, say
a = (a). Comparing rad(¢) with rad(a), both ideals are prime. Thus, we must have
rad(¢) C rad(a), and it follows that a power of ¢ is contained in (a) = a. O

Now let us turn to general adic rings again; let R be a such a ring with a C R
as ideal of definition. As the a-adic topology on R is invariant under translation,
convergence in R can be defined in a natural way. We say that a sequence ¢, € R
converges to an element ¢ € R if, for each n € N, there is an integer vy € N such
that ¢, —c € a” for all v > vy. Similarly, ¢, is called a Cauchy sequence if, for each
n € N, there is an integer vy € N such that ¢, —¢,» € a" for all v, v’ > vy. As usual,
R is called complete if every Cauchy sequence in R is convergent. A separated
completion R of R can be constructed by dividing the ring of all Cauchy sequences
in R by the ideal of all zero sequences.

For adic rings there is a nice description of completions, which we will explain.
Consider the projective system

. —> R/a" —> ... — R/a®> — R/a! — 0
where a is an ideal of definition of R. Then its projective limit

R =1limR/a"
<«
n
is seen to be the (separated) completion of R. The topology on this limit is the
coarsest one such that all canonical projections ,: R——~R /a" are continuous
where R/a" carries the discrete topology (the one for which all subsets of R/a"
are open). Thus, a subset of R is open if and only if it is a union of certain fibers
of the m,, with varying n, and it follows that a basis of neighborhoods of 0 € R
is given by the ideals ker 7, C R. We claim that ker 7, equals the closure of a” in
R. In fact, ker 7, is closed in R by the definition of the topology on R, and a” is
dense in ker 7,,, as for any f € kerz, and any m € N there is an element f,, € a”"
such that /" — f,, € ker m,,,1,,. Just choose f,, € R as a representative of the image
Tman(f) € R/a™T" If the ideal a C Ris finitely generated, say a = (ai,....a,),
itis easy to see that its closure in R equals aR. First, a is clearly dense in aﬁ since
aR C ker T and a is dense in ker ;. Furthermore, if f = 21—1 f; is an infinite
sum with f; € a’, then each f; can be written as a combination f; = > " i=1 Jiai
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with coefficients f; € a'~', which yields f = >_ (372, fj)a, and, hence,
fe aR. Thus, we have shown:

Remark 8. If the ideal of definition a C R is finitely generated, then aR is the
closure of ain R and it follows that R is adic again with ideal of definition aR.

_On the other hand, if a is not finitely generated, it can happen that R fails to be
aR- adically complete so that in this case the topology of R will be different from
the aR-adic one.

In the following we will always assume that R is complete and separated under
its a-adic topology. In particular, the canonical homomorphism

R — limR/a"
<«

n

is an isomorphism then. For f € R we set
-1\ _ 13 n -1
R(f™) = I%n((R/a 1)

and call it the complete localization of R by (the multiplicative system generated
by) f. There is a canonical map R —— R{f '), and the maps

RI/™'T — (R/a")[f 7]

give rise to a canonical map R[ f~!] —— R{f ') showing that the image of f is
invertible in R({ f~1).

Remark 9. The canonical homomorphism R[ f ~'] — R{f™") exhibits R{f~")
as the adic completion of R[ f ~'] with respect to the ideal aR[ f ~'] generated by
ain R[ f 1. If a is finitely generated, the topology on R{ f~') coincides with the
aR({ f~"-adic one.

Proof. Tensoring the exact sequence
0—0a"— R — R/d"— 0
with R[ '], which is flat over R, yields the exact sequence
0 —a'R[f7'] — R[/7'] — (R/a")[f7'] — 0
and, hence, an isomorphism
RLfT'1/(a") = (R/a)[f7].

Thus R(f™") = l(iI_nR[f_l]/(a”) is the aR[ f~']-adic completion of R[ f~!].
As we have explained in Remark 8, the topology on the latter is the aR{f~')-adic
one if a is finitely generated. O
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To give a more explicit description of R{ f ~!), we consider the R-algebra R(¢) of
restricted power series with coefficients in R and with a variable ¢, i.e. of all power
series Zf‘;o ¢, Y satisfying limc¢, = 0, a condition that is meaningful, as we have
explained. Note that R({) is complete and separated under the (a)-adic topology
and that, in fact, R(¢) = 1(iLnn R/a"[¢]. Thus, there is a canonical continuous

homomorphism R(¢) — R{f~!) mapping ¢ to f 1.

Remark 10. The canonical homomorphism R{(() R({f™"Y induces an

isomorphism

R)/ (1= f§) == R(f 7).

Proof. To abbreviate, let us write R, = R/a" for n € N. Then consider the
projective system of exact sequences:

0 —— (1= fOR11[{] — Ru41[¢] — Rua[f '] —— 0

0 ——— (1= fORu[E] — Ru[{] — Ruy[fT'] —— 0

As 1(21 is left exact, it gives rise to a left exact sequence
— > 1i —_ — |1 — |1 =1 —_—
0 lim (1 — fO)R,[{] lim R, [¢] lim R, [f™] 0, (%
which is, in fact, exact, since all maps

(1= fOR41[E] — (1= fOR,[C]

are surjective so that the system on the left-hand side in (x) satisfies the condition
of Mittag—Leffler. Thus, as 1 — f¢ is not a zero divisor in R, [{], we get an exact
sequence

0 —= (1= fOR(Q) —= R{{) —= R{f7!) — 0

as claimed. ad
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7.2 Formal Schemes

Formal schemes are locally topologically ringed spaces where all occurring rings
have to be viewed as objects of the category of topological rings. Just as ordinary
schemes, they are built from local affine parts. To define such affine formal schemes,
consider an adic ring A; from now on, we will always assume that adic rings are
complete and separated. Let a be an ideal of definition of A. We denote by Spf 4
the set of all open prime ideals p C A. As a prime ideal in A is open if and only
if it contains some power of a and, hence, a itself, we see that Spf A is canonically
identified with the closed subset Spec A/a C Spec A, for any ideal of definition a
of A.

This way the Zariski topology on Spec A induces a topology on Spf A. As usual,
let D(f) for f € A be the open subset in Spf A where f does not vanish. Then

D(f) — A{f™") =lim(4/a"[f7"])

defines a presheaf O of topological rings on the category of subsets D( f) C Spf A4,
f € A, which in fact is a sheaf. Indeed, for every f € A and every open covering
(D(ﬁ))l. of D(f), the diagram

AT — [TAE) = [TAWwim™
i ij
is exact, as it is the projective limit of the exact diagrams

Apa' (7 — TTA/e [ £7'] = [TAra (i)
i i,j

and as 1(21 is left exact. By the usual procedure, the sheaf @ can be extended to the
category of all Zariski open subsets of Spf A and we will use the notation @ for
it again. In fact, if U C Spf A is Zariski open and U = |J,;¢; D(f;) is an open
covering by basic open subsets D(f;) C Spf A, fi € A, then the exact diagram

o) — A = []ALH™
i ij
is obtained by taking the projective limit of the exact diagrams

OSpecA/a"(U) - l_[A/an[fi_l] :: HA/an[(flfj)_l]
i i.j

Thus, it makes sense to write O = Lln Ospec 4/an, 1.€. O is the projective limit of the
sheaves Ospec 4/an -
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However, let us point out, although this is only of minor importance, that the
interpretation of the sheaf @ on Spf A as the projective limit of the sheaves Ospec 4/q
has actually to be carried out in a more specific setting. To get a projective limit
topology on @(U) for U C Spf A open, which is in accordance with the definition
of a sheaf with values in the category of topological rings ([EGA I], Chap. 0, 3.3.1),
especially if U is not quasi-compact, we have to view the sheaves Ospec 4/q» as
sheaves of pseudo-discrete topological rings ([EGA I], Chap. 0, 3.9.1).

Remark 1. If in the above situation a point x € Spf A corresponds to the open

prime ideal j, C A, then the stalk O, = ll_II)l . A{f™YY is a local ring with
X ”

a maximal ideal wm, containing jOy. Furthermore, m, = j,O, if a is finitely

generated.

Proof. For each f € A —j,, there are canonical exact sequences
0 — jxA/a"[f7'] — A/a"[f7'] — A/ix[fT'] — 0

where n > 1. Taking projective limits over n and using the fact that the projective
system on the left-hand side is surjective and, hence, satisfies the condition of
Mittag—Leffler, we get an exact sequence

0 — i (/") — A(fT") — A/i.[fT'] — 0

where we have used the abbreviation j (f™') = l(iileA/a" [f~!] for the

completion of j, A[ f~'] with respect to the topology induced from the (a)-adic
topology on A[ £ ~']. Then, taking the direct limit over all ¥ € A —j, and writing
m, = lir_)nj «(f1), we get an exact sequence

0 — my — Ox — 0(4/jy) — 0

showing that m, is a maximal ideal in O, containing j, 9.

To see that m, is the only maximal ideal in O, we show that @, — m, consists
of units. To do this, fix an element g, € O, — m,, say represented by an element
g € A(f™") for some f € A satisfying f ¢ j,. Then g cannot belong to j. { f ')
and, hence, using a C j,, its residue class g € A/a[f~'] cannot belong to
ixA/a[ f~1]. Multiplying g by a suitable power of f, we can even assume that
g belongs to A/a and, thus, admits a representative g’ € A where g’ & j,.
Then fg’ € A —j,, and we claim that the image of g is invertible in A{(fg))™"),
which implies that it is invertible in @, as well. To see this, consider the equation
g = g'(1 —d)in A{(fg)™") with d = 1 — g’~'g where we have written g, g’
again for the corresponding images in A{(fg’)~"'). Thus, in order to show that g is
invertible in A{(fg)~!), we need to know that 1 — d is invertible. However, using
the geometric series, the latter is clear since d" is a zero sequence in A{(fg’)™"), due
to the fact that the image of d is trivial in A/a[(fg’)~'] and, hence, the image of d"
is trivial in 4/a"[(fg’)~!] foralln € N.
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Finally, if a is finitely generated, we can conclude j,{f™") = i, A(f™")
from 7.1/8 and, hence, that m, = j,O,. O

Definition 2. For an adic ring A with ideal of definition a C A, set X = SpfA
and let Oy be the sheaf of topological rings we have constructed above. Then the
locally ringed space (X,0y) (where “ringed” has to be understood in the sense of
topological rings) is called the affine formal scheme of A. It is denoted by Spf A
again.

There is a slight problem with this definition. If we consider an affine formal
scheme X = Spf A and a basic open subset U = D( f) C Spf A for some f € A,
we would like to interpret (U, Ox|y) as the affine formal scheme SpfA(f~!),
although we do not know in general if A(f '), which is defined as the a-adic
completion of A[ f~'], is an adic ring again. Due to 7.1/9, no problems arise, when
a is finitely generated, since then the topology of A{ f~!) coincides with the a-adic
one.

When such a finiteness condition is to be avoided, affine formal schemes Spf A
should be constructed for slightly more general topological rings than just adic ones.
One needs that A is an admissible ring in the sense of Grothendieck. This means
that:

(i) A is linearly topologized, i.e. there is a basis of neighborhoods (/3),e4 of O
consisting of ideals in A; such ideals are automatically open.

(ii) A has an ideal of definition, i.e. there is an open ideal a C A such that a” tends
to zero in the sense that, for each neighborhood U C A of 0, there isann € N
satisfying a” C U. (This does not necessarily imply that a” is open forn > 1.)

(iii) A is separated and complete.

If A is an admissible ring with a family of ideals (/))ye4 forming a basis of
neighborhoods of 0, then the canonical map A —» lér_n A/I) is a topological
isomorphism. Admissible rings can be dealt with in essentially the same way as adic
ones, just replacing the system of powers (a"),en for an ideal of definition a C A4
by the system (/) ),e4. However, for our purposes, it will be enough to restrict to
complete and separated adic rings, as later we will always suppose that there is an
ideal of definition that is finitely generated.

When working with affine formal schemes, morphisms are, of course, meant in
the sense of morphisms of locally topologically ringed spaces. So all inherent ring
homomorphisms are supposed to be continuous. Just as in the scheme case or in the
case of affinoid K-spaces, one shows that morphisms of locally topologically ringed
spaces Spf A —— Spf B correspond bijectively to continuous homomorphisms
B — A.

Definition 3. A formal scheme is a locally topologically ringed space (X,0x)
such that each point x € X admits an open neighborhood U where (U,Ox|v)
is isomorphic to an affine formal scheme Spf A, as constructed above.



7.2 Formal Schemes 161

As usual, global formal schemes can be constructed by gluing local ones.
In particular, fiber products can be constructed by gluing local affine ones. Similarly
as for schemes or rigid K-spaces, the fiber product of two affine formal schemes
Spf A and Spf B over a third one Spf R is given by Spf(A ®z B) where

A®r B =11<__mA/a ®r B/b

with ideals of definition a of A and b of B is the complete tensor product of A and
B over R. The latter is the (a, b)-adic completion of the ordinary tensor product
A ®pg B.If a and b are finitely generated, we see from 7.1/8 that A ®z B is an adic
ring again with ideal of definition generated by the image of a ® g B + A @y b.

We end this section by a fundamental example of a formal scheme, the so-called
formal completion of a scheme X along a closed subscheme Y C X.

Example 4. Let X be ascheme and Y C X aclosed subscheme, defined by a quasi-
coherent ideal § C Oyx. Then consider the sheaf Oy obtained by restricting the
projective limit l(iLnn Ox/ 4" to Y. It follows that (Y ,0y) is a locally topologically
ringed space, the desired formal completion of X along Y . Locally, the construction
looks as follows: Let X = Spec A and assume that ¢ is associated to the ideal
a C A. Then

_ . ny _ n
(Y.,Oy) = Spf (lim A/a") = Spf 4

n

where A is the a-adic completion of A.

For example, assume A = R[{] where ¢ is a system of n variables, R a complete
valuation ring of height 1, and where a = (¢) for some non-unit # € R — {0}. So
X coincides with the affine n-space A%, and Y (pointwise) with its special fiber
AJ where k is the residue field of R. The formal completion of X along Y then
yields the formal affine n-space Spf R((). The latter admits the affinoid unit ball
B% = Sp K({) = Sp(R({) ®r K) for K = Q(R) as “generic fiber”, as we will
explain later in Sect. 7.4, and there is a canonical open immersion B% —— A"
into the rigid analytification of A’

A canonical open immersion of this type exists on a more general scale. Let
X be an R-scheme of locally finite type that is flat over R, and denote by X its
formal completion along the special fiber. Then X is an admissible formal R-scheme
using the terminology of 7.3/3 and 7.4/1, and its generic fiber )?rig in the sense
of Sect. 7.4 admits canonically an open immersion X, rig < (Xk)"€ into the rigid
analytification via the GAGA-functor of the generic fiber Xx = X ®g K of X. As
we have seen above, this immersion is not necessarily an isomorphism. But in case
X is proper over R, one can show )aig = (Xx)"¢ relying on the valuative criterion
of properness.
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7.3 Algebras of Topologically Finite Type

Let R be a (complete and separated) adic ring with a finitely generated ideal of
definition I C R. We will assume that R does not have [ -torsion, i.e. that the ideal

(I-torsion)g = {r € R; I"r = 0 for some n € N}

is trivial, a condition that, apparently, is independent of the choice of /. Choosing
generators g1, ..., g, of I, we see that R does not have I -torsion if and only if the
canonical map

R— [[Rl™

i=1
is injective. We will admit only the following two classes of rings:

(V) R is an adic valuation ring with a finitely generated ideal of definition (which
automatically is principal by 7.1/6).

(N) R is a Noetherian adic ring with an ideal of definition I such that R does not
have I -torsion.

These classes of adic rings R have been chosen bearing in mind that topological
R-algebras with certain finiteness conditions, for example as we will set them up in
Definition 3, should be accessible in a satisfactory way. Of course, the Noetherian
hypothesis in class (N) is quite convenient and useful, especially since there are
interesting objects such as Raynaud’s universal Tate curve that live over a non-
local base of this type; see Sect.9.2. On the other hand, even if the Noetherian
hypothesis is not present, it turns out that adic valuation rings of class (V) can
still be handled reasonably well. Indeed, this class allows the extension of several
important results on R-algebras that otherwise are only valid in the Noetherian
situation. A good example for this is Gabber’s flatness result 8.2/2. Also note that
class (V) includes all classical valuation rings that are obtained from a field with
a complete non-Archimedean absolute value, especially in the non-discrete case
where the Noetherian hypothesis is not available.

In the following, let R be of type (V) or (N). As usual, we define the R-algebra
R{¢y,...,L,) of restricted power series in the variables {1, ..., {, as the subalgebra
of the R-algebra R[{y,...,¢,] of formal power series, consisting of all series
Y venn ¢v¢” with coefficients ¢, € R constituting a zero sequence in R. Of
course, R{{y,...,¢,) equals the 7-adic completion of the ring of polynomials

R[é‘l» e »En]‘
Remark 1. R(¢y,...,¢,) is Noetherian if R is of class (N).

Proof. If R is Noetherian, the polynomial ring (R/I)[¢{y, ..., ¢,] is Noetherian and
the assertion follows from [AC], Chap. III, § 2, no. 11, Cor. 2 of Prop. 14. O
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Remark 2. R{¢y,...,¢,) is flat over R.

Proof. A module M over a ring R is flat if and only if, for each finitely generated
ideal a C R, the canonical map a ® g M —— M is injective. If R is an integral
domain and if every finitely generated ideal in R is principal, the latter condition is
equivalent to the fact that M does not admit R-torsion. Thus, if R is of class (V),
we see from 7.1/6 that R(y, ..., &,) is flat over R.

On the other hand, if R is of class (N), the map R — R[(1, ..., {,] is flat being
module-free. Furthermore, the map from R[4, ..., {,] into its I-adic completion
is flat by Bourbaki [AC], Chap.IIl, § 5, no. 4, Cor. of Prop. 3. O

Having defined restricted power series with coefficients in R, let us introduce
now the analogs of affinoid algebras.

Definition 3. A ropological R-algebra A is called

(1) of topologically finite type if it is isomorphic to an R-algebra of type
R{¢y,...,C,)/a that is endowed with the I-adic topology and where a is an
ideal in R(¢,,....C,),

(ii) of topologically finite presentation if, in addition to (i), a is finitely generated,

(iii) admissible if, in addition to (i) and (ii), A does not have I -torsion.

It is a fundamental fact, which will be used extensively in the sequel, that
an R-algebra of topologically finite type that is flat over R, is automatically
of topologically finite presentation. Properties of this type are proved using the
flattening techniques of Raynaud and Gruson; see [RG], Part I, 3.4.6.

Theorem 4 (Raynaud-Gruson). Let A be an R-algebra of topologically finite
type and M a finite A-module that is flat over R. Then M is an A-module of
finite presentation, i.e. M is isomorphic to the cokernel of some A-linear map
AT — AS.

Proof. As an R-algebra of topologically finite type, A is a quotient of some algebra
of restricted power series R((y, ..., {,). Viewing M as a module over such a power
series ring, we may assume A = R({y, ..., ;). In the Noetherian case (N), nothing
has to be shown, since A is Noetherian then. If R is an adic valuation ring of type
(V), we can choose an element ¢ generating an ideal of definition of R. Then A/tA
is an R/(t)-algebra of finite presentation, and M/tM is a finite A/tA-module that is
flat over R/(¢). Furthermore, it follows from the above cited result of Raynaud and
Gruson that M/tM is an A/tA-module of finite presentation. Now consider a short
exact sequence of A-modules

0— N—A"— M —0.
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Since M is flat over R, the sequence remains exact when tensoring it with R/(z)
over R. Since M/tM is an A/tA-module of finite presentation, N/tN is a finite
A /tA-module. But then, viewing N as a submodule of A* for A = R({y,...,¢,),a
standard approximation argument in terms of the ¢-adic topology on A* shows that
N is a finite A-module and, hence, that M is an A-module of finite presentation.

In the most interesting case where R is an adic valuation ring of height 1, the
Theorem is accessible by more elementary methods. First, one reduces to the case
where A = R(¢), for a finite system of variables { = ({y,...,¢,), as indicated
above. Then, as before, consider a short exact sequence

0— N — (R{{)) — M — 0

of R(¢)-modules. Since M is flat over R, there is no R-torsion in M and,
consequently, looking at the inclusion map (R(())* —— (R({))* ®r K = T,
where K is the field of fractions of R, we get

(N ®r K) N (R(Z)) = N.

Applying 2.3/10 to the T,-module N ®r K, we see that N is a finite R({)-module
and, hence, that M is an R({)-module of finite presentation. O

Corollary 5. Let A be an R-algebra of topologically finite type. If A has no
I -torsion, A is of topologically finite presentation.

Proof. The assertion is trivial in the Noetherian case. So assume that R is of class
(V). Interpreting A as a residue algebra R({)/a with a system of variables ¢, we
can view A as an R({)-module via the canonical projection R({) —— A. If A
has no /-torsion, it is flat over R and, thus, by Theorem 4, a finitely presented
R(¢)-module. But then a must be finitely generated so that A is of topologically
finite presentation. O

Recall that, similarly as in 6.1/2, a module M over a ring A is called coherent if
M is finitely generated and if every finite submodule of M is of finite presentation.
A itself is called a coherent ring if it is coherent as a module over itself, i.e. if
each finitely generated ideal a C A is of finite presentation. One can show that all
members of a short exact sequence of A-modules

O— M — M — M'— 0
are coherent as soon as two of them are; see for example [Bo], 1.5/15.

Corollary 6. Let A be an R-algebra of topologically finite presentation. Then A is
a coherent ring. In particular, any A-module of finite presentation is coherent.
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Proof. We may assume that R is of class (V). Let us first consider the case where
A does not have [-torsion and, hence, is flat over R. Then any finitely generated
ideal in A is flat over R and, hence, of finite presentation by Theorem 4. Thus, 4 is
coherent in this case.

In the general case, we can write A as a quotient R({)/a with a system of
variables ¢ and a finitely generated ideal a. The algebra R({) is coherent, as we
have seen. Thus, a is coherent, too, and it follows that A = R({)/a is coherent. O

We want to draw some further conclusions from Theorem 4.

Lemma 7. Let A be an R-algebra of topologically finite type, M a finite A-module,
and N C M a submodule. Then:

(1) If N is saturated in M in the sense that
Ny = {x € M ; thereis an n € N such that /"x C N}

coincides with N, then N is finitely generated.
(i) The I-adic topology of M restricts to the I-adic topology on N .

Proof. If R is of class (N), assertion (i) is trivial, and assertion (ii) follows from the
lemma of Artin—Rees; cf.7.1/5. So assume that R is of class (V). If N is saturated
in M, the quotient M/N does not admit /-torsion and, hence, is flat over R, since
R is a valuation ring. Thus M/ N, as a finite A-module that is flat over R, is of finite
presentation by Theorem 4 and there is an exact sequence of A-modules

0—>K—>F —+ M/N —>0

where F is finite free and K is finite. As M is finitely generated, we may assume
that F — M/ N factors through M via an epimorphism ¥ —— M . But then this
map restricts to an epimorphism K —— N and we see that N is finitely generated.
This verifies (i).

To verify assertion (ii), we can consider the saturation Ny,z C M of N; it is
finitely generated by (i). Thus, there is an integer n € N such that I” Ny, C N, and
we have

I"""MNONNCI"NCI™ NN
for all m € N. So we are done. O

Proposition 8. Let A be an R-algebra of topologically finite type and M a finite
A-module. Then M is I -adically complete and separated.

Proof. We may replace A by an algebra of restricted power series R({) and thereby
assume that A is [ -adically complete and separated. Then, viewing M as a quotient
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of a finite cartesian product of A and using Lemma 7 (ii), we see that M is [ -adically
complete for trivial reasons. To show that it is also /-adically separated, consider
an element x € (1,2, /"M, and look at the submodule N = Ax C M. Using
Lemma 7 (ii), there is an integer n € N suchthat N = I"M NN C IN. Hence
there is an equation (1 — ¢)x = 0 for some ¢ € I. However, using the geometric
series, we see that 1 — ¢ is a unit in R and, hence, that x must be zero. O

Corollary 9. Any R-algebra of topologically finite type is I-adically complete and
separated.

In particular, if A is an R-algebra of topologically finite type, we can identify A
with the projective limit lim A/I" A. To abbreviate, we will write R, = R/I ntl

and A, = A/I"t!" = A ®r R, for n € N. Similar notions will be used for
R-modules.

Proposition 10. Let A be an R-algebra, which is I-adically complete and sepa-
rated. Then:

(1) A is of topologically finite type if and only if Ay is of finite type over Ry.
(i) A is of topologically finite presentation if and only if A, is of finite presentation
over R, foralln € N.

Proof. We need only to verify the if-parts. So assume that Ay is of finite type over
Ry. Then there is an epimorphism ¢g: Ro[{] — Ay for a finite system of variables
¢ =1(L,....8n). Leta; € A be arepresentative of ¢y(¢;) and define a continuous
R-algebra homomorphism ¢: R({) —— A by mapping {; onto a;; the latter is
possible, as A is I-adically complete and separated. Then A = im¢ + /A, and a
limit argument shows that ¢ is surjective.

Now, setting a = ker ¢, consider the exact sequence

0—a— R({) 4+ A4 —0

and assume that all algebras A, are of finite presentation over R,. Then, due to
Lemma 7 (ii) there is an integer n € N satisfying a N 7"*! C Ia, and we get the
exact sequence

0 — a/anI""'R() — R,[{] — A, — 0.

By our assumption a/a N I"+t!'R(¢) and, hence, also a/Ia are finitely generated.
Thus there is a finitely generated ideal @’ C a such that a = a’ + Ia. Again a limit
argument yields a = a’ and, hence, that a is finitely generated. O

Proposition 11. Let ¢: A —— B be a morphism of R-algebras of topologically
finite type, and M a finite B-module. Then M is a flat (resp. faithfully flat) A-module
if and only if M,, is a flat (vesp. faithfully flat) A,-module for alln € N.
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Proof. The only-if part is trivial, since flatness is preserved under base change.
To verify the if part, we have to show that the canonical map a ® y M —— M
is injective for each finitely generated ideal a C A. This can be done similarly as in
the proof of the Bourbaki criterion on flatness; see [AC], Chap. III, § 5, no. 2. Given
an arbitrary m € N, there is an integer n € N such that / "lANa C I™a; see
Lemma 7 (ii). Setting N = a/(I"T'4 N a), we get a commutative diagram, whose
upper row is exact:

I"M'AN) QUM —— a@4 M NQsM 0
g h
M=A®AM An®AM

We may interpret s as the map obtained from N —— A, by tensoring with M,
over A,. Therefore, due to our flatness assumption, / is injective, and this implies
kerg C I"(a®4 M). Now, as a finitely generated B-module, a ® 4 M is I -adically
separated by Proposition 8. Thus, varying m, we get

oo
kerg C () I"(@®4 M) =0,

m=0

which shows that M is a flat A-module.

Next, assume for all n € N that M, is a faithfully flat A,-module, and let N be
a finitely generated A-module such that M ® 4 N = 0. Then M,, ® 4, N, = 0 for
all n € N and, consequently, N, = 0. In particular, we get N = I N and, hence
N =0, as N is I-adically separated; see Proposition 8. O

Corollary 12. Let A be an R-algebra that is topologically of finite type, and let
fi,....fr € A be elements generating the unit ideal. Then all canonical maps
A — A(f7Y) are flat,and A — T[T._, A(f;") is faithfully flat.

Proof. Use the corresponding facts for ordinary localizations in conjunction with
Proposition 11. O

Corollary 13. Let A be an R-algebra that is I-adically complete and separated,
andlet fi,...,[f, € A be elements generating the unit ideal. Then the following are
equivalent:

(1) A is of topologically finite type (resp. finite presentation, resp. admissible).
(i) A(f;"") is of topologically finite type (resp. finite presentation, resp. admissi-
ble) for eachi.

Proof. The assertion on “finite type” and “finite presentation” follows from the
corresponding fact on ordinary localizations in conjunction with Proposition 10.
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To extend the equivalence between (i) and (ii) to the condition “admissible”,
let I = (g1,...,8r). If A is admissible, the map A — ]_[;=l A[g_/fl] is
injective. Tensoring it with A(f;~!), which is flat over A by Corollary 12, we see
that A(f;~') —— [1j=, A(fi7")[g;'] is injective and, hence, that A(f;™') is
admissible.

Conversely, assume that all A{f;~!) are admissible. Then consider the commuta-

tive diagram:

A [TA0™

i=1

[] AL

J=1

[1A4¢ e
i,j

By assumption the right vertical map is injective. As the upper horizontal map is
injective anyway due to the faithful flatness, see Corollary 12, the left vertical map
must be injective as well. O

We end by a lemma that will be useful later.
Lemma 14. Let A be an R-algebra of topologically finite type, B an A-algebra of
finite type, and M a finite B-module. Then, if B and M are the I-adic completions
of B and M, the canonical map
M ®p B— M

is an isomorphism.

Proof. Choose an exact sequence of B-modules

00— N—B"2o M —+0

and consider the commutative diagram

N®B§ =§n —M®B§ 0
I
0 N - 7 0
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having exact rows where the first row is obtained via tensoring with B over B and
the second one via completion; N is the closure of N in B". Since M is a finite
B-module, a standard approximation argument shows that p and & are surjective.
Furthermore, N C ker p holds by continuity. That, indeed, N equals the kernel
of p is seen as follows. Let (b,),en be a sequence in B" converging [ -adically
towards an element b € ker p C B". Then (p(by))ven is a zero sequence in M.
Since p is surjective and, hence, satisfies p(I/'B") = I"M, we can find a zero
sequence (b)),en in B" such that p(b)) = p(b,) for all v. But then we have
b, — b/ € ker p = N for all v and, hence,

b= lim b, = lim (b, — b)) € N.
n—>o0 n—>0oo

Now use the fact that B is an A-algebra of finite type and A an R-algebra of
topologically finite type. From this we may conclude using Proposition 10 that Bis
an R-algebra of topologically finite type. Then we see from Proposition 8 that any
submodule L C B” is closed, since B" /L is I-adically separated. In particular, the
image of N ®p Bin B" is closed and therefore equals N, since it must contain the
image of N. Thus, f: N ®p B——+Nis surjective, and it follows by diagram
chase that 4 is injective. Hence, being surjective as well, % is bijective. O

7.4 Admissible Formal Schemes

Let A be an R-algebra that is /-adically complete and separated. We have seen
in 7.3/13 that the condition of A being of topologically finite type, of topologically
finite presentation, or admissible, can be tested locally on localizations of type
A(f~!). This enables us to extend these notions to formal R-schemes.

Definition 1. Let X be a formal R-scheme. X is called locally of topologically
finite type (resp. locally of topologically finite presentation, resp. admissible) if
there is an open affine covering (U;);ey of X with U; = Spf A; where A; is an
R-algebra of topologically finite type (resp. of topologically finite presentation, resp.
an admissible R-algebra).

As an immediate consequence we get from 7.3/13:

Remark 2. Let A be an R-algebra that is I-adically complete and separated,
and let X = Spf A be the associated formal R-scheme. Then the following are
equivalent:

(1) X is locally of topologically finite type (resp.locally of topologically finite
presentation, resp. admissible).

(i) A is of topologically finite type (resp. of topologically finite presentation, resp.
admissible) as R-algebra.
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Similarly as in the scheme case, a formal R-scheme X is called of topologically
finite type if it is locally of topologically finite type and quasi-compact. It is called
of topologically finite presentation if it is locally of topologically finite presentation,
quasi-compact, and quasi-separated. Recall that X is called quasi-separated if
the diagonal embedding X —— X xp X is quasi-compact. If X is locally of
topologically finite type, the quasi-separateness of X is automatic if R is Noetherian,
since X, as a topological space, is locally Noetherian then. The same is true for R
a complete valuation ring of height 1. Indeed, if A is an R-algebra of topologically
finite type and m is the maximal ideal of R, then, as a topological space, Spf 4
coincides with Spec(4 ® g R/m). Since A ® g R/m is of finite type over the field
R /m, its spectrum Spec(4 ® g R/m) is a Noetherian space.

Let X be a formal R-scheme that is locally of topologically finite type, and let
Ox be its structure sheaf. Then we can look at the ideal § C Ox representing
the I-torsion of @y where g(U), for any open subset U C X, consists of all
sections f € Oy (U) such that there is an open affine covering (U, ) e4 of U with
the property that each restriction f'|y, is killed by some power /" of the ideal of
definition / C R. Itis clear from the definition that  really is an ideal sheaf in Oy .
Furthermore, if U C X is an affine open formal subscheme, say U = Spf A4, then
one gets

JU) = (I-torsion)y ={f € A; I" f = 0 for some n € N}.

Indeed, we clearly have (/-torsion)y C F(U), and the quotient A/(I-torsion) 4
does not have I -torsion locally on Spf A, due to 7.3/13. In particular, we can replace
the structure sheaf Oy by the quotient Oy /¢ and restrict X to the support X,q of
Ox/§. Thereby we get a formal R-scheme X,4 that is still locally of topologically
finite type and whose structure sheaf does not have [ -torsion. Then X,q4 is locally
of topologically finite presentation by 7.3/5 and, thus, admissible. We call X4 the
admissible formal R-scheme induced from X .

For a moment, let us look at the classical rigid case where R consists of a
complete valuation ring of height 1 with field of fractions K. To simplify our
terminology, let us assume in the following that all formal R-schemes are at least
locally of topologically finite type, unless stated otherwise. We want to define a
functor “rig” from the category of formal R-schemes to the category of rigid
K-spaces, which will be interpreted as associating to a formal R-scheme X its
generic fiber X,jg. On affine formal R-schemes Spf A this functor is defined by

rig: X = SpfA —— Xyz = Sp(4 ®r K)

where we claim that A ® g K is an affinoid K-algebra. To justify this claim, we set
S = R—{0} and interpret A ® ¢ K as the localization S ' A. By our assumption, 4
is of topologically finite type and, thus, isomorphic to a quotient R({)/a where R({)
is an algebra of restricted power series in finitely many variables { = ({y,...,¢,)
and where a is an ideal in R(¢). Since A @z K = S™'(R(¢))/(a), it is enough to
show STH(R(¢)) = K(¢). However, the latter is clear by looking at the canonical
inclusions
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R{g) € STH(R(E)) € K(¢)

and by observing that, for any series f = ) . cv¢” € K(C) with coefficients
¢, € K, there is a constant s € S such that s~/ f has coefficients in R, due to the
fact thatlim ¢, = 0. Thus A ®g K really is an affinoid K-algebra and, for any affine
formal R-scheme X = Spf A, the corresponding rigid K-space Xijo = SpA ®@r K
is well-defined.

Next, if ¢:Spf A —— Spf B is a morphism of affine formal R-schemes, we
know from Sect. 7.2, as explained just before 7.2/3, that it is induced from a unique
R-homomorphism ¢*: B —— A. Then, by 5.3/2, the corresponding generic fiber

gﬂ:;giB@RK — AQr K
determines a well-defined morphism of affinoid K-spaces
¢rig: SP(A ®r K) — Sp(B ®r K)),

which we define as the image of ¢ under the functor rig. Furthermore, let us observe
that this functor commutes with complete localization. Indeed, for any R-algebra of
topologically finite type A and any f € A we get

AfTY er K =[A(0)/(1 - fO] ®r K
= (Ar K)(O)/(1 = fO) = (A@r K)(f7)
where we have used 7.1/10 in conjunction with the fact that A({) ® g K coincides
with (A ®x K)({); the latter is justified, similarly as above, by interpreting
[A(C)/(1 — f{)] ®r K as a localization of A(¢)/(1 — f¢) and by representing

A as a quotient of an R-algebra of restricted power series by some ideal. Then we
get a canonical commutative diagram

A

AQ®r K

AT —— (Aer K)(f7)
showing that the functor rig produces from a basic open subspace of type
X(fH=SpfA(f"Yc X =Spf4
the Laurent domain

Xiig(f ") = Sp(A ®r K)(f™") C Xsie = Sp(4 ®¢ K)
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of the generic fiber associated to X. More generally, it follows that rig maps
any open immersion of affine formal R-schemes Spf A’ —— Spf A4 to an open
immersion of affinoid K-spaces Sp(A’ ® g K) — Sp(4 ®r K).

Now, to extend the functor rig to global formal R-schemes, let us look at such
a scheme X and assume first that X is separated and, hence, that the intersection
of two open affine formal subschemes of X is affine again. Fixing an open affine
covering (U;)ies of X, all intersections U; N U; are affine again. Hence, we
can glue the generic fibers U 4, via the “intersections” (U; N U )y, to produce a
global rigid K-space Xijg. It is easily checked that the latter is independent (up
to canonical isomorphism) of the chosen affine open covering (U;);e; and that
any morphism of separated formal R-schemes X —— Y leads to a canonical
morphism X, — Yy so that we really get a functor. In particular, as affine
formal R-schemes are separated, the functor rig is defined on all open formal
subschemes U of an affine formal R-scheme X. Furthermore, since such a U
is necessarily quasi-compact, the generic fiber Uy, is admissible open and, thus,
an open subspace of X,;,. Therefore, to extend the functor rig to the category of
all formal R-schemes, we can repeat the above construction, now interpreting an
arbitrary global formal R-scheme X by gluing open affine parts U; via arbitrary
open subspaces of these. Hence, we have shown:

Proposition 3. Let R be a complete valuation ring of height 1 with field of fractions
K. Then the functor A —— A Qg K on R-algebras A of topologically finite type
gives rise to a functor X +—— Xy, from the category of formal R-schemes that are
locally of topologically finite type, to the category of rigid K-spaces.

As indicated above, X is called the generic fiber of the formal R-scheme X . In
an affine situation, say X = Spf 4, it coincides pointwise with the set of all closed
points of Spec(4 ®r K), the latter being the generic fiber of the ordinary scheme
Spec A. This way the generic fiber of the formal scheme Spf A can be exhibited,
although, on the level of points, it is not visible in Spf 4.

In view of Proposition 3, one would like to describe all formal R-schemes X
whose generic fiber Xy, coincides with a given rigid K-space Xg. To answer this
question, observe first that the functor X ——— X, factors through the category
of admissible formal R-schemes, since the tensor product with K over R kills any
R-torsion. In particular, the generic fiber of a formal R-scheme X coincides with
the one of its induced admissible formal R-scheme X,q. Thus, we are reduced to the
problem of describing all admissible formal R-schemes X admitting a given rigid
K-space Xk as generic fiber. Such formal schemes will be referred to as formal
R-models:

Definition 4. Given a rigid K-space Xk, any admissible formal R-scheme X
satisfying Xy >~ X is called a formal R-model of Xg.
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Thus, our problem consists in determining all formal R-models of a given rigid
K-space Xk. To solve it, the notion of admissible formal blowing-up, which will be
introduced in the Sect. 8.2, plays a central role.



Chapter 8
Raynaud’s View on Rigid Spaces

8.1 Coherent Modules

Now, let us return to the general situation where R is an adic ring of type (V) or (N),
with a finitely generated ideal of definition /. So R is a Noetherian adic ring or an
adic valuation ring with a finitely generated ideal of definition.

Let A be an R-algebra of topologically finite type and X = Spf A4 the associated
formal R-scheme. There is a functor M —— M # that associates to any A-module
M an O y-module M? as follows: for a basic open subset D r=D(f)CX,given
by some f € A, set

MA(Dy) =timM @4 4,[f7']

neN

where, as usual, A, = A/I" ! A. As lim is left-exact, we get a sheaf which can be
extended to all open subsets of X by ﬁ% usual procedure. In fact we may say that
M2 is the inverse limit of the modules M, where the latter are the modules induced
on X, = Spec A, from the A,,-modules M,, = M ® 4 A,. If M is a finite A-module,
the sheaf M2 can be described in more convenient terms:

Proposition 1. Let X = Spf A be a formal R-scheme of topologically finite type.
Then, for any finite A-module M, the sheaf M coincides on basic open subsets
Dy C X, f € A, with the functor

Dy M®4A(f7Y).

Proof. Since A(f~!') is an R-algebra of topologically finite type, see 7.1/10
or 7.3/13, we know from 7.3/8 that M ® 4 A( f ~'), which is a finite A( f ~!)-module,
is [-adically complete and separated. By the definition of M A(D_,r), we may view
it as the /-adic completion of M ® 4 A[ f~']. However, since the latter is dense in
M ®4 A{f™"), we are done. O

S. Bosch, Lectures on Formal and Rigid Geometry, Lecture Notes 175
in Mathematics 2105, DOI 10.1007/978-3-319-04417-0_8,
© Springer International Publishing Switzerland 2014
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Corollary 2. Let X = Spf A be a formal R-scheme of topologically finite type.

(i) The functor M —— M? from the category of finite A-modules to the category
of Ox-modules is fully faithful and exact.

(i) Assume that X is of topologically finite presentation and, hence by 7.3/6, that
A is coherent. Then the functor M —— M? commutes on the category
of coherent A-modules with the formation of kernels, images, cokernels, and
tensor products. Furthermore, a sequence of coherent A-modules

0O— M — M — M —0
is exact if and only if the associated sequence of Ox-modules
OHM/AHMAHM”AHO
is exact.

Proof. We use the same argument as the one given in 6.1/1. First, it is clear that the
canonical map

Homy (M, M') — Homg, (M4, M'?)

is bijective, since an @ y-morphism M4 —— M’ is uniquely determined by its
inherent A-morphism between M = M4 (X) and M’ = M’ Next, if

0O— M — M — M —0

is an exact sequence of finite A-modules, then, for all f € A, the associated
sequence of A{f~')-modules

00— M @4 A(f™) — M @4 A(f7") — M" @4 A(f™") — 0
is exact, since A(f ') is flat over 4 by 7.3/12. Thus, the sequence
0 M/A MA M//A 0

is exact, showing that the functor M —— M4 is exact.

Now, let us consider the situation of (ii) and assume that X is of topologically
finite presentation. Then A is coherent by 7.3/6, and the same is true for any finite
A-module. If M —— N is a morphism of coherent A-modules, we know that its
kernel, image, and cokernel are coherent again. Thus, we see from assertion (i)
that the functor M —— M?% commutes with the formation of these modules.
Furthermore, one can conclude from Proposition 1 that it commutes with tensor
products.
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Finally, look at a sequence of coherent A-modules M’ —*~ M Ve M” and

A A
assume that the corresponding sequence M4 —— M4 Y7 M"4is exact. Then,
using the just mentioned compatibility of the functor M — M?, we get

(kery/imp)* = (kery)*/(img)* = ker(y*)/ im(¢?) = 0
and, hence, that ker 1/ im ¢ is trivial. O

Next, we want to apply Corollary 2 in order to deal with coherent modules on
formal R-schemes. The definition of such modules follows the general concept of
coherent sheaves.

Definition 3. Let X be a formal R-scheme and ¥ an O x-module.

(1) F iscalled of finite type, if there exists an open covering (X;)iey of X together
with exact sequences of type

(9;}|Xi4>f"~|xi4>0, iel.

(ii) ¥ is called of finite presentation, if there exists an open covering (X;)iey of
X together with exact sequences of type

(9;|x‘.4>(9§£|xi4>37|xi4>0, ielJ.

(iii) F is called coherent, if ¥ is of finite type and if for every open subscheme
U C X the kernel of any morphism O% |y —— F |u is of finite type.

For an affine formal R-scheme X = SpfA, any power % may be viewed
as the @x-module (4”)? associated to the A-module A”. Furthermore, if A is of
topologically finite presentation, A is coherent by 7.3/6, and we can conclude from
Corollary 2 that kernels and cokernels of morphisms of type 0% —— O3 are
associated to finite A-modules.

Remark 4. Let X be a formal R-scheme that is locally of topologically finite
presentation, and let ¥ be an O x-module. Then the following are equivalent:

(1) F is coherent.
(i) F is of finite presentation.
(iii) There is an open affine covering (X;)ie; of X such that ¥ |y, is associated to
a finite Ox, (X;)-module for all i € J.

Proof. That (i) implies (ii) is immediately clear from the definitions. Next, assume
that ¥ is of finite presentation as in (ii). Then, in order to derive (iii), it is only
necessary to consider the case where X is affine, say X = Spf A with an R-algebra
A of topologically finite presentation. In addition, we may assume that there is an
exact sequence



178 8 Raynaud’s View on Rigid Spaces
(AN — (A2 — F — 0.

Then it follows from Corollary 2 that the morphism (A")? — (A*)4 corresponds
to an A-linear map A~ —— A® and that ¥ is associated to its cokernel. The latter
is a finite A-module so that (ii) implies (iii).

Finally, let ¥ satisfy condition (iii). To show that ¥ is coherent, we may assume,
similarly as before, that X is affine, say X = Spf A with A of topologically finite
presentation, and that ¥ is associated to a finite A-module M. Let U be an open
subscheme of X and ¢: 9% |y —— F |y a morphism of @x-modules. To show
that ker ¢ is of finite type, we may assume U = X. Then ¢ is associated to an
A-linear map A® —— M. Since A is coherent by 7.3/6, the kernel of this map is,
in particular, of finite type, and the same is true for its associated @ y-module. As
the latter coincides with ker ¢, we are done. O

Just as in the scheme case or in the case of rigid K-spaces, one may ask if
coherent modules on affine formal R-schemes X = Spf A are associated to coherent
A-modules.

Proposition 5. Let X = Spf A be an affine formal R-scheme of topologically
finite presentation and let ¥ be a coherent Ox-module. Then ¥ is associated to
a coherent A-module M .

Proof. There is a covering of X by basic open affine subschemes U; = Spf 4;,
with i varying in a finite index set J, such that ¥ |y, is associated to a coherent
A;-module M;. Set U; = U; N U; and let Uy = Spf A;;. Then ¥ |y is associated to
the coherent A,-j-module M,:]' = Mi ®Ai Aii = M] ®Aj Alfi'

Now observe that ¥ induces for each n € N a coherent module ¥, on the scheme
X, = Spec A, where, as usual, A, = A/I"*' A. This module sheaf is constructed
by gluing the Oy, ,-modules that are associated to the coherent A;,-modules
M;, = M;/I""'M;, i € J. Then we can use the fact that %, is associated to a
coherent A,-module M,,, thereby getting exact diagrams of type

M, — [[Min —= [[Mja. neN.
ieJ ijeJ

Since ¥, is derived from ¥,4; via base change with X,+; over X,,, we see that
M, = M, 11 ®4, ., A,. Taking projective limits, the above diagrams give rise to an
exact diagram

n+1
o T == [Tmn
ieJ ijeJ

where M = l(y_n - M,.Let K C M for n € N be the kernel of the projection
M —— M,_,, setting M_; = 0. Then /"M C K™, and we claim that, in fact,
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K™ = "M and that M = K© is a finite A-module. Granting these facts, the
topology on M, as a projective limit of the M,,, must coincide with the [ -adic one,
and it follows that the canonical map

M ®4 Ai = LiLn(Mn ®A,, Ai,n) - LiLnMi.n = Mi

neN neN

is an isomorphism for all i € J. But then ¥ is associated to the finite and, hence,
coherent A-module M .

To justify the above claim, observe that M, is a finite Ag-module. Since
the projective system (M,),en is surjective, there exist finitely many elements
X1, ..., X, in M with the property that their images generate M, as an Ap-module.
Set M' = Z;zl Ax; and let M, be the image of M’ in M,,. Then

M,,:M,i—i—IMn, neN,
and, hence, by finite induction, M,, = M, for all n. From this we deduce that
KW =1"M'+K"Y  neN (*)

Indeed, viewing M —— M,,_; as the composition of the projection M —— M,
and the canonical map M, — M,_, the first map has kernel K”*1, whereas
the second one has kernel 1" M,, = I" M. Thus, the composition has a kernel K )
equalto I"M'+ K (1+1) a5 stated. Now fix n and a finite set of generators yy, ..., Vs
of I"M’ as A-module. Then applying the equations (*) inductively, we can write
any element z € K™ as a limit of linear combinations of type Y 1 dovYo,V €N,
with coefficients a,, € A where the sequences (d,,),en have [ -adic limits a, € A.
Since the [ -adic topology on M is finer than the projective limit topology, we must
have z = Y0 _,a,y, and, thus, K™ C I"M’ for all n € N. As the opposite
inclusion holds anyway, the latter implies K™ = I"M’. In particular, we see for
n = 0 that M coincides with M’ and therefore is finitely generated. Hence, we get
K™ = I"M, and it follows that the topology of M coincides with the I -adic one.

a

8.2 Admissible Formal Blowing-Up

In the following we will discuss the technique of admissible formal blowing-up
on formal R-schemes X, as sort of a completed scheme theoretic blowing-up on
the affine open parts of X. In order to control torsion submodules under such
a completion process, for example I-torsion submodules, we need an auxiliary
flatness result due to Gabber, which we will prove below in Lemma 2. It extends
certain results on the flatness of adic completions, as contained in [AC], Chap. III,
Sect. 5, no. 4, to the non-Noetherian situations we have to work with. Gabber’s
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Lemma will be used in the proof of Proposition 7 and is essential for showing
that the formal blowing-up of an admissible formal R-scheme yields an admissible
formal R-scheme again.

Lemma 1. Let M be a module over some ring A, and let w € A be an element that
is not a zero-divisor in A. Then the following are equivalent:

(1) M isflat over A.
(i1) The torsion

(r-torsion)yy = {x € M ; n"x = 0 for some n € N}

of win M is trivial, M/ M is flat over A/ A, and M @ 4 A[n~"] is flat over
Alx71.

Proof. Assume first that M is flat over A. Then the multiplication by 7 is injective
on M, since it is injective on A. Furthermore, the flatness assertions in (ii) for
M/7nM and M ® 4 A[n~'] follow by base change.

Conversely, assume condition (ii). Proceeding step by step, we will show that the
Tor modules Tor;1 (M, N) are trivial for ¢ > 0 and all A-modules N.

(a) Let N = A/mA. Then the short exact sequence

00— 4"+ 4—>N—>0

yields a free resolution of N. Tensoring it with M, we obtain the sequence
0— M "M —>Me4N — 0,

which is exact since (m-torsion)y, is supposed to be trivial. However, this
implies Torf(M,N ) = (;-torsion)y; = 0 and, hence, that Tor;(M,N ) =0
forg > 0.

(b) Next, assume 7N = 0 and choose a projective resolution P, of M. Since
Tor;;1 (M, A/mA) = 0 for g > 0 by step (a), the sequence

P, ®4A/TA — M/aM — 0
is seen to be exact. Thus, P, ®4 A/mA is a projective resolution of
M/nM. Since M/aM is flat over A/mA by assumption, we have
Tor;/’”‘ (M/nM,N) = 0 for g > 0. Hence, the sequence
P, ®y A/T[A ®A/nA N — M/T[M ®A/rrA N —0

is exact. As the latter coincides with the sequence
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P4 N — MIJ/UqN — 0,

it follows that Tor} (M, N) = 0 for g > 0.
(c) Assume that 7" N = O for some n > 1. We consider the long Tor sequence
associated to the short exact sequence

0—> 7N —> N —» N/zN — 0.

Since 7N and N/m N are killed by 7!, an inductive argument in conjunction
with step (b) shows Tor;1 (M,N) =0forqg > 0.

(d) Assume that (;-torsion)y = N, i.e. that each element of N is killed by a power
of . Forn e N, let N, = {x € N; n"x = 0}. Then N = lir_>nn N,,. Since the
formation of Tor is compatible with direct limits, we can conclude from step (c)
that Tor{ (M, N) = 0 for ¢ > 0.

(e) Assume that (w-torsion)y = 0, i.e. that N does not admit sr-torsion. Then
consider the long Tor sequence associated to the short exact sequence

00— N — NQA[n '] — T — 0
where T is a ;-torsion module, i.e. (7-torsion); = 7. Since
Tor! (M. N ®4 A[x™']) = Tor'l" (M @4 A[x7'].N @4 A[n"']) =0

for ¢ > 0 by our assumption, we see from (d) that Torf1 (M,N)=0forqg > 0.

Finally, that condition (ii) of the lemma implies the flatness of M over A follows
from steps (d) and (e) if we consider the long Tor sequence associated to the short
exact sequence

0 — (m-torsion)y — N —— N/(m-torsion)y — O.
O

Lemma 2 (Gabber). As in Sect.7.3, let R be an adic ring of type (V) or (N).
Furthermore, let A be an R-algebra of topologically finite type and C an A-algebra
of finite type. Then the I -adic completion C of C is flat over C.

Proof. 1If R is of type (N), then A and, hence, C are Noetherian, and the assertion
of the lemma is well-known; see [AC], Chap.III, Sect.5, no. 4, Cor. of Prop. 3.
Therefore, we can assume that R is an adic valuation ring of type (V). Let I = ()
be an ideal of definition of R.

We start with the special case where C = A[{], with a finite system of variables
¢ = (&,...,¢). Then the m-adic completion C of C equals the algebra A(¢)
of restricted power series in { with coefficients in A. Furthermore, let us assume
that C does not admit 7-torsion. Then, by Lemma 1, we have only to show that
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C®rR [7~']is flatover C ® g R[m~']. Observing that K = R[7 '] is a field, we
may interpret K as the field of fractions of the valuation ring obtained by localizing
R at its minimal non-zero prime ideal rad(/) = rad(sx). Thus, K is the field of
fractions of a valuation ring of height 1. Consequently, we may view Ax = A®r K
as an affinoid K-algebra, and we can use the identifications

CorK=Ax[¢]. C®rK = Ag(0),

where Ak () is the K-algebra of strictly convergent power series over Ak in the
sense of classical rigid geometry. In order to show that Ak () is flat over Ax[(],
it is enough to show that, for any maximal ideal m C Ag({) and its restriction
n to Ag[(], the canonical morphism Ak [{], —— Ak ({)n is flat. Since we are
dealing with Noetherian rings, see 3.1/3, we may apply the above mentioned result
of [AC] and thereby are reduced to showing that the preceding map induces an
isomorphism between the n-adic completion of Ak [{], and the m-adic completion
of Ag (). Thus, it is enough to show that the inclusion of Ag[¢] into Ag(l)
induces isomorphisms Ag [{]/n" — Ak (¢)/m”" forn € N.

To do this, we proceed similarly as in the proof of 3.3/10. For any maximal ideal
m C Ag(¢), we know from 3.1/4 that the quotient Ak (¢)/m is of finite vector
space dimension over K. Then, being a subspace of Ak (¢)/m, the same is true for
Ak [¢]/n and it follows that the latter is a field. Therefore n is a maximal ideal in
Ak []. The same argument shows that n N Ag is a maximal ideal in Ag. From this
we can conclude that dimg Ag [¢]/n" < oo for all n. Indeed, the restriction n” N Ag
has radical n N Ag in A, and the latter implies dimg Ax/(n" N Ag) < oo, again
by 3.1/4. Hence, Ag[{]/n" is a K-algebra of finite type, which is local, and it
follows from Noether normalization, that dimg Ag [{]/n" < oo.

Now look at the following commutative diagram

L

Ak L]

Ak (¢)

Ag[g]/n" — Ag(5)/n" Ak (¢)

where the square consists of canonical maps and where the map « still has to
be explained. Fixing a residue norm on the affinoid K-algebra A, we consider
on Ag[¢] and Ak (¢) the associated Gaull norms, as well as on the quotients
Ak [C]/n" and Ag(¢)/n" Ak (C) the corresponding residue norms. Then all maps
of the square are continuous, and Ag [{]/n" is complete, since it is of finite vector
space dimension over K and K is complete; use Theorem 1 of Appendix A. Thus,
we can extend the projection p : Ax[{] —— Ak[{]/n" to a continuous homo-
morphism «: Ag () —— Ag[{]/n" such that the upper triangle of the diagram
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is commutative. By a density argument, the lower triangle will be commutative
as well. But then the surjectivity of p’ implies the surjectivity of ¢. Furthermore,
since ker @ must contain the ideal generated by n”, it follows that o is injective and,
hence, bijective. In particular, we see that Ax () /nAg(C) is a field, since the same
is true for Ag[¢]/n, and we get m = nAg((), as well as m" = n" Ag(¢) for all
n € N. Thus, 0: Ag [{]/n" — Ag({)/m”" is an isomorphism as claimed, settling
the assertion of Gabber’s Lemma in the special case where C = A[{] for some
R-algebra of topologically finite type A that does not admit s-torsion.

In the general case we choose an epimorphism A’ —— A where A’ is an
R-algebra of topologically finite type without m-torsion. For example, A’ could be
an R-algebra of restricted power series over R. The epimorphism can be extended
to an epimorphism of type y: A'[{] —— C, since C is of finite type over A.
Then, by the above special case, A’(¢) is flat over A’[{], and we see by base
change that A’({) ® 4/¢) C is flat over C. It remains to exhibit the tensor product
as the w-adic completion of C. To do this, let a = kery so that C = A’[{]/a
and, hence, A'({) @4y C = A'({)/aA’({). Now look at the canonical map
p: A'[t]/a — A'(¢)/aA’{¢). Tensoring it with R/(x") over R yields an
isomorphism ¢ ®z R/(n"), for any n. Since A’(¢)/aA’({) is an R-algebra of
topologically finite type, it is r-adically complete and separated by 7.3/8. It follows
that A’(¢)/aA’{¢) is the m-adic completion of C = A’[{]/a and we are done. O

The notion of coherent modules applies, in particular, to ideals in the structure
sheaf Oy of a formal R-scheme X . Such an ideal A C Oy is called open, if locally
on X, it contains powers of type /" Oy. In the following we will always assume
that X is a formal R-scheme of locally of topologically finite presentation since
then, by 8.1/5, a coherent open ideal A C Oy is associated on any affine open part
Spf A C X to a coherent open ideal a C A.

Definition 3. Let X be a formal R-scheme that is locally of topologically finite
presentation and let A C Oy be a coherent open ideal. Then the formal R-scheme

o0
X4 = lim Proj (€D A” @, (0x/1"0x))
neN d=0

together with the canonical projection X 4, — X is called the formal blowing-up
of A on X. Any such blowing-up is referred to as an admissible formal blowing-up
of X.

To explain the construction of X 4 in more detail, let | X | be the topological space
underlying the formal scheme X. Then Oy /1" Oy is a sheaf of rings on |X| and
the pair (| X|, Ox/1"Ox) may be viewed as an ordinary scheme over R or R/I".
The latter is locally of finite presentation since X is supposed to be locally of
topologically finite presentation; see 7.3/10. All schemes X,, = (| X |, Ox /1" Ox)
for n € N live on the same topological space | X | and we will write X = li_n)lnGN X,
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which means that X consists of the topological space |X| with the inverse limit
Oy = 1(£1 . Oyx /1" Oy as structure sheaf on it.
n

Next observe that the direct sum

@Ad R0, ((9X/1'1+1(9X)
d=0

is a quasi-coherent sheaf of graded Oy, -algebras on X,, and, hence, that

X = Proj(ED A @0, (0x/1""'0x))
d=0

is a well-defined scheme over X,. Since the tensor product commutes with
localization and, in particular, homogeneous localization, we obtain

X:A,n = X,A,,n+1 X Xp41 X

for n € N. Thus, all X4, live on the same topological space, say on | X 4|, and the
equation

X4 =1limX
A am sAn
neN

in Definition 3 expresses the fact that X 4 consists of the topological space | X 4|
with Oy, = lim Oy, as structure sheaf on it. That Oy, really is a sheaf
follows along the lines of Sect. 7.2 from the fact that lim is left exact. Also note
that the structural morphisms X 4, — X, give rise {o a canonical morphism of
formal R-schemes X4 —— X. As a caveat, let us point out that the components
A1 ®@, (Ox/1"'Ox) for d € N cannot generally be viewed as powers of an ideal
in Oy /1" Oy. This is a clear hint for the fact that X 4, is not to be interpreted as
a scheme theoretic blowing-up on X,,.

If X is affine, say X = Spf A4, an ideal A C Oy is coherent open if and only if
it is associated to a coherent open ideal a C A, see 8.1/5, where coherent may be
replaced by finitely generated as A is a coherent ring by 7.3/6. Furthermore, if #4 is
associated to the ideal a C A, the definition of X 4 amounts to

o0
X = lim Proj(@D o’ @4 (R/1")).
neN d=0

It is easily deduced from this fact that admissible formal blowing-ups of coherent
open ideals on formal R-schemes of locally topologically finite presentation yield
formal R-schemes that are locally of topologically finite type; for example, this
will be a consequence of Proposition 6 below. However, we are not able to show
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that admissible formal blowing-up maintains the property of a formal R-scheme to
be locally of topologically finite presentation. The latter property will only come
in via 7.3/5, when we blow up admissible formal R-schemes and show that the
blowing-up does not admit /-torsion; see Proposition 7 and Corollary 8 below.

We want to establish some basic properties of admissible formal blowing-up. Let
us call a morphism of formal R-schemes of topologically finite type ¢: X' —— X
flat if for every affine open part U C X and every affine open part U’ C X’ where
@(U’) C U, the inherent morphism of R-algebras Oy (U) — Ox/(U’) is flat. It
is easily checked using 7.3/11 that for ¢ to be flat it is enough to find affine open
coverings (U;)ies of X and (U/);e; of X' such that ¢(U/) C U; and the attached
morphisms of R-algebras Ox (U;) — Ox/(U/) are flat for all i € I. Also it is
possible to characterize the flatness of a morphism ¢ in the usual way via the flatness
of the local maps between stalks of structure sheaves.

Proposition 4. Admissible formal blowing-up commutes with flat base change.

Proof. Tt is enough to consider a situation where X is affine, say X = Spf A4, and
where # is associated to a finitely generated open ideal a C A. Then

oo
X4 = limProj(@ad ®r (R/I”)).
well d=o

Now consider a base change morphism ¢: X' —— X where we may assume X’
to be affine, too, say X’ = Spf A’ with an R-algebra A’ of topologically finite
presentation. Then

o0
I 1: : d / n
Xaxx X —llen;IPrOJ(Qa ®4 A @ (R/1")).
n =

If A’ is flat over A, the canonical map a? ® 4 A’ — a? A’ is an isomorphism and,
hence,

o0
Xpxxy X' = h_H)lPI'Oj(@(CLA/)d ®r (R/I”))
neN d=0

equals the admissible blowing-up of the coherent open ideal AQx C Oy’ on X'.
Note that the same argument works if 4’ is replaced by a complete adic ring R’ of
type (V) or (N) over R such that IR’ is an ideal of definition of R’. O

In particular, it follows that the notion of admissible formal blowing-up is local
on the base (although this can just as well be deduced directly from Definition 3,
without the intervention of Proposition 4):
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Corollary 5. Let X be a formal scheme that is locally of topologically finite
presentation, and let A C Oy be a coherent open ideal. Then, for any open formal
subscheme U C X, the restriction X 4 Xx U of the formal blowing-up X 4 of # on
X to U coincides with the formal blowing-up of the coherent open ideal A|y C Oy
onU.

Next, we want to relate admissible formal blowing-up to scheme theoretic
blowing-up.

Proposition 6. Let X = Spf A be an affine formal R-scheme of topologically finite
presentation. Furthermore, let A = a® be a coherent open ideal in Oy that is
associated to a coherent open ideal a C A. Then the formal blowing-up X 4 equals
the I -adic completion of the scheme theoretic blowing-up (Spec A), of a on Spec A.
In other words, it equals the formal completion of (Spec A), along its subscheme
defined by the ideal IA C A.

Proof. The scheme theoretic blowing-up of a on the affine scheme Spec A4 is
given by

P = Proj(é ad>.

d=0

Since tensoring with R/I" over R for n € N is compatible with localization and, in
particular, homogeneous localization of €D, a?, the I-adic completion of P is

o0
P = li)n(P ®r R/I") = li_n;Proj(@ad Rr R/I")
neN neN d=0

and, thus, coincides with the formal blowing-up of 4 on X. m|

Relying on this result, we can describe admissible formal blowing-ups in quite
precise terms, at least when X is admissible.

Proposition 7. Let X = Spf A be an admissible formal R-scheme that is affine, and
let & = a® be a coherent open ideal in O associated to a coherent open ideal
a = (fo,...,fr) C A. Then the following assertions hold for the formal blowing-up
X of Aon X:

(i) The ideal AOx, C Oy, is invertible, i.e., in terms of Oy ,-modules, it is
locally isomorphic to Oy, .
(ii) Let U; be the locus in X 4 where AQy , is generated by f;,i =0,...,r. Then
the U; define an open affine covering of X 4.
(iii) Write
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i
Ji

Then the I -torsion of C; coincides with its f;-torsion, and U; = Spf A; holds
for A; = C; /(I -torsion),.

Co= Ao #i) = Al #D) /(= 1y #1).

Proof. Viewing S = @72, a? as a graded ring, the scheme theoretic blowing-up
of a on X = Spec A is given by

o0
X' =Proj S = Proj@ad.
d=0

The latter admits the canonical open covering X' = Ui —o D+ (i) with D4 (f;) the
open set of all homogeneous prime ideals in S where f;, viewed as a homogeneous
element of degree 1 in a' C S, does not vanish. One knows that D ( f;) is equipped
with the structure of an affine open subscheme of Proj S, namely D (f;) =
Spec S5y where Sy, is the homogeneous localization of § by f;, i.e. the degree 0
part of the ordinary localization S of S by f;.

The ideal a C A induces an invertible ideal a@ ¢, on X = Proj S, since for any i,
the ideal aS( ) C Sy, is generated by f; and the latter is not a zero divisor in S(z).
Furthermore, from the construction of Proj S one knows that D1 (f;) coincides
precisely with the locus in X’ where the ideal a@ g, is generated by f;.

Now observe that the formal blowing-up X 4 of A on X is covered by the /-adic
completions Spf S( £ of the affine schemes D (f;) = Spec S(s)- Since S(f/) is flat
over S ) by the Lemma of Gabber (Lemma 2), the ideal as () C S (1) 1s invertible.
Thus, 4Oy, is an invertible ideal on X 4, which settles assertion (i). Furthermore,
(ii) follows from the fact that, in terms of sets, U; is the restriction of D4 ( f ) to
X 4. Infact, U; = Spf S( #)- Thus, it remains to verify assertion (iii) for A4; = S( £)-

To do this, we give a more specific description of S(). Choose variables
o, ..., ¢ and, for each i, look at the canonical epimorphism

Alg s #i] — Sy C Sy, sz%

The latter factors through the quotient

i
Ji

and it is easily seen that it induces an isomorphism

C=a[ L ti| = ale g #5155 1),

5,-/(f,—-torsion) — S5

since S 1), due to its nature as a localization by f;, does not admit f;-torsion.
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Being an open ideal, a contains a power of /. Thus, since aC; is generated by f;,
we must have

(fi-torsion)g C (I-torsion) ..

Since X is admissible, A and, hence, the graded ring S = @ZOZO a?, as well as
its homogeneous localizations S sy do not have /-torsion. Therefore the preceding
inclusion must be an equality:

(fi-torsion)z = (I -torsion)g,

Now let us pass to the /-adic completion C; of C;. Applying 7.3/14, we see that
Ci = Ci Qu; ; j#i) A(S; 5 J # 1) and, hence, that

Lojri)=aw i # 0/t - 120 #i).

C[=A<ﬁ,

By the Lemma of Gabber (Lemma 2), the /-adic completion C; of C; is flat over

C;. This implies that
(I -torsion)¢, = (I-torsion)s Qg C;
and, likewise,
(fi-torsion)¢;, = (fi-torsion)z ®¢. Ci,

so that both torsions coincide. But then, again by 7.3/14,
A; = §(_ﬁ) = A<% 1 j# i>/(1-t0rsion),
i
and U; = Spf A4; is as claimed. O
In particular, we see:
Corollary 8. Let X be an admissible formal R-scheme and A C Ox a coherent

open ideal. Then the formal blowing-up X 4 of A on X does not admit I -torsion
and, thus, by 7.3/5, is an admissible formal R-scheme again.

Next, let us show that admissible formal blowing-up is characterized by a certain
universal property.

Proposition 9. For an admissible formal R-scheme X and a coherent open ideal
A C Oy the formal blowing-up X4 — X satisfies the following universal
property:
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Any morphism of formal R-schemes ¢: Y — X such that AQy is an invertible
ideal in Oy factorizes uniquely through X 4.

Proof. We may assume that X is affine, say X = Spf A, and that .4 is associated
to a finitely generated ideal a = (fy,..., f;) C A. Then consider a morphism of
formal schemes ¢: Y —— X such that the ideal AQy C Oy is invertible. We may
assume that Y is affine, say Y = Spf B, and that the ideal Ay is generated by f;,
for some i. Then AQOy is associated to the ideal f; B = aB C B.

Let ¢*: A —— B be the morphism of R-algebras, given by the morphism
¢:Y —— X. Since by our assumption, the ideal aB is invertible, the fractions
fi 7! are well-defined in B. Therefore, using the terminology of the proof of
Proposition 7, there is a unique homomorphism

fi

Ai=A<f

s ] F i>/(ﬁ-torsion) —— B

that extends ¢*: A — B and maps the fractions f; f,"! € A; to the corresponding
fractions in B. The attached morphism ¥ —— X 4 settles the existence part of the
assertion.

To justify the uniqueness part, it is enough to show that, in the above considered
special situation, any factorization ¥ —— X 4 of the morphism ¢: ¥ —— X maps
Y into U; = Spf A;. However, this is easily checked, since U; coincides with the
locus in X where the ideal 4Oy, C Oy, is generated by f;. |

We need to work out some basic properties of admissible formal blowing-up. Let
us start with a simple observation.

Remark 10. Let X be an admissible formal R-scheme and let 4,8 C Oy be
coherent open ideals on X. Let X 4 be the formal blowing-up of A on X, and set
B’ = BOx,. Then the composition

(Xa)g —> Xy — X

of the formal blowing-up of B’ on X 4 with the formal blowing-up of A on X is
canonically isomorphic to the formal blowing-up of the ideal AB on X.

Proof. The assertion is a direct consequence of the universal property of admissible
blowing-up in Proposition 9, once we know that the ideal generated by #4 on
(X 4) g is invertible. However, the latter follows from the construction of blowing-
up. Consider an R-algebra A of topologically finite presentation and a coherent
open ideal a C A. Then, if for some g € A the g-torsion of A is trivial, the same is
true for all localizations of the graded ring S = @,y a’ and there is no g-torsion
on the scheme theoretic blowing-up Proj S of a on Spec A. Using Gabber’s Lemma
(Lemma 2), the same holds for the formal blowing-up of a on Spf A. O
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Proposition 11. Let X be an admissible formal R-scheme that is quasi-compact and
quasi-separated, and consider two admissible formal blowing-ups ¢: X' —— X
and ¢': X" —— X'. Then the composition ¢ o ¢': X" —— X is an admissible
formal blowing-up again.

Proof. Let A C Ox and A’ C Oy be coherent open ideals of the structure sheaves
of X and X’ such that ¢: X’ —— X is the formal blowing-up of # on X and
¢': X" —— X’ is the formal blowing-up of +’ on X’. We start with the special case
where X is affine, say X = Spf A. Then 4 is associated to a coherent open ideal a C
A by 8.1/5. Setting X = Spec A, let ¢: X" —» X be the scheme theoretic blowing-
up of the ideal a on X. By Proposition 6, the formal blowing-up X’ equals the 7 -adic
completion of X'. More specifically, we choose a system of generators f; of a,i =
0,...,r, and consider for each i the affine open subscheme Spec /Tf C X' where
/i generates the invertible ideal a@ g,. Then the schemes Spec le’ cover X' and the
associated affine formal schemes Spf A} where A; is the I-adic completion of A;,
form an open covering of X'. For each i, the canonical map A; —— A; induces
isomorphisms A; /(1) = A4;/(I%), £ € N. Since the coherent ideal A" C Oy
is open and, thus, contains some power of I, we see that there exists canonically a
coherent open ideal A C Oy, satisfying A = A Oy

Now, writing @: X" —— X’ for the scheme theoretic blowing-up of A on X/,
itis enough to show that the composition ¢ Y% X" — X is the scheme theoretlc
blowing-up of a coherent open ideal A" C O on X, asthen gog’: X" —» X will
be the formal blowing-up of the ideal A” = 070/ "Ox on X. To exhibit such an ideal,
note that £ = a@ g, is an ample invertible sheaf on X' Thus, by Grothendieck and
Dieudonné [EGA 1I], 4.6.8, or see [Bo], 9.4/14, there is an integer ny € N such
that, for all n > ny, the sheaf A’ ® £", which we may view as an ideal in O 70 18
generated by its global sections.

We conclude from the universal property of blowing-up (or by direct computa-
tion) that the morphism @: X ’— + X is an isomorphism over the complement
of the closed subscheme in X defined by the sections fy, ..., fr. In particular, the
canonical maps between localizations 4 ;;, — A;. £ are isomorphisms. As a resullt,
any given section in A; is induced from a section in A, provided we multiply it by
a suitable power of f;. Thus, we can take no, as introduced above, big enough such
that, for all n > ny, there is a (finite) set of global generators of A’ ® £" that are
induced from sections in A. Thus, if we choose some n > n¢ and define an O -ideal

A" via the canonical exact sequence
P R S 2 P

we get an open ideal on X that generates A’ ® £” on X’. Due to its definition, /4"
is a quasi-coherent ideal on X and therefore is associated to an open ideal a” C A.
Since A’ ® £" is generated by finitely many global sections on X, there is a finitely
generated open ideal a” C a” satisfying a”’O¢ = A’ ® £". Then a”” induces a
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coherent open ideal on X, and it follows that the composition X" —— X’ ——» X
is the scheme theoretic blowing-up of aa” on X. Likewise, X" —» X' —— X
will be the formal blowing-up of aa” on X; see Remark 10 and its proof.

Next, in order to approach the general case, we want to show that the construction
of the quasi-coherent ideal A” C @ above is compatible with affine flat base
change on X. Thus, let Y —— X be a morphism of affine formal R-schemes of
topologically finite presentation where X = Spf 4 and Y = Spf B. Then we know
from Proposition 4 that

Y =X'xxY —= Y
is the formal blowing-up of the ideal 8 = A@y on Y and, likewise,
l///: Y// — X// XX Y — X// XX’ Y/ ., Y/

is the formal blowing-up of B’ = A'Qys on Y’. Writing B; = 4; ®4 B and
B; = A; ® 4 B, the commutative diagrams

A )Y —=— 4;/1Y

|

B/t —=— B,/

for ¢ € N show that B’ = A/ Oy, C Oy, is the canonical ideal on Y’ generating the
ideal 8" C Oy-. Now consider the ideal B” C Oy given by the exact sequence

0 —> B" — Oy — .05 /¥(B' ® £"|5)

where f/?: Y — ¥V = Spec B is the scheme theoretic blowing-up of the coherent
ideal b C B corresponding to the coherent sheaf of ideals 8 = AQy C Oy. Since
for any quasi-coherent @ g,-module ¥’ on X' and its pull-back %" ®o O on Y,
there is a canonical isomorphism

Vu(F' ®o, O5) — ¢u(F) ®0, OF

lly Grotl}fandieck and Dieudonné [EGA III], 1.4.15, the ﬂatngss of B over A in~1plies
B’ = A" ®o; Oy and, hence, that the construction of A", respectively B”, is
compatible with flat base change on X.

Finally, to conclude the proof of the proposition for an arbitrary admissible formal
R-scheme X that is quasi-compact, we can consider a covering of X by finitely
many affine open formal subschemes X; = SpfA;,i € J. On each of these X;,
we can construct an open ideal sheaf 4 as above that is associated to some open
ideal a} C A;. The construction of +; depends on the choice of a sufficiently
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big integer n. However, as the index set J is finite, we may pick some n working
uniformly on all X;. Then, since the construction of the +4; is compatible with flat
base change, we can apply 7.3/12 and thereby see that the ideals #; can be glued to
produce an open ideal sheaf A” C Oy satisfying A’ Oy = A’ A" Ox/. We may call
A" a “quasi-coherent” ideal of Oy since, on each X;, it is associated to some ideal
a/ C A;. By standard methods we can now find an open ideal A” C A” C Ox
of finite type and, hence, coherent, such that A" Oy, = A’ A"Oy. Indeed, we can
reduce the problem to the scheme X, obtained from X by dividing out a sufficiently
high power I ¢*!. By our assumption on X, any such X, is quasi-compact and quasi-
separated. Therefore we know from [EGA I], 6.9.9, that the quasi-coherent ideal
A" Oy, C Oy, is the direct limit of its subideals of finite type. Any such ideal will
be coherent, due to 7.3/6. Taking it big enough, its inverse image in @, which is of
finite type and, hence, coherent, will generate the ideal A’ A" Ok in O/ . For this to
work, we can divide again by some power of / and thereby reduce the problem to
the scheme case. Since X' is quasi-compact and A’ A" O is an ideal of finite type,
we may apply [EGA 1], Chap. 0, 5.2.3. O

The assumption in Proposition 11 that X is quasi-compact is quite restrictive.
For example, if we are in the situation of 8.4/7 where we work over a complete
non-Archimedean field K and consider a separated K-scheme X of finite type,
then its rigid analytification X" in the sense of 5.4/3 is not necessarily quasi-
compact any more. Just look at the affine n-space X = A% . Consequently, formal
R-models X of X" over the valuation ring R of K, as defined in 7.4/4, will not
automatically be quasi-compact. On the other hand, we will see in 8.4/7 that X"
is quasi-paracompact and, as a consequence, admits formal R-models X that are
quasi-paracompact as well. In the following we show that quasi-paracompactness
interacts quite well with admissible formal blowing-up. Thereby we are able to
adapt the assertion of Proposition 11 to the quasi-paracompact case, as will be seen
in Proposition 15 below.

Definition 12. A ropological (resp. G-topological) space X is called quasi-para-
compact if there exists an open (resp. admissible open) covering X = J;c; Xi
such that:

(1) X; is quasi-compact for all i € J in the sense that each open (resp. admissible
open) covering of X; admits a finite (resp. finite admissible) refinement.

(ii) The covering (X;);ey is of finite type, i.e. for each index i € J the intersection
X; N X; is non-empty for at most finitely many indices j € J.

Proposition 13. Let X be an admissible formal R-scheme that is quasi-
paracompact and quasi-separated, and let U C X be an open formal subscheme
that is quasi-compact. Then any coherent open ideal Ay C Oy extends to a
coherent open ideal A C Oy. Furthermore, we can construct 4 in such a way that
Ay coincides with Oy |y for any formal open subscheme V C X disjoint from U .

In particular, any admissible formal blowing-up on U admits an extension on X .
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Proof. Since Ay is open and U is quasi-compact, there is an integer £ € N such that
I1'Qy C Ay. Then we can consider Ay /I¢Qy as a coherent ideal in Oy /1¢OQy,
and it is enough to extend it to an ideal of finite type in Ox/I°Ox. The latter is
possible by Grothendieck and Dieudonné [EGA I, 6.9.6. The construction shows
that the extended ideal coincides with Ox/I‘@x on all formal open subschemes
VC Xsuchthaa U NV = 0. O

Proposition 14. Let X be an admissible formal R-scheme, that is quasi-paracom-
pact and quasi-separated. Consider a covering X = |J;c, Xi of finite type by
quasi-compact formal open subschemes X; C X, together with admissible formal
blowing-ups ¢;: X! — X;, i € J. Then there is an admissible formal blowing-up
¢: X' —— X dominating all ¢; in the sense that for each i € J there is a unique
morphism ¢~ (X;) — X] such that the diagram

¢ (X)) —— X|

@i

commutes foralli € J.

Proof. Let A; C Oy, be a coherent open ideal giving rise to the formal blowing-up
vi: X i’ — X;. As explained in Proposition 13, we can extend +; to a coherent
open ideal A; C Oy, and we may assume A |l = Ox|y for each open formal
subscheme U C X such that X; N U = @. In particular, E,- coincides with Oy
on X; for almost all indices j € J. Therefore, A = [];c, A; is a well-defined
coherent open ideal in Oy, and we can consider the associated formal blowing-up
¢: X’ —— X. Since Ei induces an invertible ideal on X’ for each i, the universal
mapping property of formal blowing-up implies the stated mapping property for ¢.

O

For later use, we need two consequences of the above results.

Proposition 15. Let ¢”: X" X' and ¢ X' X be admissible
formal blowing-ups of admissible formal R-schemes where X is quasi-
separated and quasi-paracompact. Then there is an admissible formal blowing-up
¢": X" —— X dominating the composition ¢' o ¢": X" —— X, i.e. such that
there is a morphism 0. X" —— X" satisfying ¢""" = ¢’ 0o ¢” 0 0.

Proof. We choose a covering X = J;c, X; of finite type by quasi-compact open
formal subschemes X; C X. Then, over each X;, the composition ¢’ o ¢” is
an admissible formal blowing-up of X; by Proposition 11. Let A; C Oy, be
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the corresponding coherent open ideal. Due to Proposition 13, we can extend +A;
to a coherent open ideal #A; C Oy coinciding with Ox on each open formal
subscheme V' C X where V N X; = @. Then A = [[,, #4; is a well-defined
coherent open ideal in Oy and, blowing up 4 on X, we obtain an admissible formal
blowing-up of X which, due to the universal property of blowing-up, dominates

(p/ o g0//. O

Proposition 16. Let X —— Y be a morphism of admissible formal R-schemes and
Y’ —— Y an admissible formal blowing-up. Then these morphisms are part of a
commutative diagram

X’ Y’
X Y

where X' — X is an admissible formal blowing-up.

Proof. Let 8 C Oy be the coherent open ideal corresponding to the blowing-up
Y’ —— Y and set A = BOy. Then s is a coherent open ideal in Oy, and the
corresponding formal blowing-up X’ —— X, composed with X —— Y will
factor through Y, due to the universal property of admissible formal blowing-up.
O

8.3 Rig-Points in the Classical Rigid Setting

In this section, we want to deal with admissible formal R-schemes in the classical
rigid case. So we assume in the following that R is a complete valuation ring of
height 1 with field of fractions K and with |-|: K — Rs( a corresponding absolute
value. Then, as in Sect. 7.4, we can consider the functor

rig: (admissible formal R-schemes) — (rigid K-spaces)

that is constructed by associating to an affine admissible formal R-scheme Spf A
the affinoid K-space Sp A ® g K. Any point x € Sp A ® g K is given by a maximal
ideal in A ® g K and, since A ® g K is a localization of A, is induced from a well-
defined prime ideal p C A. Of course, p cannot be an open ideal in 4. However, we
will see that there is a unique maximal ideal m C A, which is open and contains p.
Thereby we get a specialization map from the points of Sp A ®g K to the (closed)
points of Spf 4. To describe this map in convenient terms, we introduce the notion
of rig-points.
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Definition 1. Let X be an admissible formal R-scheme. A rig-point of X, also
called a locally closed rig-point, is a morphism u: T —— X of admissible formal
R-schemes such that

(1) u is a locally closed immersion, and
(ii) T is affine, T = Spf B, with B a local integral domain of dimension 1. The
field of fractions of B is called the residue field of u.

A rig-point u: T — X is called closed if u is a closed immersion."

Similarly as in the scheme case, a morphism of admissible formal R-schemes
@:Y —— X is called a closed immersion if there exists an affine open cover
(X;)ies of X such that (¢~ '(X;))ics defines an affine open cover of ¥ and
the induced morphisms ¢~ !(X;) —— X;, i € J, correspond to epimorphisms
@F: Ox(X;) — Oy (¢~ '(X;)). Note that then the kernel ker ¢f is saturated in
Ox (X;) in the sense of Lemma 7.3/7 and, hence, is finitely generated. In particular,
@+ (Oy) is a coherent @ x-module via the canonical morphism ¢*: Oy — ¢,Oy,
and the kernel 4 = ker ¢ is a coherent ideal in Q. It follows for any affine open
formal subscheme U C X that the inverse image ¢! (U) is affine open in Y. More
generally, a morphism of admissible formal R-schemes ¢:Y —— X is called a
locally closed immersion if it factors through a closed immersion Y — U C X
where U is an open formal subscheme of X .

First we want to check, which type of rings B can occur within the context of the
above definition. As usual, let / C R be an ideal of definition.

Lemma 2. Let T = Spf B be an admissible formal R-scheme where B is a local
integral domain of dimension 1. Then B is finite over R and the integral closure of
B in its field of fractions Q(B) is a valuation ring.

Proof. First, let us note that the maximal ideal of B is open, since B is I -adically
separated. In particular, B ®x k is a local ring where k is the residue field of R.
Due to the fact that B is of topologically finite type over R, it follows that B ® k
is of finite type over k. Hence, by Noether normalization, it must be module-finite
over k. Now choose an epimorphism of R-algebras o: R{((y,...,{,) — B such
that the residue classes of the elements x; = 0(¢;),i = 1,...,r, form a k-basis in
B ®g k. There is an element 7 € R, 0 < |7| < 1, such that

o(Gi¢;) =xix; €Y Rg+7xB.  ij=1...r

i=1

In addition, we may assume 1 € Zf=1 Rx; + 7 B. Then it follows by iteration that

! Beyond the classical rigid case, the notion of rig-points is useful when R is a general adic ring
of type (V) or (N). Such rig-points will not necessarily be closed, as is the case in classical rigid
geometry; cf. Lemma 3 below.
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B ZXr:RX, +JTB,

i=1

and by m-adic approximation, that B = )_;_, Rx;.

Hence, B is finite over R and its field of fractions Q(B) is finite over the field
of fractions K = Q(R). Let B C Q(B) be the valuation ring corresponding to
the unique extension of the absolute value from K to Q(B). By construction of the
latter, B is integral over R and, being normal, it equals the integral closure of R
in Q(B). Then B must contain B and, hence, equals the integral closure of B in

Q(B). O

As a consequence, we can observe:
Lemma 3. Every rig-point of an admissible formal R-scheme X is closed.

Proof. Tt is enough to look at the case where X is affine. Thus, consider an
affine admissible formal R-scheme X = Spf A, and an open formal subscheme
SpfA{f~") C X induced by some element f € A, as well as a closed rig-point
u:Spf B —— Spf A(f™'). Then there is a canonical commutative diagram

T

A—— A(f7h

B

# #

where u” is surjective. We have to show that the composition u” o 7: 4 —— B
is surjective as well. To do this, write B’ for the image of A in B. Then B’ is an
R-algebra of topologically finite type and, hence, by 7.3/8, I -adically complete and
separated. Since B is finite over R by Lemma 2, it is finite over B’. In particular,
if f is the residue class in B of f € A(f~!), we know that its inverse f ' € B
is integral over B’. Considering an integral equation of 7’1 over B’, the usual trick
shows 7‘1 € B’, since we know 7 € B’. But then, as the [-adic topology of
B restricts to the I-adic topology of B’ (use Lemma 7.3/7, or a direct argument
involving absolute values), B’ is dense in B and, thus, must coincide with B. It

follows that the composition u* o 7: A — B is surjective. O

In the following, we will consider rig-points only up to canonical isomorphism.
To be more precise, call two rig-points u: T X and u: T’ X
of an admissible formal R-scheme X equivalent if there is an R-isomorphism
0:T —= T’ such that u = u’ o o. The set of equivalence classes of rig-points
of X will be denoted by rig-pts(X).




8.3 Rig-Points in the Classical Rigid Setting 197

Proposition 4. Let ¢: X' — X be a morphism of admissible formal R-schemes
and u:T' —— X' a rig-point of X'. Then the composition

pou: T — X' —> X

factors uniquely through a rig-point u: T —— X in the sense that we have a
commutative diagram

T’ T
u’l u\
X’ ¢ X.

In particular, ¢ gives rise to a well-defined map
rig-g: rig-pts(X’) — rig-pts(X), W —— u,
between the rig-points of X' and X.
Proof. We may assume that X and X’ are affine, say X = SpfA, X’ = SpfA’.

Furthermore, let T’ = Spf B’. If u: Spf B —— Spf A is a rig-point through which
the composition ¢ o i’ factors, then there is a commutative diagram

A—2 L q
B B’

where the vertical maps are surjective. Since B and B’ are local integral domains of
dimension 1, which are finite over R by Lemma 2, we see that B —— B’ must be
injective. Hence, we can identify B with the subring of B’ that equals the image of
u* o ¢*, and we see that the rig-point u: Spf B — X through which ¢ o u’ factors,
is unique.

To show the existence part of the assertion, set B = u* o ¢*(A4). Then, by its
definition, B is of topologically finite type and, hence, by 7.3/5, an admissible
R-algebra. Furthermore, since B’ is a local integral domain of dimension 1, the
same must hold for B, as B’ is integral over B by Lemma 2. Thus, A — B gives
rise to a rig-point u: T — X, through which the composition ¢ o u’ factors. O

The construction of the map rig-¢ in Proposition 4 shows that the residue field of
arig-point u: T —— X can shrink under this map. The latter is not possible if ¢ is
an admissible formal blowing-up.
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Proposition 5. Let ¢: X' —— X be an admissible blowing-up on an admissible
formal R-scheme X . Then the associated map

rig-@: rig-pts(X’) — rig-pts(X)
is bijective and respects residue fields.

Proof. We may assume that X is affine, say X = SpfA. Leta = (fp,..., ;) C A4
be a coherent open ideal such that ¢ is the formal blowing-up of a on X. In order to
exhibit an inverse of rig-¢, consider a rig-point u: Spf B —— X. Then a becomes
invertible over the integral closure B of B in Q(B), since B is a valuation ring
by Lemma 3 and since any finitely generated ideal of a valuation ring is principal.
Interpreting B as a direct limit of finite extensions of B and using the fact that a is
finitely generated, we can find a finite subextension B’ C B over B such that the
ideal aB’ C B’ is invertible. Clearly, B’ is a local ring of dimension 1, just as R and
B are. Furthermore, it is /-adically complete and separated by 7.3/8. Thus, using
the universal property of the formal blowing-up ¢, the morphism

Spf B — SpfB — X

factors through a unique morphism «’: Spf B —— X’. More precisely, if aB’ is
generated by f; and Spf A; is the open formal subscheme of X’ where the invertible
sheaf a@y, C Oy is generated by f;, then &’ maps Spf B’ into Spf A4;. Replacing
B’ by the image of the attached map 4; —— B’, we may even assume that
u':Spf B/ —— X’ is a closed immersion and, therefore, is a rig-point of X’. Thus,
associating to any u € rig-pts(X) the rig-point «’ € rig-pts(X’), as just constructed,
we obtain a map rig-pts(X) — rig-pts(X’), which clearly is an inverse of rig-¢.

O

We want to show that the rig-points of an admissible formal R-scheme X
correspond bijectively to the points of the associated rigid K-space Xig.

Lemma 6. Let X = Spf A be an affine admissible formal R-scheme. Then there are
canonical bijections between the following sets of points:

(i) Rig-points of Spf A, up to identification via natural isomorphism.
(ii) Non-open prime ideals p C A withdim A/p = 1.
(iii) Maximal ideals in A g K.

In more detail, the stated bijections can be described as follows:

(a) Given a point of type (1), i.e. a rig-point u:Spf B —— Spf A defined by an
epimorphism u*: A —— B, associate to it the prime ideal p = keru® C A as
point of type (ii).

(b) Given a point of type (ii) represented by a prime ideal p C A, associate to it the
ideal generated by p in A Qg K as point of type (iii).
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(c) Given a point of type (iii), represented by a maximal ideal m C A ®r K, let
p = m N A and associate to m the canonical morphism Spf A/p —— Spf A
as point of type (i).

Proof. First we show that the maps described above are well-defined in the sense
that they produce points of the stated types. Starting with points of type (i), let
u: Spf B —— Spf A be a rig-point of X, and let u*: A —— B be the associated
epimorphism of R-algebras. Then p = keru” is a prime ideal that satisfies
dim A/p = dim B = 1. Furthermore, since A/p contains R as a subring, p cannot
be open. It follows that p is a point of type (ii). Next, consider a prime ideal p C A
giving rise to a point of type (ii), and assume that there is a prime ideal ¢ C A
with p . Then ¢ is a maximal ideal, due to dim A/p = 1. Furthermore, such
a maximal ideal must be open in A, since otherwise we would have 1A + q = 4
forr € R,0 < || < 1, thus, implying an equation of type 1 — an = ¢ for
some elements @ € A and g € q. But then, due to the geometric series, ¢ would be
invertible which, however, is impossible. It follows that p - (4 ® g K) is a maximal
ideal in A ® g K and, thus, a point of type (iii).

Finally, consider a point of type (iii), i.e. a maximal ideal m C A ® K. Then
K' = (A ®g K)/m is a field that is finite over K by 2.2/12 and, using 7.3/5, the
image of A in K’ is an admissible R-algebra, which we denote by B. Extending
the absolute value of K to K’, which is possible in a unique way, let R” C K’ be
the corresponding valuation ring. Then R’ equals the integral closure of R in K’,
and we claim that B C R’. In fact, choose an epimorphism R({) —— A where
¢ is a finite system of variables, and consider on the affinoid K-algebra A ® K
the residue norm derived from the induced epimorphism K({) —— A Q®p K.
Fixing some w7 € R, 0 < || < 1, the topology of A ® g K restricts to the w-adic
topology of A; the latter is true, since A4, as an admissible R-algebra, does not admit
m-torsion and, thus, embeds into A ® g K. But then, by continuity, any bounded part
of A ®g K, such as A, must be mapped into a bounded part of K’, and it follows
that B C R’. Since the extensions R C B C R’ are integral and R, R’ are local
rings of dimension 1, the same must be true for B. It follows that A —— B gives
rise to a rig-point Spf B —— Spf A. Furthermore, writing p = m N A, we see that
the quotient A/p is isomorphic to B.

To show that the above described canonical maps are, indeed, bijections, note
that these maps are all injective by definition. Furthermore, going from points of
type (i) to points of type (ii), then of type (iii) and, finally, of type (i) again, we get
the identity map on points of type (i). This is enough to conclude that all three maps
are bijective. O

Using the map from points of type (i) in Lemma 6 to those of type (iii), we obtain
the following statement:

Proposition 7. Let X be an admissible formal R-scheme and let Xy, be the
associated rigid K-space. Then there is a canonical bijection
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rig-pts(X) —> Xijp

between sets of points, which is functorial in X and associates to a rig-point
T — X the image of the corresponding closed immersion Tij; — Xiig.

Choosing an element 7 € R, 0 < || < 1, we may use / = () as an ideal
of definition of R. As usual, we set Ay = A/I°T'A for any R-algebra A and let
X, = X ®g R/I'"! for any formal R-scheme X . Then the underlying topological
spaces of the schemes X, are canonically identified via the closed immersions
Xy — X¢41. If k is the residue field of R, we may, in terms of underlying
topological spaces, identify each X, even with X; ®g, k = X ®g k. The latter
is a k-scheme of finite type if X is a formal R-scheme of topologically finite type;
it will be denoted by Xj. Let us call X} the special fiber of X. Since any rig-point
u:T —— X of an admissible formal R-scheme X induces a closed immersion
uy: Ty — Xj, we see that u determines a closed point of the special fiber X.
Thus, using Proposition 7, we get a canonical specialization map

sp: Xpig — Xk

that is characterized as follows. Consider a point x € Xy,. To determine its image
sp(x) € X, choose an affine open subscheme U = Spf 4 in X such that x belongs
to Ujg = SpA ®r K, and let m C A ®g K be the corresponding maximal ideal.
Then consider the projection tx: 4 @ K —— (4 ®r K)/m = K’ where K’ is
finite over K by 3.1/4. Let 7: A —— B for B = 1 (A) be the restriction of tg. As
we have seen, B is a local integral domain of dimension 1 lying between R and the
valuation ring of K’. In fact, t gives rise to the rig-point of X corresponding to x,
and the surjections A ® x k — B ®r k —— B ®p k/rad(B ®p k) determine
the closed point of the special fiber Uy = Spec A ®r k C Xj that equals the image
of x under the specialization map sp. Note that the construction of sp is similar to
the one considered in [BGR], 7.1.5, although we never use “canonical reductions”
of affinoid algebras in the style of [BGR], 6.3.
We want to show:

Proposition 8. For any admissible formal R-scheme X, the specialization map
sp: Xug — X is surjective onto the set of closed points of Xj.

Proof. We may assume that X is affine, say X = Spf A, and we first look at the
special case where A is an algebra of restricted power series, say A = R({) for a
finite set of variables { = ({y,...,{,). Then consider a closed point x € X} and let
m C Ay = AQ®gk be the associated maximal ideal. We set k' = A} /m and choose a
finite field extension K’/ K lifting the extension k’/ k. It follows that K’ is endowed
with an absolute value extending the one given on K, and we denote by R’ C K’
the corresponding valuation ring; it equals the integral closure of R in K'. In order
to show that x belongs to the image of the specialization map sp: Xy, — Xj,
it is enough to show that the canonical projection py: A — Ay — k’ can
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be lifted to an R-homomorphism p: A —— R’. Then, since R’ is integral over R
and, hence, over p(A), we see that p(A) is a local ring of dimension 1. Therefore
the epimorphism A —— p(A) gives rise to a rig-point of X specializing into the
closed point x € Xj.

To construct the desired lifting p of py is easy. Choose a representative a; € R’
of pi(¢;) for each i and define a lifting of p; by

sz(Cl""’§71>4’R/v EiHai, i=1,...,n.

In the general case, we choose an epimorphism t: R(¢) —— A where R({) is an
R-algebra of restricted power series as before. We can extend t to an epimorphism
k. K(¢) — A ®g K between associated affinoid K-algebras. Then A may be
interpreted as the subring in A ® g K consisting of all elements a € A @ K such
that a has residue norm < 1 with respect to the projection 7g; use 2.3/9. Due to
Noether Normalization 2.2/11, there is a K-morphism

e K(n) — K(¢)
with a finite set of variables n = (71, ..., n4) such that the composition
txolg: K(n) — A®r K

is a finite monomorphism. Since (x is contractive with respect to the Gaufl norm,
g restricts to an R-morphism ¢: R(n) —— R(¢). We claim that the resulting
R-morphism tot: R(n) — A is finite. This fact is readily checked by redoing the
proof of Noether normalization in 2.2/11, using coefficients in R instead of K. The
important fact is the estimate provided by the Weierstrass division formula in 2.2/8:
given any (,-distinguished element g € K(¢) of GauBl norm 1 and of order s, any
element f € K(¢) can uniquely be written as

f=qg+r with q € K(¢), re K, ....50-1)[8],

where deg, r < s and |ql, |r| < [f].

Knowing that T ot: R(n) —— A is a finite monomorphism, we want to apply the
Going-down Theorem to it. In order to do this, assume that A is an integral domain.
Furthermore, we need to know that R(n) is a normal ring. The latter follows from
the fact that K () is a normal ring; see 2.2/15. In fact, observe that the fraction field
0 of R(n) coincides with the one of K (1) and consider an element ¢ € Q that is
integral over R(n). Then g € K (n) by 2.2/15, and if we look at an integral equation

¢ +ag T +. . +e=0

with coefficients ¢; € R(n), it follows that ¢ has necessarily Gau3 norm < 1 and,
thus, belongs to R(n). Therefore R(n) is a normal ring.
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Now, as in the beginning, let m be the maximal ideal in A corresponding to the
given closed point x € X;. Set n = m N R(n). Using the characterization of rig-
points in Lemma 6, we know from the above considered special case that there is
a non-open prime ideal q C n satisfying dim R(n)/q = 1. Furthermore, by the
Going-down Theorem, there is a prime ideal p C m C A such that p N R(n) = q.
Clearly, p is non-open and satisfies dim A/p = 1. Thus, by Lemma 6, p gives rise
to a rig-point of Spf A that specializes into the point corresponding to the given
maximal ideal m C A.

In the general case, consider the injection A —— Ax = A ®r K, and let
P1,...,ps C Ag be the minimal prime ideals in Ag. Set pf = p; N A. Then
rad Ax = (j—; p; and, hence, radA = ()., p;. In particular, for any given
maximal ideal m C A, there is an index iy such that p; C m. Write p’ = p;,
and p = p,, and consider the commutative diagram

A ——— Ag

]

Alp) —— Ag/p .

In particular, A/p’ is an R-algebra of topologically finite type. Since it does not
have I-torsion, it is an admissible R-algebra by 7.3/5. Therefore we know from
the above considered special case that the projection A/p’ —— A/m lifts to an
epimorphism A/p’ — B giving rise to a rig-point T —— Spf A/p’. Then, as
desired, T — Spf A/p’ — Spf A is a rig-point specializing into x. O

8.4 Rigid Spaces in Terms of Formal Models

We consider again the classical rigid situation where R is a complete valuation
ring of height 1 with field of fractions K. As usual, let k be the residue field of
R and choose a non-unit 7 € R — {0} so that the topology of R coincides with
the w-adic one. If X is an admissible formal R-scheme and X, its associated
rigid K-space, we call X a formal R-model of Xig; cf.7.4/4. Given any rigid
K-space Xk, one may ask if there will always exist a formal R-model X of Xg,
and if yes, in which way such formal models will differ. Assuming some mild
finiteness conditions, we will work out satisfying answers to these questions. We
thereby obtain a characterization of the category of rigid K-spaces (with certain
finiteness conditions) as a localization of an appropriate category of admissible
formal R-schemes.
To begin with, let us explain the process of localization of categories.
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Definition 1. Let € be a category and S a class of morphisms in €. Then a
localization of € by S is a category Cs together with a functor Q:¢€ —— Cg
such that:

(1) Q(s) is an isomorphism in Cg for every s € S.
(ii) If F: € — D is a functor such that F(s) is an isomorphism for every s € S,
then F admits a unique factorization as follows:

Q_Q,QS
F

D

To be more precise, the commutativity of the diagram, as well as the uniqueness
of G are meant up to natural equivalence of functors. Without any further assump-
tion, one can show that localizations of categories do always exist.

Proposition 2. The functor
rig: (§/R) — (R/K), rigt X Xrigy

from the category (§/R) of admissible formal R-schemes to the category (R/K)
of rigid K-spaces, as defined in 7.4/3, factors through the localization of (F/R) by
admissible formal blowing-ups.

Proof. We just have to show that the functor rig transforms an admissible formal
blowing-up X 4 —— X of some admissible formal R-scheme into an isomorphism
Xprg — Xiig. To do this, we may assume that X is affine, say X = Spf A. Then
the coherent open ideal A4 C Oy is associated to a finitely generated open ideal
a= (fo,..., fy) C A.Choosing a non-zero non-invertible element 7 € R, we may
assume / = () and we see from 8.2/7 that X 4 is covered by the affinoid K-spaces
associated to the admissible R-algebras

fo
7

Thus, applying the functor rig to the projection Spf A; —— Spf A and writing
Ax = A ®@r K, we obtain the canonical map

So I

SpAK<Z,... 7

A; = A( ,...,%>/(n-t0rsi0n), i=0,...,r1.

>4> SpAK
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defining Xrig(%’, el %) as a rational subdomain of X, = Sp Ax. More specif-
ically, one checks that rig transforms the covering (Spf A4;);=¢.., of X4 into the
rational covering generated by fo,..., f; on Xy, preserving intersections. Of
course, one has to realize that, a being open in A, it contains a power of 7 so that
the functions fy, ..., f, will generate the unit ideal in Ag. Thus, we see that rig
transforms the morphism X 4 — X into an isomorphism. O

Under certain mild conditions we can strengthen Proposition 2 to yield an
equivalence of categories. To give a precise statement, recall from 8.2/12 that a
formal R-scheme X is called quasi-paracompact if it admits an open covering
of finite type by quasi-compact open subschemes U; C X, i € J, i.e. such that
each U; is disjoint from almost all other U;, j € J. In a similar way the notion
of quasi-paracompactness is defined for rigid K-spaces. Furthermore, recall 6.3/2
and 6.3/4 for the characterization of quasi-separated rigid K-spaces.

Theorem 3 (Raynaud). Let R be a complete valuation ring of height 1 with field of
fractions K. Then the functor rig induces an equivalence between

(1) (FSch/R)s, the category of all admissible formal R-schemes that are quasi-
paracompact, localized by the class S of admissible formal blowing-ups, and

(ii) (Rig/K), the category of all quasi-separated rigid K-spaces that are quasi-
paracompact.

The proof will consist in establishing the following steps:

Lemma 4.

(a) The functor rig transforms admissible formal blowing-ups into isomorphisms.

(b) Two morphisms ¢, \y: X —— Y of admissible formal R-schemes coincide if
the associated rigid morphisms @ig,Vrig coincide.

(c) Let X.,Y be admissible formal R-schemes that are quasi-paracompact, and let
@k Xiig — Yiig be a morphism between the associated rigid K-spaces. Then
there exist an admissible formal blowing-up t': X' —— X and a morphism of
formal R-schemes ¢": X" — Y such that ¢}, = @k © Tj,.

(d) Assume that ¢k Xiig — Yig as in (¢) is an isomorphism and that XY are
quasi-compact. Then we can choose ¢': X' —— Y satisfying ¢;, = ¢k © 75
with the additional property that it is an admissible formal blowing-up of Y .

(e) Eachrigid K-space X g that is quasi-separated and quasi-paracompact, admits
a quasi-paracompact admissible formal R-scheme X as a formal model, i.e.
with X satisfying Xz ~ Xg.

g

First note that, in the classical rigid case, an admissible formal R-scheme X is
automatically quasi-separated, since its special fiber is a scheme of locally finite
type over the residue field k of R; see Sect. 8.3. Therefore it is clear that the functor
of associating to an admissible formal R-scheme X its corresponding rigid K-space
Xiig restricts to a functor
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rig: (FSch/R) — (Rig/K).

We begin by showing that the assertions (a)—(c) and (e) of Lemma 4 imply that
the functor rig satisfies the conditions of a localization of (FSch/R) by the class S
of all admissible formal blowing-ups; note that assertion (d) of Lemma 4 will be
necessary for the proof of assertion (e).

Of course, we realize from (a) that rig(s) is an isomorphism for every s € S.
Next, consider a functor F: (FSch/R) —— D to some category © where F(s) is
an isomorphism for all s € S. In order to define a functor G: (Rig/ K) — © with
F = G orig, we proceed as follows. For any object Xk in (Rig/K) we pick an
R-model X in (FSch/R) (with Xy, >~ Xk) and set G(Xg) = F(X). The latter is
possible due to assertion (e). Furthermore, let gx: Xx —— Yg be a morphism in
(Rig/K). Then, if X and Y are the R-models we have picked for Xg and Yk, we
use (c) and choose an admissible formal blowing-up 7’: X’ —— X such that there
is an R-morphism ¢": X" —— Y satisfying ¢, = ¢k o 7jj,. Then we define the
composition

Glox): F(x) 2200 pxry L)

F(Y)

as the image of the morphism @k under G. To show that G(¢g) is well-defined,
consider a second admissible blowing-up ”: X" —— X and an R-morphism
¢": X" —— Y such that ¢/, = @g o /.. Let A’, A” C Oy be the coherent open
ideals corresponding to 7/, t”, and let t”/: X" —— X be the formal blowing-up of
the product A’A” on X. Then " dominates t’, 7”7, and we thereby get a diagram

X///

where the square with the diagonal t” is commutative. Furthermore, the composi-
tions ¢’ o 0’ and ¢” o ¢ coincide by (b), since they coincide when applying the
functor rig. Therefore the whole diagram is commutative. Since 7/, t”, 7" € §, it
follows that the compositions

FX) 295 ey £9Y by

Fx) 2% pxry B9 py



206 8 Raynaud’s View on Rigid Spaces

coincide and, hence that G(gk) is well-defined. For G being a functor, it remains to

show that G respects the composition of morphisms. Thus, consider a composition
VK

of morphisms Xg LN T Zk in (Rig/K). Then the corresponding
composition G(¥ k) o G(¢k) in D is constructed via a diagram of type

X’ Y’

X Y zZ

in (FSch/R) where the vertical arrows are admissible formal blowing-ups.
By 8.2/16, there is a commutative diagram

X// Y/

X’ Y

with an admissible blowing-up X” —— X’ and furthermore, by 8.2/15, we can
dominate the composition of admissible blowing-ups X" —— X’ —— X by an
admissible blowing-up X" —— X, thereby getting the following commutative
diagram:

X///
Y
X//
X v
X Y Z

Since the composition G (¥ x 0@k ) can be thought to be constructed via the resulting
diagram
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X///

X Z,

we see that G(Yg o px) = G(Yg) o G(pk). That G is unique, as required, is clear
from the construction.

Next, in order to prove the assertions of Lemma 4, we gather some general facts
that will be needed.

Lemma 5. Let X be an admissible formal R-scheme that is quasi-paracompact, and
let Uk be an admissible covering of finite type of the associated rigid K-space X,
consisting of quasi-compact open subspaces of Xigs. Then there is an admissible
formal blowing-up t: X' — X together with an open covering ' of X' such
that the associated family il;ig of rigid K-subspaces of Xz coincides with Ug.

Proof. We start with the case where X is affine. Then 4 is a finite covering. By the
Theorem of Gerritzen—Grauert 3.3/20, each Ug € ik is a finite union of rational
subdomains of X, and we may assume that Uy itself is a rational subdomain in

Xiig. Then Uk is of type
Xrig(ﬁv D) ﬁ)
Jo Jo

for some global sections fy, ..., f, generating the unit section in Q. Multiplying
the f; with a suitable constant in R, we may even assume f; € Oy for all i. So we
can consider the coherent open ideal A C Oy generated by the f;, as well as the
associated formal blowing-up X’ — X. Then the part of X’ where f; generates
the ideal AOy, C Oy constitutes an open formal subscheme U C X' inducing
the admissible open subspace Ug C X;;,. Working with all Ux € Uy this way, we
can blow up the product of the corresponding coherent open ideals in Qy. Thereby
we obtain an admissible formal R-scheme X’ admitting a system 1" of open formal
subschemes that induce the system g on Xy;,. That ' covers X’ will be shown
below.

In the general case we work locally on X with respect to an affine open covering
(X;)jey of finite type. Restricting g to any X, and using the fact that X, is
quasi-separated, we obtain an admissible covering of finite type of X s, consisting
of quasi-compact admissible open subspaces of X ;. As shown above, one can
construct a coherent open ideal 4; C Oy; such that, after blowing up +; on X,
there exist open formal subschemes of the blowing-up X 4, of A; on X}, giving
rise to formal R-models of the members of il |x ;. Extending each + to a coherent

open ideal a‘TJ C Oy as in 8.2/13 and setting A = [] jeJ xj, we can represent all
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members of L as open formal subschemes of the blowing-up X’ = X4 of 4 on
X, thereby obtaining a family LU’ as required.

Finally, to show that 1’ covers X’, we can use the surjectivity of the specialization
map from Xr/ig to the closed points of X, for k the residue field of R. In fact, if x
is a closed point of X', we may view it as a closed point of X;. Then we know
from 8.3/8 that x is induced by a rig-point u: T — X’ or, using 8.3/7, by the
corresponding closed point ug: Trjy — X r/ig. Consequently, uy, factors through a
member of U, and it follows that u factors through a member of {{’. In particular,
the open formal subscheme V = |J; e U’ C X’ contains all closed points of
X'. But then the closed part X’ — V does not contain any closed point of X’ and,
therefore, must be empty; just look at the special fiber X, of X', which is locally
of finite type over k, and consult [Bo], 8.3/6, for example. Thus, I’ covers X', as
claimed. a

Lemma 6. Let A be an admissible R-algebra. Consider A as a subring of the
associated affinoid K-algebra Ajs = AQr K, andlet fi,...,f, € Asg be elements
satisfying | filwp < 1 fori = 1,....n. Then A" = A[fi,...,[s] is an admissible
R-algebra that is finite over A. Furthermore, if ¢ € R—{0} is chosen in such a way
that cfy, ... .cf, belong to A, the canonical morphism t:Spf A’ — Spf A can be
viewed as the formal blowing-up of the coherent open ideal a = (c,cf,...cf,) of
A on Spf A.

Proof. We choose an epimorphism R({) —— A for a finite system of variables {
and consider on Ay, the residue norm with respect to the induced epimorphism
K(f) — Aig. Then A consists of all elements a € Ay, with |a| < 1,
use 3.1/5 (iii), and we see from 3.1/17 that A’ is integral and, hence, finite over
A, since it is of finite type over A. Furthermore, as cA’” C A, it is easily seen that
A’ is an R-algebra of topologically finite type. Then A’ is an admissible R-algebra
by 7.3/5, since it does not admit r-torsion.

In order to show that : Spf A’ —— Spf A is the formal blowing-up of the ideal
a C A, itis enough to show that 7 satisfies the universal property of admissible
formal blowing-up. To do this note that the ideal aA” C A’ is generated by ¢ and,
hence, is invertible, since c¢ is not a zero divisor in A’ C Ayig. Furthermore, consider
a homomorphism of admissible R-algebras A —— D such that the ideal aD C D
is invertible. Let us write f; for the image of f; in D again. If aD is generated by c,
then ¢f; € ¢D and, hence, f; € D for all i, since ¢ is not a zero divisor in D. But
then A —— D admits a unique extension A* — D. If, on the other hand, aD is
generated by ¢f; for some i, then look at the inclusions D —— D[ f;] —— D Qg
K. Since ¢ € (¢f;)D and ¢ is not a zero divisor in D, we see that f; is invertible in
D[ f;] with an inverse f;~' € D. Using the fact that f; is integral over D, there is
an integral equation

fFrdiff '+ +d;=0
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with coefficients d; € D. Multiplication with f,~**!' € D yields
fitdi+...+d f7T =0

and, hence, f; € D. Thus, f; is a unit in D and, as before, aD is generated by c.
Again, A —— D admits a unique extension A’ — D, and this is enough for
showing that 7: Spf A’ —— Spf A satisfies the universal property of blowing up a
on Spf A. O

Now we are able to establish the assertions (a)—(e) of Lemma 4.

(a) This is a consequence of Proposition 2.

(b) Consider two morphisms ¢, y: X —— Y in (FSch/R) such that ¢y, coincides
with V.. It follows from 8.3/7 that ¢ and ¥ coincide on the level of rig-
points as maps rig-pts(X) — rig-pts(Y). Since this map is compatible with
the specialization maps sp: rig-pts(X) —— Xj and sp:rig-pts(¥Y) — Y4,
we see from 8.3/8 that ¢ and 1 coincide as maps from closed points of X to the
closed points of Y. But then, since X} and Y} are of locally finite type over k, it
is clear that ¢ and 1y must coincide as maps between the underlying point sets
of X and Y. Therefore, in order to show ¢ = i, we can assume that X and Y
are affine, say X = SpfA and Y = Spf B. But then, since the canonical maps
A— AQ®r K and B — B ®p K are injective, due to the fact that X and
Y are admissible, it is obvious that @i, = Vi, implies ¢ = i, thereby finishing
the proof of Lemma 4 (b).

(c) Consider two admissible formal R-schemes X, Y that are quasi-paracompact,
and a morphism ¢ : Xi — Y, between associated rigid K-spaces. We have
to look for an admissible blowing-up 7: X’ —— X together with a morphism
of formal R-schemes ¢: X’ — Y satisfying @rig = QK © Tyjg. To do this, let us
start with the case where X and Y are affine, say X = SpfA and Y = Spf B.
Then ¢ : Xij; — Y, is given by a morphism (pf}: By — A between
associated affinoid K-algebras Bi; = B ®r K and 4, = A ®r K. Since
B is an admissible R-algebra, we can view it as a subalgebra of Big, and we

claim that

B C {g € Brig; |g|sup = 1}
Indeed, choose an epimorphism «: R(¢y,...,{,) — B, for a finite system of
variables ¢;, and look at the resulting epimorphism ax: K{{i, ..., ) — Brg

obtained via tensoring with K over R. Then all elements g € B have residue
norm |g| < 1 with respect to ax and, hence, satisfy |g|wp < 1 by 3.1/9. Let
g = a(f)andset f; = ¢k (g), i =1,...,r.

Since (p’}é is contractive with respect to the supremum norm by 3.1/7, we see
that | fi|syp < 1 for all i. Furthermore, A" = A[fi,..., f;] is an admissible

R-algebra according to Lemma 6, and it follows from the completeness of A’
that the map
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#
R{¢y,...,C) 2+ B Brig Sk, Arig

will factor through A’. Thus, (p’;(: Bz — Ay restricts to a well-defined
R-morphism ¢*: B —— A’ giving rise to a morphism of admissible formal
R-schemes ¢: X’ — Y with X’ = Spf A’. But then the inclusion 4 —— A’
induces an admissible formal blowing-up t: X’ — X by Lemma 6 satisfying
@rig = QK © Tiig, as required.
Now let us consider the general case where X and Y are quasi-paracompact.
We fix affine open coverings of finite type 4 of X and ¥ of Y, and consider
the induced admissible coverings 4, and Uy, of the associated rigid K-spaces
Xiig and Yjg. Then Uy, and Ui, are of finite type. Restricting the pull-back
(p,?l (Vyig), which is an admissible covering of Xijg, to each member Uy € g,
we can find a refinement g of il that is an admissible affinoid covering
of finite type again, but where, in addition, any member U € ilg is mapped by
@k into some member Vi; € Uii,. Furthermore, using Lemma 5 in conjunction
with 8.2/15, we may even assume that the covering Uk is induced from an
affine open covering of X, which we will denote by il again. Now, for any
U € 4, there is a member Vi, € Uy, such that Uy, the admissible open
subspace of Xy, induced from U, is mapped into V. From the affine case
we know that there is an admissible formal blowing-up ty: U’ —— U
together with a morphism of formal R-schemes ¢y: U’ — V —— Y such
that @y g: Ur’ig — Y, coincides with the composition <,0K|Urig ° Ty rig. Using
Proposition 8.2/14, we can dominate all blowing-ups ty by an admissible
formal blowing-up 7: X’ — X that, restricted to ! (U) for each U € 4,
factors through t;'(U) via some morphism oy:t ' (U) — 1;'(U). It
follows from assertion (b) that the compositions ¢y o oy can be glued to
yield a well-defined morphism of admissible formal R-schemes ¢: X' —— Y
satisfying ¢, = @k © Tyg. This settles assertion (c) of Lemma 4.

(d) Assume that X,Y are quasi-compact and that we have an isomorphism
¢k Xrg ——> Yiig. Then, using (c), there is a diagram

X' Y’
Y1 @2

A, 71 ©, B
X Y

with admissible formal blowing-ups 1, 1, say given by the coherent open ideals
A C Oy and B C Oy, such that

-1
ﬂol,rig = @K ©° 7-rl,riga (/72.rig =@k © TZ,rig~

Furthermore, if o is the formal blowing-up of 8Oy, on X’ and o, the formal
blowing-up of Ay, on Y’, the morphism ¢; o o, factors uniquely through
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Y’, and ¢, o 0, factors uniquely through X’, due to the universal property of
admissible blowing-up. Thus, we can enlarge the diagram as follows:

X// Y//

Vi Y2
.BOX/, (o] o2, A@Y/
Y

X’ Y’

b1 $2
A, 71 ™, 8
X Y

Since all vertical maps of the diagram induce isomorphisms on the level of
associated rigid spaces and since all diagonal maps give rise to ¢k or its inverse
on the level of X, and Y., we can conclude from (b) that the diagram is
commutative. Furthermore, using the universal property of the formal blowing-
up o, and the fact that the ideal AQyx~» C Oy~ is invertible, we see that the
morphism v, factors uniquely through a morphism o;: X” —— Y”. Likewise,
Y, will factor through a unique morphism a,: Y” — X”. Since, on the level
of Xiig and Y}¢, the morphisms &y, o, coincide with ¢ and its inverse, it follows
from (b) again that «; and o, are inverse to each other. But then, using 8.2/11,
namely that in the quasi-compact case the composition of two admissible formal
blowing-ups yields an admissible formal blowing-up again, the assertion (d) of
Lemma 4 follows.

Consider a quasi-separated and quasi-paracompact rigid K-space Xg and an
admissible covering of finite type (X; x)ies of Xx by quasi-compact open
subspaces X; x C Xg. We may even assume that X; g is affinoid for all
i € J. Any finite union of affinoid open subspaces of X yields a quasi-
compact open subspace of Xx and we will start by showing that quasi-compact
open subspaces of Xg admit formal R-models. Thus, assuming that J is finite,
we can proceed by induction on the cardinality of J. If J consists of just
one element, Xg is affinoid, say Xx¢ = Sp Ak. Fixing an epimorphism of
type a: K(C1,...,¢) — Ag,let A = a(R({y,...,¢)). Then X = SpfA
is a formal R-model of Xg. Next, taking care of the induction step, assume
Xk = U g U U, g with quasi-compact admissible open subspaces U; x C Xk
that admit formal R-models U; for i = 1,2. Let Wx = U;x N Uy k.
Since Xk is quasi-separated, Wx is quasi-compact. Thus, there is a finite
admissible affinoid covering of Wk, and the latter can be enlarged to yield a
finite admissible affinoid covering of U, . Then, applying Lemma 5, there is
an admissible formal blowing-up U —— U such that the open immersion
Wg —— U, i is represented by an open immersion of admissible formal
R-schemes W/ —— U/. In the same way, we can find an admissible formal
blowing-up U, —— U, such that the open immersion Wy —— U, k is rep-
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resented by an open immersion of admissible formal R-schemes W, — U,.
In particular, W/ and W, are two formal R-models of Wx and, by applying
(d), there exists a common admissible formal blowing-up W” of W/ and Wj.
By 8.2/13, the blowing-ups W"” —— W/ can be extended to admissible formal
blowing-ups U/ — U/ for i = 1,2. But then we can glue U/’ to U, along
W, thereby obtaining a formal R-model X of X. This settles Lemma 4 (e) in
the case where X is quasi-compact.

To prove Lemma 4 (e) in the general case, we need to recall the concept of
connectedness and of connected components for rigid spaces from 5.3/9 and 5.3/10.
In fact, we will reduce assertion (e) to the case where Xk is connected and, being
quasi-paracompact, admits a countable admissible covering by quasi-compact open
subspaces.

Decomposing Xk into its connected components in the sense of 5.3/10, we
may assume that Xk is connected. Then we will construct a countable admissible
covering (U, x)nen of X consisting of quasi-compact open subspaces U, x C Xk
with the additional property that

U xgNUpg =9 for m<n—1.

To do this, fix an admissible covering of finite type (X; x)ics of Xx where all X; g
are connected. We start with Uy ¢ = X, x for some iy € J and define U, g for
n € N inductively as the union of all X; g that are not yet contained in the union

Vn,[( = U()’[( u...u Un,K»

but meet U, . As (X; k)ies is a covering of finite type, U, 41 consists of only
finitely many sets X; x and, hence, is quasi-compact. Furthermore, it is easily seen
that U;X’:O U, k equals the connected component of X x containing X;, x. However,
as Xk was supposed to be connected, this component coincides with X g . Therefore
(U, x)nen is an admissible covering of Xg consisting of admissible open subsets
that are quasi-compact.

To construct a formal R-model X of Xk, we proceed by induction on n via
the procedure we have used above in the quasi-compact case. Thus, assume that
we have already obtained a formal R-model V, of the union V, g, together with
open immersions U; —— V, for i < n representing the open immersions
Ui x — V, k. To obtain a formal R-model of V,, 11 x = V, xk U U, 41k, we start
out from the formal R-model U, of U, ¢ and a certain formal R-model U, of
U, +1.x, which exists, since U, 4+ g is quasi-compact. Then, in order to glue U, to
U, +1, we need to perform suitable admissible formal blowing-ups on U, and U, 4
first. Since U, g does not meet any U, g fori < n, we can glue U,y to V, after
extending the blowing-up on the side of U, to all of V,,. Now, due to 8.2/13, such
an extension exists and can be chosen in such a way that it is an isomorphism over
any open V C V, disjoint from U,. In particular, the extension of the blowing-up
leaves all U; with i < n — 1 unchanged. From this it follows that the R-models
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V, of V, x “converge” towards a well-defined R-model X of Xk, as n progresses
towards infinity. This settles assertion (e) of Lemma 4 and thereby also the proof of
Theorem 3. O

In Sect. 5.4 we have associated to any K-scheme of locally finite type X a rigid
K -space X", called the rigid analytification of X . We want to show:

Proposition 7. Let X be a separated K-scheme of finite type. Then the associated
rigid analytification X "¢ is a separated and quasi-paracompact rigid K -space and,
hence, admits a formal R-model X .

Proof. The explicit construction of rigid analytifications in Sect.5.4 shows that
for any closed immersion f: X —— Y of K-schemes (of locally finite type)
the associated rigid analytification f"€: X" — ~ Y™ js a closed immersion.
Furthermore, it is seen in the same way that rigid analytification respects cartesian
products (in fact, more generally, fiber products). Therefore, if X is separated, its
rigid analytification will be separated as well.

To show that X" is quasi-paracompact, we use the fact that X, as a separated
scheme of finite type, admits a so-called Nagata compactification X ; see Conrad
[C]. This is a proper K-scheme containing X as a dense open subscheme. Then,
by Chow’s Lemma [EGA II], 5.6, there is an epimorphism w: P —— X from
a projective scheme P onto X. Now consider the associated morphism of rigid
K -spaces "¢: P1¢ —» X'ig, which is surjective as well. As we have seen in
Sect. 5.4, the rigid analytification ;™ of the projective n-space P% admits an
admissible affinoid covering that is finite. Likewise, the same is true for P2 and
it follows from the surjectivity of "¢ that any admissible affinoid covering of X2
admits a finite refinement. In particular, there is a finite admissible affinoid covering
(Uy)ven of Xg, say for N = {1,...,n}.

Let Z = X"g — X" Tt follows that U, N Z is Zariski closed in U, for each
v € N, and we claim that its complement U, — Z is quasi-paracompact. In fact,
choose global sections f1, ..., f, on U, whose zero set is U, N Z. Then, fixing
some 7 € R,0 < || < 1, the final term of the equation

U, -z =Jfx e ti: 1fi0)] > 0}

i=1

= Ulre Ui ln"" < max (/)] < |x|")

mez.

yields an admissible covering of finite type of U, — Z by quasi-compact open
subsets. Hence, U, — Z is quasi-paracompact for each v € N, and we claim that the
same is true for

X“gz(Ul—Z)UU(Un_Z)
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To justify this, we can proceed by induction on n. Writing U’ = U; U ... U U,_y,
assume that

U-Z=U—-2)U...UUs —2Z)

is quasi-paracompact. Then, choosing admissible affinoid coverings of finite type LI’
on U’ — Z and {1” on U, — Z and using the fact that X "¢ is separated, these restrict
to admissible coverings of finite type 4. and $” on the intersection
U -2)nU,—2)=U -2)nU, =U'n U, - Z).

where the members of I/, are affinoid and the members of L[ are at least quasi-
compact, since U’ has this property. We claim that the union ([, U £[7 is an
admissible covering of finite type again. To verify this, fix an open affinoid subspace
V c (U’ NU,) — Z.1tis covered by finitely many members of (/.. and, likewise,
of &7. Then, since L., 4" are coverings of finite type, V' will meet only finitely
many members of (/. and I”. . Therefore it follows that the covering 4., U LI7

must be of finite type. Hence, the same is true for the covering L' U {”. Since the
latter is an admissible affinoid covering of X "¢, we are done. O

A typical example of a rigid K-space X that is not quasi-paracompact, can be
obtained by gluing an infinity of unit discs B}, = Sp K({) along the open unit disk
IEBI+ = {x € BL; |¢(x)| < 1}. Since Xk is not quasi-separated, it cannot admit a
formal R-model.



Chapter 9
More Advanced Stuff

9.1 Relative Rigid Spaces

So far we have considered formal schemes over adic base rings R that are part of
the following classes mentioned in Sect. 7.3:

(V) R is an adic valuation ring with a finitely generated ideal of definition
(which automatically is principal by 7.1/6).

(N) R is a Noetherian adic ring with an ideal of definition / such that R does not
have I -torsion.

Instead of S = Spf R we can just as well work over more global bases. The
following types of formal base schemes S will be of interest:

(V') S is an admissible formal R-scheme where R is an adic valuation ring of
type (V) as above. Thus, the topology of Oy is generated by the ideal w O 5 where
7 € R is a suitable element generating the adic topology of R.

(N’) S is a Noetherian formal scheme (of quite general type) such that the
topology of its structure sheaf O is generated by a coherent ideal 4 C Og and
such that @5 does not admit J-torsion.

Over base schemes S of this type, it is possible to consider admissible formal
S-schemes, or just formal S-schemes that are locally of topologically finite
presentation. Then, taking into account the Theorem of Raynaud 8.4/3, we can
extend the notion of rigid spaces to such more general situations as follows:

Definition 1 (Raynaud). Let S be a formal scheme of type (V') or (N'), as defined
above, and let (FSch/S) be the category of admissible formal S-schemes. Then the
category (Rig/S) of rigid S-spaces is defined as the localization of (FSch/S) by
admissible formal blowing-ups.

Thus, as object, a rigid S-space is the same as an admissible formal S-scheme,
whereas on the level of morphisms, admissible formal blowing-ups are viewed

S. Bosch, Lectures on Formal and Rigid Geometry, Lecture Notes 215
in Mathematics 2105, DOI 10.1007/978-3-319-04417-0_9,
© Springer International Publishing Switzerland 2014
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as isomorphisms. To get an intuitive picture of such a rigid space, one may
generalize the concept of rig-points as developed in Sect. 8.3 and view any rigid
S-space X as a family of classical rigid spaces X over the rig-points s € S.

We want to work out in more detail how the category (Rig/.S) of rigid S-spaces is
obtained from (FSch/S), assuming that we restrict ourselves to formal S-schemes
that are quasi-separated and quasi-paracompact. To define (Rig/S), take as objects
the objects of (FSch/S). Furthermore, for two objects X, Y of (Rig/S), a morphism
X —— Y is given by an equivalence class of diagrams in (FSch/S) of type

X/

X Y
where X’ — X is an admissible formal blowing-up. Two such diagrams
X+~—X —7Y, X~—X,—7,

are called equivalent if there is a third diagram X <—— X" —— Y of this type,
together with factorizations X” — X and X" —— X, making the following
diagram commutative:

X//

X X5

\

X Y

It is not difficult to check directly, using 8.2/10, that the just described relation really
is an equivalence relation.

On the other hand, it might be more appropriate to interpret the set of morphisms
Homgig/s)(X, Y) as the direct limit of the sets Homgscn/s) (X, ¥') where X’ varies
over all admissible formal blowing-ups of X ; here direct limits are meant in the style
of Artin [A], Sect.I.1. To do this, consider the full subcategory B of the category of
all X-objects X’ — X in (FSch/S) whose structural morphisms are admissible
formal blowing-ups, and consider the contravariant functor 8 — (Sets) associ-
ating to any object X’ —— X of ‘B the set Homgscn/s) (X', Y'). Viewing this as a
covariant functor B —— (Sets), we have

Homig/5)(X,Y) = lim Homgscnys) (X', Y).
X’/enBo
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To compose two morphisms X —— Y and ¥ —— Z in (Rig/S), say given by
diagrams

X +—X —>7, Y +~—Y —Z

in (FSch/S), we use a diagram of type

X
M

X’ %

X y z

where X” —— X' is the pull-back (in the sense of 8.2/16) of the admissible
formal blowing-up Y —— Y and where X"/ — X is an admissible formal
blowing-up dominating the composition X" —— X’ —— X see 8.2/15. It is
straightforward to show that the objects of (FSch/S), together with the described
morphisms, satisfy the universal property of a localization of (FSch/S) by the class
of admissible formal blowing-ups.

9.2 An Example: Raynaud’s Universal Tate Curve

As a typical example of a rigid space in the sense of 9.1/1, we want to construct
Raynaud’s universal family of Tate elliptic curves. The latter is defined over the
formal base scheme S = SpfZ[[Q] where Q is a variable. Note that Z[[ Q] is
not a valuation ring and neither a ring that can be accessed in terms of classical
rigid geometry, since it is not of class (V) or (V’). However, it is an adic ring of
class (N) with ideal of definition generated by Q. To begin with, we first carry out
the construction of Tate curves over a complete valuation ring R of height 1 with
field of fractions K. Let ¢ € R where O < |¢| < 1. Then the multiplicative group
scheme Gy, x can be viewed as a rigid K-group via rigid analytification. The set
of K-valued points Gy, x(K) coincides with K* and, thus, we may consider the
infinite cyclic group g% generated by ¢ as a closed analytic subgroup of G, x. Then
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we can build the quotient £, = Gy, x/ g” in the category of rigid K-spaces, in fact,
in the category of rigid K-groups, and this is the Tate elliptic curve over K that is
associated to the parameter ¢. To describe E, in more concrete terms, consider the
unit disk B = BL = Sp K(¢) and look at the affinoid subdomains given by the
annuli

U= B¢ ={xeB;l|q* <|t(x)] <1}
= SpK({,q¢7?),

Uy = B(qt™ g7 = {x € B: |q| < L) < |q|*}
=SpK(C.q¢7 " q'E%).

Furthermore, looking at the peripheries of these annuli, note that U; contains the
affinoid subdomains

U =B ={xeB: || =1}
=SpK (¢,
_ _ _ 1
Um =B '¢.qt7) = {x e B: [E(x)| = |q]°}
=SpK(¢,q7'8%,q57%),
just as U, contains the affinoid subdomains
_ _ 1
U" = B(g™'¢%,q7) = {x € B; [t(0)| = |q]2}
=SpK(¢.q7'¢%.q57%),
Uy =B(g'¢.q¢7") = {x € B: |¢(x)| = Iql}
=SpK(¢,q7'¢.q¢7").
Then, clearly, U™ coincides with U2+ and there is a canonical isomorphism
K(¢.q7'¢.qt7") = K(&.¢7Y), § > q¢.
which corresponds to an isomorphism
‘C:U1+ — U, X — gXx.
Now observe that

Gk = Ja" WUy

nez
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is an admissible affinoid covering of Gy, ¢ viewed as a rigid K-space, in fact a
covering of finite type by annuli. In order to construct the quotient £, = Gy, x/ q%,
one just glues the union U; U U, to itself by identifying U1+ with U;~ via the
isomorphism 7.

Let us exhibit a formal R-model &, of E,. Looking at the canonical epimor-
phisms

@1 K({&n) — K(£.qC7%) = K(&.n)/(g7'¢n—1),
@ K(C 0. &) — K(C.q7'0.q07") ~ K(E.n.6)/(q7 ' —n.q ' CE— 1),

one can check that

kergi N R(¢.n) = (EPn—q)R(L.7).
kergo N R(C.n.§) = (& — qn. C& — q.L — nE)R(Z, . §).

This is done using the multiplicativity of the Gaufl norm on K (¢, n) and, in the case
of the second equation, by dividing out the generator

t—nE=q "6 —qn) —q7'CE—q)

first. The ideals just constructed give rise to flat and, hence, admissible formal
R-schemes

Uy = SpfR(L.q¢7%) = Spf R(¢. 1)/ (& —q).
Uy = SpfR(C.q7'¢%. q¢7") = SpER(¢. 1. £)/(E* — qn. £& — q.C — né),

which are formal R-models of U; and U,. Then we can consider the open formal
subschemes

U = U, Uy = Ui,

U =Walgt™. Uy =WUa(g'Y)
of U; and Uy, and one checks that U coincides canonically with US". Further-
more, multiplication with ¢ yields an isomorphism U —~> U . In fact, the open
immersions

U — U, U —— U, U U, U “— U,

together with the just mentioned canonical isomorphisms, represent the open
immersions

U1+ — U, Ul_ — U, U2+ — U, Uz_ — U,
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and their identifications on the level of formal R-models. In other words, we can
identify U, with U5, as well as U;" with U5, and thereby construct a formal
R-model &, of E,.

The latter model can also be obtained as a quotient of a formal R-model § of the
multiplicative group Gy, x. Indeed, glue U; to U, via the canonical identification
U7 —~> U and define an admissible formal R-scheme

g=Jq"Uuuy)

nez

by using an infinite number of copies of U; U U,, say denoted by ¢ (U; U U,) for
n € Z, and glue ¢" ™' (U; U Us) to ¢"(U; U Us) via the canonical isomorphism
UT —=» U; induced from multiplication by g. The resulting formal R-scheme &
is a formal R-model of Gy, g, although ¥ cannot be viewed as a formal R-group
scheme. However, multiplication by ¢ is defined on ¥ and we see that the formal
model &, of E, may be viewed as the quotient § /¢%.

Now observe that the construction of the admissible formal scheme &, is already
possible over the base S = SpfZ[[ Q7 for a variable Q replacing the parameter
q. Associated to this object of (FSch/S) is a rigid S-space E¢ in (Rig/S), which
may be viewed as the family of all Tate elliptic curves. In fact, if £, is a Tate elliptic
curve over some complete valuation ring R of height 1, we can look at the canonical
morphism o: Spf R —— S given by

Z[P] — R, Q+—q,

thereby obtaining E, as the pull-back of E¢ with respectto 0.

9.3 The Zariski-Riemann Space

In the following, let S be a formal scheme of type (V') or (N), as introduced in
Sect. 9.1, and let X be an admissible formal S-scheme where we will always assume
that X is quasi-separated and quasi-paracompact. Then we can consider the family
(X 4)Aem(x) of all admissible formal blowing-ups X4 —— X, parametrized by
the set *B(X) of coherent open ideals A C Ox. For A, B € B(X) we write A < B
if the ideal 4 becomes invertible on X g. Due to the universal property of admissible
formal blowing-up 8.2/9, the latter implies that the blowing-up Xg —— X
factors through a unique morphism ®43: Xg — X 4. Furthermore, given
A, B € B(X), we have AB € B(X), as well as A < AB and B < AB. It
is clear that the X 4 together with the morphisms @4 g define a projective system of
S-morphisms so that we can look at the projective limit

(X) = lim Xa.
AEB(X)
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This projective limit is, first of all, meant in terms of topological spaces. Further-
more, for each A € B(X), there is a canonical projection 7 4: (X) — X4, and
we can consider

Oy = lim m,'(Ox,)
AEB(X)

as a sheaf of rings on (X). It is not hard to see that the stalks

Oy = M Opnye, X €(X)
AEB(X)

being direct limits of local rings, are local again so that (X) = ((X),Ox)) is a
locally ringed space.

Definition 1. Let X be an admissible formal S-scheme (by the convention of the
present section assumed to be quasi-separated and quasi-paracompact). Then the
associated locally ringed space

(X) = lim Xy
ASB(X)

is called the Zariski—Riemann space' associated to X.

Without proof, let us mention a few facts on the topology of (X ). For more details,
consult [FK], Chap. I1.3.

Proposition 2. Let X be an admissible formal S-scheme and (X) the associated
Zariski—Riemann space. Then:

(1) (X) is non-empty if X is non-empty.
(i) (X) is sober? and, in particular a Ty-space, but not necessarily Hausdorff.
(iii) (X) is quasi-separated and locally quasi-compact, even quasi-paracompact.
It is quasi-compact if X is quasi-compact.

Passing from X to the associated rigid S-space Xz, we see that the Zariski—
Riemann space (X), in a certain sense, takes into account all formal S-models
of Xy, just as Xy, itself does. Thus, one can well imagine that there is a certain
equivalence between X, and (X ), although one must be aware of the fact that, in
the classical rigid case, X, is a locally ringed space with respect to a Grothendieck

1Zariski—Riemann spaces were first introduced by Zariski calling them Riemann manifolds.
Later, Nagata preferred the term Zariski-Riemann space when he used these spaces for the
compactification of algebraic varieties.

2A topological space is called sober if every irreducible closed subset admits a unique generic
point.
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topology, whereas (X) is a locally ringed space in the ordinary sense. Of course,
this difference is in accordance with the fact that (X) includes “much more” points
than X;,.

To look a bit closer on the relationship between Xy, and (X), let us restrict to
the classical rigid case where S consists of an adic valuation ring R of height 1
with field of fractions K. As we have shown in Sect. 8.3, there is a well-defined
specialization map

Sp: Xrig — X,

mapping a point of Xy, to a closed point of X. Since sp is functorial, the map
factors through all formal models X 4, as +4 varies in *B(X), thus, giving rise to a
specialization map

sp: Xiig — (X).

Proposition 3. In the classical rigid case, let X be an admissible formal R-scheme.
Then the specialization map sp: Xyig — (X ) enjoys the following properties:

(1) sp is injective.
(ii) The image of sp is dense in (X ) with respect to the constructible topology.?

There are examples of abelian sheaves  on a rigid K-space X g where all stalks
F, for x € Xk are trivial, although ¥ is not trivial itself; see 5.2/2. This shows that
in order to handle general abelian sheaves, rigid K-spaces are not equipped with
sufficiently many points that can give rise to stalk functors. On the other hand, the
Zariski—-Riemann space associated to a formal model of X does not suffer from
such a problem and, indeed, can serve as an excellent replacement for X, due to
the following fact:

Proposition 4. In the classical rigid case, let Xk be a rigid K-space with a formal
R-model X. Then the specialization map sp: Xx — (X)) induces a natural
equivalence between the category of abelian sheaves on Xk and the category of
abelian sheaves on (X).

Without giving a full proof, let us just indicate how to pass back and forth between

abelian sheaves on X g and (X ). For any admissible open subset Uy C Xk, consider
the open subset

sp.(Ux) = (W

3The definition of the constructible topology is based on the notion of constructible sets [EGA 1],
Chap. 0, 2.3.10, and ind-constructible sets [EGA I], Chap. 1, 7.2.2. For a convenient adaptation to
our situation see [W], 3.3.
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of the Zariski-Riemann space (X) where the union runs over all open subsets
W C (X) such that W N sp(Xx) C sp(Uk). For example, if Uk is quasi-compact
and, thus, is represented by some open formal subscheme U’ C X 4 for a coherent
open ideal A € B(X), then sp, (Uk) = n;l(U’). Furthermore, one shows for any
admissible open subset Ux C Xk that a given union Ugx = Uiej U, k., consisting
of admissible open subsets U; ¢ C Uk, is an admissible covering of Uk if and only
if sp,(Uk) = ;s sp« (Ui k). Now start with an abelian sheaf ¥x on Xk and set
F (sp.(Uk)) = Fx(Uk) for any quasi-compact admissible open subset Uy C Xk.
Since the associated sets of type sp,(Uk) define a basis of the topology on (X),
we can view ¥ as a sheaf on (X). Conversely, given any abelian sheaf ¥ on (X),
we can define an abelian sheaf Fx on Xg by setting Fx(Ux) = F (sp,(Uxk))
for any quasi-compact admissible open subset Uy C Xk. It is not hard to see
that the described correspondence between abelian sheaves on Xy and (X) is an
equivalence of categories.

9.4 Further Results on Formal Models

Working with a scheme X over the field of fractions K of a discrete valuation ring
R, the arithmetic nature of X can quite often be uncovered by looking at suitable
R-models X of Xk. In fact, one is interested in models where certain properties
already present on Xk extend to the level of X. For example if Xg is a proper
smooth curve, we can construct the minimal regular model X of Xk, so to say a
best possible R-model that is still proper. Or we can consider an abelian variety X g
over K and look at the Néron model X of Xk. This is a best possible R-model that
is smooth.

In the same spirit we can start with a classical rigid space Xk, or with a rigid
space in the style of 9.1/1, and try to extend certain properties from Xg to the
level of suitable formal models. This is the theme we want to discuss in the present
section. However, for rigid spaces in the style of 9.1/1, which are given as objects in
a localized category, specific properties have still to be introduced in a way that is
compatible with the classical rigid case. The whole subject is rather extensive and so
we can only highlight some of the main points at this place. For further information
we refer to the series of articles on Formal and rigid geometry [F 1], [F 1], [F III],
[F IV], as well as to the monograph [EGR].

Let S be a formal base scheme of type (V') or (N'), as in Sect. 9.1, and let Xig be
a rigid S-space in the sense of 9.1/1. Without explicitly saying so, we will always
assume such rigid spaces, as well as their formal S-models, to be quasi-separated
and quasi-paracompact.

If (P) is a property applicable to schemes or formal schemes, we can basically
proceed in two ways in order to extend the notion of (P) to rigid S-spaces like
Xig. The first possibility is to say that Xy, satisfies (P) if there exists a formal
S-model X of X, satisfying (P). For example, on the level of morphisms, one
can proceed like this with open (resp. closed) immersions. Thus, call a morphism
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of rigid S-spaces tjs: Uiy — Xiig an open immersion (resp. a closed immersion)
if 7, admits an open (resp. closed) immersion of admissible formal S-schemes
7:U —— X as a formal S-model. That such a definition coincides with the usual
one in the classical rigid case follows from 8.4/5 for open immersions, whereas
closed immersions can be handled relying on 8.4/6. Similarly one can proceed
with proper morphisms; for the compatibility of properness in terms of formal
schemes with the definition 6.3/6 in the classical rigid case see Liitkebohmert [L] or
Temkin [Te].

Another more direct approach to define certain properties on general rigid spaces
consists in looking at the validity of (P) on the “complement” of the special fiber of
formal S-models X associated to X,. To be more precise, let d C O be an ideal of
definition. Then, for any formal S-model X, the scheme Xy = X ® 5 O/ is called
the special fiber of X.If (U;);ey is an affine open covering of X, say U; = Spf A4;,
and if, on U;, the coherent open ideal 4@y C Oy is associated to the ideal a; C A;,
we view the ordinary scheme Spec A; — V(a;) as the complement of the special fiber
on U;. In general, such a complement is not well-defined globally on X . However, if
we restrict ourselves to closed points and consider the classical rigid situation, then
the complement of the special fiber of X makes sense globally, as it coincides with
the point set of the rigid space X, associated to X in the sense of Sect. 7.4.

Now, if (P) is a scheme property, we can consider an affine open covering
(Ui)ies of X as before and say that X, satisfies (P) if all schemes Spec 4; — V' (a;)
satisfy (P). Of course, in order that (P) defines a reasonable property on the asso-
ciated rigid S-space Xig, one has to check that the validity of (P) is independent
of the chosen covering (U;);e; and invariant under admissible formal blowing-up.
Then, in most cases, it is a truly demanding venture, to find out whether or not a
rigid S-space satisfying (P) will always admit a formal S-model satisfying (P).

As a first example that can successfully be handled along these lines, let us
mention the property (P) of being flat, for morphisms of rigid S-spaces or coherent
modules on rigid S-spaces and their formal models. Flatness on the rigid level is
defined via flatness on complements of the special fiber, a method that is compatible
with the usual notion of flatness in the classical rigid case. The main result on
flatness is then the existence of flat formal models, due to Raynaud and Gruson;
see [RG], as well as [F II].

Theorem 1 (Flattening Theorem). Let ¢: X —— Y be a quasi-compact mor-
phism of admissible formal S-schemes and assume that the associated morphism
Qrig: Xrig — Yuig between rigid S-spaces is flat. Then there exists a commutative
diagram of admissible formal S-schemes

’

X/ [% Y/
Y

X 4
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where ¢’ is flat, Y' —— Y is the formal blowing-up of some coherent open ideal
A C Oy, and where X' — X is the formal blowing-up of the ideal AOx C Oy
onX.

Let us point out that X’ can also be viewed as the strict transform of X with
respect to the admissible formal blowing-up ¥/ —— Y. The latter is constructed
from the fiber product X” = X xy Y’ (a formal S-scheme of locally topologically
finite presentation, but not necessarily admissible) by dividing out all torsion with
respect to the ideal generated by the pull-back of 4. The existence of flat models
has an interesting consequence for classical rigid spaces.

Corollary 2. In the classical rigid case, let R be an adic valuation ring of height 1
with field of fractions K. Furthermore, let ox: Xx — Y be a flat morphism
of quasi-compact and quasi-separated rigid K-spaces. Then its image g (Xg) is
admissible open in Y.

Proof. Due to Theorem 1, there exists a flat formal R-model p: X —— Y of
@k - Tensoring ¢ with the residue field k of R yields a morphism of k-schemes
@i: Xy — Y that is flat and of finite presentation. It is known that the image
of ¢ is a quasi-compact open subscheme V; C Yj; see [EGA IV], 2.4.6. Now, if
V C Y is the corresponding open formal subscheme of Y, then, clearly, ¢ factors
through V, and the induced morphism X —— V is faithfully flat. Finally, a local
consideration involving rig-points, as introduced in Sect. 8.3, shows that ¢x must
map X onto the admissible open subspace V;, C X associated to V. O

Another property (P) that can be defined on general rigid S-spaces Xz by
requiring (P) to be satisfied on complements of the special fiber, is the notion of
smoothness. Also in this case one may ask if any smooth (or even étale) morphism
of rigid S-spaces will admit a smooth (resp. étale) formal S-model. However, the
answer will be negative in general. To give a simple example, one may look at
the classical rigid situation where R is an adic valuation ring of height 1 with a
fraction field K that is algebraically closed. Then, for any ¢ € R, 0 < |g| < 1,
the annulus Xg = Sp K(¢,q¢™") is a smooth rigid K-space, which does not admit
a smooth R-model. A canonical R-model of X is given by the formal R-scheme
X = SpfR(¢,n)/(¢n — q), which is not smooth. If there were a smooth formal
R-model X of Xk, it would be connected, since Xg is connected. In particular,
the special fiber X over the residue field k of R would be connected and, hence,
integral since X} is smooth. Then, starting out from an affine open covering (U;); ey
of X, all special fibers U;; would be integral and we would get a finite affinoid
covering (U; x)ies on Xk such that there is a multiplicative residue norm on each
of the affinoid K-algebras A; = Oy, (U; k). The latter norm would coincide with
the supremum norm on A;, as can be concluded from 3.1/17. However, over an
algebraically closed field K, the affinoid subdomains of the unit ball B} are well-
known, [BGR], 9.7.2/2, and it follows that such a covering cannot exist.



226 9 More Advanced Stuff

Thus, expecting the existence of smooth formal S-models for smooth rigid
S-spaces would be too much. Stepping back a bit, one may replace smoothness
by the weaker property (P) that the structural morphism Xy, — S, has
geometrically reduced fibers. Here is an advanced result on the existence of formal
S-models with such a property (P)*:

Theorem 3 (Reduced Fiber Theorem). Let X be a quasi-compact admissible
Sformal S-scheme such that X /S is flat and X,/ Syig has reduced geometric fibers,
equidimensional of dimension d . Then there is a commutative diagram of admissible
formal S-schemes

Y/

e
-

where

() X' = X x5 8,

(i) 8" —— S is surjective and S}, — Sy is étale,
(iil) Y — X' is finite and Y,,, — Xr’ig is an isomorphism,
(iv) Y —— S’ is flat and has reduced geometric fibers.

So in order to transform the formal model X /S of Xiig / Syig into a flat one that
has reduced geometric fibers, one has to apply, first of all, a base change S'/S that
is étale on the rigid level. Then, still, the resulting formal S’-scheme X’ = X xg S’
needs a finite extension Y’/ X’ that is an isomorphism on the rigid level.

Also note that, due to Theorem 1, the assumption of X/S to be flat may be
replaced by requiring X,/ Syig to be flat. Furthermore, at least in the Noetherian
case (N'), the assumption on the equidimensionality of the fibers of Xiig/ Srig can be
avoided.

Finally, let us point out that Theorem 3 is, in fact, a relative version of the
so-called Finiteness Theorem of Grauert and Remmert in [GR], a deep result
from the beginnings of classical rigid geometry. To state the theorem, consider
an algebraically closed field K occurring as field of fractions of a complete valuation
ring R of height 1, as well as a reduced affinoid K-algebra A k. The theorem asserts
that, together with its -adic topology for arbitrary € R, 0 < |¢| < 1, the R-algebra

“For details see [FIV]. The theorem has been proved in the classical rigid case and in the
Noetherian case (N').
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A={f€AK§|f|SUP§1}’

is of topologically finite type. From this one deduces that the special fiber A ® g k
for k the residue field of R is reduced. There is also a version of this result for
fields K that are not necessarily algebraically closed and where we assume that
Ak is geometrically reduced. Then it might be necessary to apply a finite separable
extension K’ of K to the situation before one can assert that A is of topologically
finite type and the special fiber A ®p k is geometrically reduced. The extension
K’/ K corresponds to the étale base change Sr/ig /Stig in Theorem 3.



Appendix A

Classical Valuation Theory

In the following, let K be a field with a non-Archimedean absolute value denoted
by |-|: K — Rxq; cf. 2.1/1. We will always assume that such an absolute value is
non-trivial, i.e. that its values in R are not restricted to O and 1. Furthermore, let V'
be a K-vector space. A vector space normon V (cf.2.3/4)isamap |-||: V — Ry
satisfying the following conditions for elements x,y € V and @ € K:

@ x| =0<+= x =0,
(i) [l + yII < max{[lx]. v}
(iil) [loex[] = fer] [lx]l,

When no confusion is possible, we will usually make no notational difference
between the absolute value | - | on K and the vector space norm || - || on V, thus
always writing |x| instead of ||x|| for elements x € V. To give an example of a
K-vector space norm, let V' be a finite dimensional K-vector space and fix a basis
Vi,...,vq onit. Then we define the corresponding maximum norm | - |ymax on V' as
follows. Given an element x € V/, write it as a linear combination x = ) "/, o;v;
with coefficients ; € K and set

|X|max = max |oy|.
i=l.d

One easily checks that | - |, defines a vector space norm on V. Furthermore, if K
is complete under its absolute value, V' is complete under such a maximum norm.
As usual, any vector space norm on a K-vector space V' defines a topology on V.
Two such norms |- |; and |- |, are called equivalent if they induce the same topology
on V. The latter amounts to the fact that there exist constants ¢, ¢’ > 0 such that
|x|1 < c|x|2 < ¢'|x]; for all x € V; use the fact that the absolute value on K is
non-trivial. It is clear that any two maximum norms, attached to certain K-bases on

S. Bosch, Lectures on Formal and Rigid Geometry, Lecture Notes 229
in Mathematics 2105, DOI 10.1007/978-3-319-04417-0,
© Springer International Publishing Switzerland 2014
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a finite dimensional K-vector space V', are equivalent. If K is complete, a stronger
assertion is possible.

Theorem 1. Let V' be a finite dimensional K-vector space and assume that K is
complete. Then all K-vector space norms on V are equivalent. In particular, V is
complete under such a norm.

Proof. Choose a K-basis vy, ..., vy of VV and consider the attached maximum norm
|- |max O V. Let |- | be a second K -vector space norm on V. Then there is a constant
¢ > 0 such that |x| < ¢|x|max for all x € V. In fact, if x = Z,‘d=1 a;vi, we have

|x] < max |o;||vi] < max |o;| max |vi| = ¢|X|max
i=l..d i=1..d i=l..d

for ¢ = max;=1_g4 |vi|. Thus, it remains to show that there is a constant ¢’ > 0
satisfying | x|max < ¢’|x]| forall x € V.

We want to do this by induction on the dimension d of V. For d = 0 the assertion
is trivial. Thus, let d > 0 and assume that a constant ¢’ as desired does not exist.

Then we can construct a sequence x, € V such that

[x; |max = 1 for all n and lim |x,| = 0.
n—>o0

Write x, = Z?:l o,; v; with coefficients «,; € K and consider the elements «,,4
for i = d fixed as a sequence in K. If it is a zero sequence, look at the sequence
X)) = Xy — Oygvg in V' = Zld:_ll Kv;. Then, due to the non-Archimedean triangle
inequality, |x] |max = 1 for almost all indices n and lim, . |x,| = 0. However, this
is impossible by the induction hypothesis, since |- |ax and | -| must be equivalent on
the subspace V’ C V, which is of dimension d — 1. Therefore ;4 cannot be a zero
sequence. Replacing the x, by a suitable subsequence, we may assume that there is

some ¢ > 0 satisfying |o, 4| > ¢ for all n. Then

d—1
-1 -1
Yn =0, Xn = Vad + E Q10 Vi
i=l1

is still a zero sequence in V. Hence, we see that

d—1

. -1
vy = — lim E o S0y Vi.
d n—>00 4 ! nd niHl
i=

In other words, v; belongs to the closure of V'’ in V. However, by induction
hypothesis, V'’ is complete and, hence, closed in V. As v, & V', we get a
contradiction. O
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Corollary 2. Let |-|; and || be two absolute values on an algebraic field extension
L/K restricting to the given absolute value | - | on K. Assume that K is complete
with respect to | - |. Then | - || and | - |2 coincide on L.

Proof. Since L is a union of finite subextensions of L/ K, we may assume that the
extension L /K is finite. Then, viewing L as a normed K -vector space under |-|; and
| - |2, these norms are equivalent by Theorem 1. Thus, there are constants ¢, ¢’ > 0
such that |a|; < cla]y < ¢/|a|; for all @ € L. Replacing « by " for any integer

n > 0 and using the multiplicativity of | - |; and | - |5, we get
1 1
s < cnlaly < c'rlaly

and therefore, by taking limits, |«|; = |« forall o € L. O

We have just seen that for any algebraic field extension L /K, there is at most one
way to extend the given absolute value | - | from K to L, provided K is complete
with respect to | - |. We want to show now that such an extension will always exist.

Theorem 3. Let L/ K be an algebraic extension of fields where K is complete with
respect to a given absolute value | - |. Then there is a unique way to extend | - | to an
absolute value | - |" of L. In fact,

1
lo|" = | Ngoy/x (@)] 7

for elements oo € L where Nk (), denotes the norm of K(a) over K and where d
is the degree of a over K.

If L is finite over K, we see from Theorem 1 that L is complete with respect to

the absolute value | - |'.
Proof. As Nk@/k() = « for elements « € K, it is clear that | - |" extends | - |.
To show that | - | defines a non-Archimedean absolute value on L, let us verify the
conditions of 2.1/1. Clearly, Ng()/k (o) = 0 if and only if « = 0 and therefore
|@|” = 0 if and only if @ = 0. Furthermore, if « € L is contained in a finite
subextension L’ of L/K, say of degree n, then we conclude from the definition of
norms that || = |Ny/, K(a)|%. Since the norm N; s,k is multiplicative, we see that
| - |" is multiplicative as well.

Thus, it remains to show |o¢ + B|' < max{|«|,|B|'} for @, € L. This
estimate does not follow right away from properties of the norm, some more work
is necessary. First note that for |@| < |8]' and B # 0, we can divide by 8 and
thereby are reduced to showing |1 + «| < 1 for « € L satisfying |a| < 1. Let
R = {a € K; || < 1} be the valuation ring of K. With the aid of Hensel’s
Lemma, see Lemma 4 below, we will show in Lemma 5 that an element « € L
is integral over R if and only if Nx(@)/k () € R, i.e. if and only if |@|" < 1. But
then the non-Archimedean triangle inequality is easily derived. If |¢|" < 1 for some
a € L, then « is integral over R. Hence, the same is true for 1 + o and we get
[T+« <1. O
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In order to state Hensel’s Lemma, let R = {& € K ; |o| < 1} be the valuation
ring of K and let k = R/{a¢ € R; || < 1} be the attached residue field. The
canonical projection R —— k, which will be denoted by & —— &, induces for a
variable (or a system of variables) X a projection

RIX] — k[X], f=) aX — f=) &X',

on the level of polynomial rings.

Hensel’s Lemma 4. Let f € R[X] be a polynomial in one variable X such that
there exists a factorization f = p - § with coprime factors p,q € k[X], i.e. where
p and § are non-zero and their greatest common divisor in k[X] is 1. Then p,q
can be lifted to polynomials p,q € R[X] satisfying

f=r-q degg = deggq.

Before giving the proof, let us derive the statement on integral dependence that
was used in the proof of Theorem 3.

Lemma 5. As in Theorem 3, let L/K be an algebraic extension of fields and
let R be the valuation ring of K. Then, for elements o € L, the following are
equivalent:

(1) o is integral over R.
(i) Nk@yk (@) € R.

Proof. To begin with, assume condition (i), namely that « is integral over R. Then
there is a monic polynomial 7 € R[X] satisfying h(e) = 0. Let f € K[X]
be the minimal polynomial of & over K. As f must divide /& in K[X], there is a
decomposition of type 7 = fg in K[X]. We claim that both, f and g belong to
R[X]. To justify this, consider the Gaul norm on K [X], which is given by

n
ZaiXi" = max |a;].
— i=0...n

As in Sect. 2.2, one shows that the Gaull norm is multiplicative and this implies

L= |k =1fl"lgll. Since f is a monic polynomial, we have || f|| > 1 and there
is a constant ¢ € K such that |¢| = || f||”". Setting /' = ¢f and g’ = ¢"'g, we
geth = f'g’ with || f'|| = ||g’|| = 1. In particular, 2 = f’g’ is a decomposition

in R[X], which can be transported into K[ X ], thus implying the decomposition
h=f'g" As

deg /' + deg @’ = degh = degh = deg f + degg.

deg /' <deg f.  degd <degg.
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we have necessarily deg f " = deg f and deg g’ = degg. However, since f is
monic, || /|| > 1 would imply deg f’ < deg f . Therefore we must have |c¢| = 1 and,
hence, f,g € R[X]. Thus,if f = Y/_,¢; X" € R[X] is the minimal polynomial
of o over K, we get Nk k(@) = (=1)"co € R, which implies condition (ii).
Conversely, assume Ng )k () € R as in condition (ii). As before, consider the
minimal polynomial / = Y '_j¢; X' € K[X] of & over K. We want to show
that f(«) = 0 is, in fact, an integral equation of @ over R. Proceeding indirectly,
assume that f ¢ R[X]. Then we have || f| > 1 and we can choose a constant
¢ € K such that [¢| = | f||7" < 1. Writing f/ = ¢f, we get | 'l = 1. Since
co = (—1)" NK(O,)/K((X) € Rand ¢, = 1, it follows 0 < deg ' < deg f. Now look
at the decomposition f = pgwithp =1landg = f ’. Due to Hensel’s Lemma 4,
we can lift p and ¢ to polynomials p,q € R[X] such that cf = f' = pq and
deg g = degq. Since deg ¢ is strictly between 0 and deg f, we see thatcf = pgisa
non-trivial decomposition which, however, contradicts the fact that f is irreducible.
Therefore we must have f € R[X], thus, implying condition (i). |

It remains to do the proof of Hensel’s Lemma. Starting out from the decompo-
sition f = pg, we choose a lifting go € R[X] of g satisfying degqy = degg.
Then the highest coefficient of gy is a unit in R and, by Euclid’s division, there
is an equation f = pogo + r; with suitable polynomials po,r; € R[X] where
degr; < degqo. From this we get f = pog + 71. Since we have

degi; < degr; <degqo = degqg
and ¢ divides f , Euclid’s division in k[ X] implies 7; = 0. In particular, ||r| < 1
and py is a lifting of p. Let m = deg py and n = deg qo. It is now our strategy, to
construct polynomials a, b € R[X] with
lall. 161 < Irll. dega <m,  degh <n,
such that
f = pogo +r1 = (po +a)(qo + b),
or, equivalently
bpo + aqo + ab =ry. (%)

Then the decomposition f = (po + a)(go + b) will be a lifting of f = pq, as
required.

To do this, we neglect the quadratic term ab in the Eq. (x) for a moment. Let
K[X]; fori € N be the R-submodule of K[X] consisting of all polynomials in

K[X] of degree < i. For the valuation ring R and its residue field & the notations
R[X]; and k[ X]; are used in a similar way. Then consider the R-linear map
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(P:R[X]m—l ® R[X]n—l - R[X:]m+n—lv (a’b) — pr +a6]o,

as well as its versions ¢ ® K over K and ¢ ® k over k. We claim that all of these are
isomorphisms. In fact, start with ¢ ® k. This map is injective, since bp + ag = 0
implies that g divides b, due to the fact that p and g are coprime. However, since
degh < m = degq, we geta = b = 0. But then, by reasons of dimensions, ¢ ® k
is surjective and, hence, bijective. From this we can conclude that ¢ and ¢ ® K are
isometric in the sense that

0 ® K)(b. )| = max{llall. b},  a€K[X]nw1. b€ K[X]u

In particular, ¢ ® K is injective, and the same dimension argument, as used before,
shows that ¢ ® K is bijective. Furthermore, relying on the fact that ¢ @ K is
isometric, we finally see that ¢ is bijective. Now, to lift the decomposition f = pg
as stated, let ¢ = ||r||. We claim:

There are sequences p; € R[X]u—-1,¢qi € R[X]u—1, and ri+1 € R[X ] m+n—1,
starting with the initial elements py, qo, 1\ constructed above, such that

J

fZ(ZPi)(iQi>+rj+1, j=0,1,...,
i=1

i=1
where
121l llgill < &, Il <&/*

Then, as the field K is complete, p = > o, p; and ¢ = Y 2, ¢; make sense as
polynomials in R[X] of degree m, respectively n, and by a limit argument, we get
the desired decomposition f = pgq.

To justify the claim, we proceed by induction on j. So assume that the
polynomials p;, ¢; and r; 1| have already been constructed, up to some index j > 0.

Then, writing p’ = I.le piand g’ = {: 1 ¢i and applying the above properties
of the R-linear map ¢, now with p’, ¢’ in place of py, go, we can solve the equation

ri+1=4q;+1p" + pj+1q’
for some elements p;4+; € R[X]u—1 and g;4+1 € R[X],— satistying
Ilpj+illllgj+ill <&
But then we have
f=0"+pi+)@ +4j41) +rj42

with 742 = —pjy1qj+1 € R[X]myn—1 where ||rjyof < e2UF) < /72 Thus,
our claim is justified, and Hensel’s Lemma is proved. O
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The problem of extending a non-Archimedean absolute value | - | from a field
K to an algebraic extension L has been settled in Theorem 3 for the case where
K is complete. If K is not complete with respect to | - |, we can pass to its
completion K, which can be constructed as follows. Consider the ring KN of all
infinite sequences in K, addition and multiplication being defined componentwise.
The Cauchy sequences define a subring C(K) of K" and the zero sequences an
ideal Z(K) C C(K). It is easy to see that the quotient K = C(K)/Z(K) is a
field and that the canonical map K —— K sending an element « to the residue
class of the constant sequence «, @, . .. is a homomorphism of fields. In particular,
we can view K as a subfield of K. We can even define an absolute value | -] on
K extending the one given on K. Indeed, given any o € K, choose a representing
Cauchy sequence (¢;) in K. Then the sequence (|o;|) is a zero sequence or, due
to the non-Archimedean triangle inequality, it becomes constant at a certain index
ip. Therefore the limit ¢ = lim;_,  |c;| exists and is well-defined, and we can set
|@|” = c. One can show that K is complete with respect to | - |" and that it contains
K as a dense subfield.

Now if L/K is an algebraic field extension, we can consider the completion K
of K and its algebraic closure Koe, Extending the absolute value of K to K, as just
described, and prolonging it to K™ with the help of Theorem 3, we get a canonical
non-Archimedean absolute value on K*€, which may be denoted by |- | again. Then
we can choose a K-morphism t: L — K" and pull back the absolute value from
K" to L via . Thereby we obtain an absolute value on L extending the one given
on K. However, the latter will not be unique in general, which corresponds to the
fact that the K-morphism 7: L — Ke may not be unique.

Taking the algebraic closure of a complete field, we may loose completeness. In
particular, the field Ke may not be complete again. However, if we start with an
algebraically closed field, its completion will remain algebraically closed. This way
it is possible to construct extension fields that are algebraically closed and complete
at the same time.

Krasner’s Lemma 6. Let K an algebraically closed field with a non-Archimedean
absolute value | - |. Then its completion K is algebraically closed.

Proof. Consider an algebraic closure L of K and extend the absolute value of K to
L, using the assertion of Theorem 3. Let f = Y '_,¢; X' be a monic polynomial
of degree > 0 in K[X]. Then f admits a zero @ € L, and it is enough to
show that o can be approximated by elements in K. To verify this, choose ¢ > 0
and approximate the coefficients ¢; by elements d; € K in such a way that the
polynomial g = Y 7_ d; X' € K[X] satisfies |g(e)| < &". Assuming d, = 1,
write g = [[/_,; (X — B;) with zeros B; € K. Then |g()| =[]/ | — Bi| < &"
implies that there is an index i such that |« — ;| < e. Consequently, o can be
approximated by elements in K. O

The argument used in the proof is referred to as the principle of continuity of
roots.
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Completed Tensor Products

In the following we want to show that the category of affinoid K-algebras admits
amalgamated sums where, as usual, K is a field endowed with a non-trivial complete
non-Archimedean absolute value. Such amalgamated sums are constructed as
completions of ordinary tensor products.

To handle completed tensor products, we need a slightly more general setting.
Let R be a ring with a ring norm | - | on it, see 2.3/1, and M a normed R-module.
Thereby we mean an R-module M together with a map M —— R, denoted by
| - | again, such that for all x, y € M and a € R we have

1) |x]|=0<=x=0,
(i) [x + y| < max{|x], |y[},
(iii) |ax| < |a]| - |x].

The map |- |: M —— Ry is called a semi-norm on M if only conditions (ii) and
(iii) are satisfied and (i) possibly not. Furthermore, an R-linear map ¢: M —— N
between normed R-modules is called bounded if there exists a real constant y > 0
such that |p(x)| < y|x| for all x € M. In this case y is referred to as a bound for ¢.
Looking at topologies that are generated by module norms, we see immediately
that bounded morphisms of normed R-modules are continuous. The converse is not
always true. However, if there exists a subfield K C R such that the norm on R
restricts to a non-trivial absolute value on K, then every continuous morphism of
normed R-modules is bounded. To justify this, assume that R contains a field K
with the stated properties. Then, by restriction of scalars, any R-module M can be
viewed as a K-vector space and, in fact, as a normed K-vector space in the sense

of 2.3/4. Clearly we have |ax| < |a| - |x|fora € K and x € M, but also
lal - x| < lal - la~ ax| < |a] - la™"| - ™!

lax| = |a| -|a|™" - |ax| = |ax|

S. Bosch, Lectures on Formal and Rigid Geometry, Lecture Notes 237
in Mathematics 2105, DOI 10.1007/978-3-319-04417-0,
© Springer International Publishing Switzerland 2014
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for a # 0, which shows |ax| = |a|- |x| forall a € K and x € M. Then, if
@:M —— N is a continuous morphism of normed R-modules, there exists a
constant § > 0 such that |p(x)| < 1 for all x € M satisfying |x| < §. Fixing
an element € K such that 0 < || < 1, we choose an integer n € Z such that
|t|"~! < 8. Now, considering an arbitrary element x € M, there exists an integer
r € Z satistying |t|" < |t|"|x| < |¢t|"'. Then |t"x| < § and, hence, |@(t"x)| < 1,
aswell as 1 < [¢|"7"|x|, and we get

oGl = e[ " le@ ) = Je " < Je[ [ [x[ = |

—n
[ 1.

which shows that |¢|™" is a bound for ¢. Thus, we have shown:

Lemma 1. (i) Any bounded morphism of normed R-modules is continuous.

(ii) Conversely, assume that R contains a field K such that the norm on R restricts
to a non-trivial absolute value on K. Then every continuous morphism of
R-modules is bounded.

Note that the assumption in (ii) is satisfied if R is a non-zero affinoid K-algebra,
for K a field with a non-trivial complete non-Archimedean absolute value. Thus,
in this case a morphism of normed R-modules is continuous if and only if it is
bounded.

Now let us turn to tensor products and their related bilinear maps. Let M, N, E
be normed modules over a normed ring R. An R-bilinear map @: M xN — E'is
called bounded if there exists a real constant y > 0 such that |@(x, y)| < y-|x|-|y|
for all x € M and y € N. Again, y is called a bound for @. An R-linear or
R-bilinear map that is bounded by 1 is called contractive.

Proposition 2. Let M, N be normed modules over a normed ring R. There exists
a contractive R-bilinear map t: M x N —— T into a complete normed R-module
T such that the following universal property holds:

Given any R-bilinear map @: M x N —— E, bounded by some y > 0, into a
complete normed R-module E, there exists a unique R-linear map ¢: T — E,
bounded by y as well, such that the diagram

MxN —"»T

is commutative.

Proof. To construct the map t, we view the ordinary tensor product M ® g N as a
semi-normed R-module using the semi-norm | - |: M ® g N — R given by
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lz| = inf(_rr}ax |xi] - Iyil), 7€ M ®g N,
1= r

where the infimum runs over all possible representations
r
Z=in®yi, Xi €M, yi €N.
i=1

That we really get a semi-norm on M ®pg N is easily verified. Thus, we can define
T = M ®x N as the separated completion of M ® N. It is an R-module again
and, in fact, a complete normed R-module, since the semi-norm on M Q@ N gives
rise to an R-module norm on M & g N.Forelements x € M and y € N, we write
x ® y for the element in M ® N that is induced by the tensor x ® y € M @z N.
Then it is clear that the map

M xN — M &z N, (x,y) — x ® y,

is R-bilinear and contractive. The R-module M & r N, together with its R-module
norm, is called the completed tensor product of M and N over R.

Now let us show that the R-bilinear map t satisfies the universal property of
the assertion. So let ®: M x N —— E be a bounded R-bilinear map into a
complete normed R-module E and let y > 0 be a bound for @. Using the universal
property of ordinary tensor products in terms of the canonical R-bilinear map
M xN — M Qg N sending a pair (x, y) to the tensor x ® y, there is a unique
R-linear map ¢": M ® g N —— E making the following diagram commutative:

f/

M x N

M Qr N

Then consider some element 7 = Zle X, ® yi € M Qg N where x; € M and
yi € N.Since ¢'(z) = Y i, P(x;, i), we get

..........

Taking the infimum over all representations of z as a sum of tensors » ;_; x; ® y;
yields |¢’(z)| < y|z|, and we see that ¢’ is bounded by y.

Since E is complete, ¢’ gives rise to an R-linear map ¢: M ® g N —— E that
is bounded by y as well. Furthermore, we can enlarge the above diagram to obtain
the following commutative diagram:
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T M ®R N can

T:M XN M &g N

E

It remains to show that ¢ is uniquely determined by the relation & = ¢ot. However,
this is clear since ¢ is unique on the image (M x N), which generates a dense
R-submodule in M ®g N. u!

In the situation of Proposition 2, the normed R-module 7' together with the
contractive R-bilinear map t: M x N —— T is uniquely determined up to
isometric isomorphism and will be denoted by M ®px N. It is called the completed
tensor product of M and N over R. For the attached contractive R-bilinear map
"M x N — M ®g N we will use the notation (x, y) — x ® y. In other
words, we set x ® y = 7(x,y) for (x,y) € M x N. Note that, independent of
the construction in the proof of Proposition 2, there is a canonical R-linear map
M ®g N — M ®g N, namely the one given by x ® y —— x ® y. It has a
dense image in M ®g N, since the closure of this image, just as M &g N, satisfies
the universal property of completed tensor products.

As in the case of ordinary tensor products, the universal property defining
completed tensor products can be used to derive various standard facts. To list some
of them, look at normed R-modules M, N, P. Then there are canonical isometric
isomorphisms

R®r M ~ M,
M®@rN~NQrM,
(M &g N)®g P~ M &g (N &z P),
(M®N)®r P~ (M®gP)a® (N &z P),
where the norm on a direct sum like M @ N is given by |x & y| = max(|x|, |y|)
Furthermore, the completed tensor product of two bounded morphisms of normed
R-modules can be constructed. Indeed, let ¢;: M; —— N; for i = 1,2 be

morphisms of normed R-modules that are bounded by constants y; > 0. Then the
R-bilinear map

My x My — N; ®g N, (x1.X2) —> @1(x1) ® 2(x2),
is bounded by y;y, and, thus, gives rise to an R-linear map

@1 ® p2: My ®r My — Ny ®r Ny, X1 ® Xy — ¢1(x1) ® ga(x2),
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that is bounded by y;y, as well. The map ¢; ® ¢, is referred to as the completed
tensor product of ¢; and ¢;.

Also note that the associativity isomorphism above admits the following general-
ization:

Proposition 3. Let S —— R be a contractive homomorphism between normed
rings and let M be a normed S-module, as well as N and P normed R-modules.
Then there is a canonical isometric isomorphism of normed S-modules

(M ®s N)®r P~ M ®s (N ®g P)

where M s N is a normed R-module via the R-module structure of N.

The proof is straightforward, see [BGR], 2.1.7/7.

Next let us discuss completed tensor products on the level of normed algebras.
To do this, fix a normed ring R and consider two normed R-algebras A, A,;
by the latter we mean normed rings A; that are equipped with a contractive
ring homomorphism R —— A;. In particular, we may view the A; as normed
R-modules, which implies that the completed tensor product A; @z A, exists
as a complete normed R-module. We want to show that A, ®r A, is, in fact, a
normed R-algebra, based on the R-algebra structure of the ordinary tensor product
A1 ®RgA,. Using the semi-norm on A; ® g A, as defined in the proof of Proposition 2,
we see that the canonical ring homomorphism R —— A; ®r A, is contractive.
Furthermore, for two elements

m n
z:Zx,-@yi, z’=2x}®y} € A ®r A,
i=1

i=1

we get
m n
2] = [0 2w @ 3007 < masfi | i
i=1,=1
= o bl il max ] )
which yields

|| < [2] - [2]-

when taking the infimum over all representations of z and 7' as sums of tensors.
Thus, passing from A ® g A, to its completion, it follows that, indeed, the completed
tensor product A; ®p A, is a normed R-algebra where the multiplication is
characterized by
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(x®y)-(X'®y)=xx"® yy

and the structural morphism R — A, ®r Az bya t——a ®1=1Qa.
We want to characterize 4, ® g A in terms of a universal property for normed
R-algebras.

Proposition 4. Let R be a normed ring and Ay, A, normed R-algebras. Then the
contractive R-algebra homomorphisms
o1: Ay — A4 ®R A, ap }—>a1®1,
02: Ay — A ®g Ay, a) — 1 ®a,,
admit the following universal property of amalgamated sums:
Let ¢1: Ay —— D and @¢;: Ay — D be two homomorphisms of normed
R-algebras that are bounded by constants y, > 0 and y, > 0 and assume that D is

complete. Then there is a unique R-algebra homomorphism ¢: A, @ g Ay — D,
bounded by yy», such that the diagram

Ay

?1

is commutative.

Proof. Consider homomorphisms of normed R-algebras ¢;: A, —— D as well as
@2: A» —— D where D is complete and assume that ¢; and ¢, are bounded by
constants y; > 0 and y, > 0. Then

Ay x Ay — D, (a1,a2) — @i(a1) - p2(az),

is an R-bilinear map that is bounded by y;y,. Thus, by the universal property of
completed tensor products in Proposition 2, it gives rise to an R-linear map

@: A1 ®r Ay — D, ar ® ay — ¢1(ar) - pa(az),

that is bounded by y, y,. Furthermore, ¢ satisfies
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(p((al ® a,) - (a/l ® a/z)) = §0(ala; ® aza/z) = (Pl(ala;) : 902(‘12‘1;)
= @i(a)) - 92(ay) - @1(a}) - p2(a3)
= ¢(a, ® a,) - (P(a; ® a;)

fora,,a} € Ay and a,, a’, € A,. This shows that ¢ is multiplicative on the image of
Al ®g A>in A} &g A, and, hence, by continuity, on A; ®r A, itself. Since

plar ®az) = ¢((@ ® 1) - (1 ® az)) = pi(a1) - 2(a2)

for a; € Ay and a, € Aj, it is clear by a continuity argument as before that ¢ is
unique on A; @p A,. |

Ify;: A; — B;,i = 1,2, are bounded morphisms of normed R-algebras, their
completed tensor product

V1 ® Vi A] ®g Ay — By ®r Ba, a1 ® ay — Yi(ar) ® Ya(ar).

is defined as a bounded R-linear map, but can also be obtained within the context
of normed R-algebras using the universal property of Proposition 4; both versions
coincide.

Next we want to study the behavior of restricted power series under completed
tensor products. To do this, let A be a complete normed ring and ¢ = (¢, ..., ¢,)
a set of variables. Then, as usual, the A-algebra of restricted power series in { with
coefficients in A is given by

A = |2 at" € ALLT: @y € A, lim a, = 0},

veEN”

It is a complete normed A-algebra under the Gaufs norm

bty

veN"

= max
veEN”

a,).

Proposition 5. Let R be a complete normed ring, A a complete normed R-algebra,
and ¢ = (C1,...,8Cy) a set of variables. Then, using the Gaufs norm on R({) and
A(C), there is a canonical isometric isomorphism of normed R-algebras

AQr R(E1,....0,) —=> A(Ey,....L,).

Proof. We want to show that the canonical maps

o1: A — A(C), 02: R(§) — A(S),
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which are contractive, satisfy the universal property mentioned in Proposition 4. To
do this, consider two morphisms of R-algebras

p1: A — D, ¢ R(C) — D

into a complete normed R-algebra D such that ¢; and ¢, are bounded by constants
Y1, ¥2 > 0. Then there is a well-defined R-algebra homomorphism

QALY — D, D al’ = Y oi(a,) @A)

veEN” vEN”

Indeed, if the a, form a zero sequence in A, their images form a zero sequence in
D since |¢1(a,)| < yila,|. Furthermore, we have |¢,(£")| < y, for all v so that the
infinite sums of type Y ¢1(a,) - ¢2(¢") are converging. Hence, ¢ is well-defined,
and it is bounded by y;,, as shown by the estimate

‘Z p1(ay) - 92(8")| < Vlyz-m;dX\au! =72 ‘ > at

veN" veN”

By continuity, ¢ is even a homomorphism of R-algebras and, in fact, the unique
bounded homomorphism making the diagram

commutative. Thus, we are done. O

For the remainder of this section, we want to look at affinoid K-algebras where,
as usual, K is a field with a complete non-Archimedean absolute value that is non-
trivial. Any such algebra A may be viewed as a complete normed K-algebra by
choosing a residue norm on it. Furthermore, we know from 3.1/20 that any two
residue norms | -| and |- |" on A are equivalent in the sense that they induce the same
topology on A. In particular, the identity map (4, |-|) — (A, |-|") and its inverse
are bounded due to Lemma 1.

Now let t;: R —— A; and 1,: R —— A, be two homomorphisms of affinoid
K -algebras. In order to construct the completed tensor product A; ®z A,, we need
to specify appropriate norms on R, A;, and A, in such a way that t; and 7, are
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contractive. We do this in terms of residue norms. In fact, choosing epimorphisms
a:T, — Rand o;:T,,, — A;, i = 1,2, we can use 3.1/19 in conjunction
with 3.1/7 and 3.1/9 to construct commutative diagrams

Ty — Tm+n1 Ty — Tm+n2

o o a o
T T

R —— 4, R—2 A,

where aj and aé are extensions of «; and &, and, hence, are surjective. Considering
the residue norms associated to «, o, and a5 on R and the A;, it is clear that
the maps t; and 1, are contractive and, hence, that the completed tensor product
A; &g A, can be constructed. If we consider a second set of residue norms on R,
Ay, and A, such that 7; and 7, are contractive, then the resulting semi-norms on
A] ®pr A, that are used to construct the completed tensor product, are seen to be
equivalent. As a result, the attached completions can canonically be identified and
it follows that, indeed, the completed tensor product A, &g A, is well-defined, up
to a set of equivalent ring norms on it, just as is the case for affinoid K-algebras
and their possible residue norms on them. We will keep this in mind and talk about
“the” completed tensor product of A, and A, over R. However, when it comes to
particular norms on A; ®r A, we have to be more specific.
Our main objective for the remainder of this section is to show:

Theorem 6. Let 71: R —— Ay and ©75: R —— A, be homomorphisms of affinoid
K -algebras. Then the completed tensor product A\ ® g A, is an affinoid K -algebra
as well. In other words, the category of affinoid K-algebras admits amalgamated
sums.

To prepare the proof of the theorem, we start with some consequences of
Proposition 5.

Proposition 7. Let &,...,&, and Cy,...,L, be sets of variables, and K' an
extension field of K with a complete absolute value extending the one given on
K. Then there are canonical isometric isomorphisms

K€ .. ) Ok K(C1v o 8) == K1 G ),
K ®x K(C,...,0,) = K'(¢1,....5,),

with respect to the Gaufs norm on the occurring Tate algebras.

Proposition 8. Let A; and A, be affinoid K-algebras. Then A; &k Ay is an
affinoid K-algebra as well. Similarly, if K' is an extension field of K with a
complete absolute value extending the one given on K, then K' ® x A; is an affinoid
K'-algebra.
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More specifically, choose epimorphisms of K-algebras o;:T,, — A; for
i = 1,2, and consider the attached residue norms on A\ and A,. Then the canonical
morphism of K-algebras
a:TnH—nz = Tnl ®K Tnz - Al ®K AZ

is surjective and its kernel is generated by ker o) and Ker a,, thus giving rise to an
isomorphism of K-algebras

Ty 40,/ (keray keray) —=> A; ®k As.

The latter is an isometric isomorphism if we consider on T, +,,/(ker ay, ker o) its
canonical residue norm. Likewise, the homomorphisms of K -algebras

oKLy, 8) = K ®k T, — K ®x A, i=12,

are surjective, and their kernels are generated by ker «; , thus giving rise to isometric
isomorphisms

(K' ®k Ty,) [ (keroy) —> K' Q@ A;, i=12.

Proof. We show that T, +,,/(ker o1, ker ap) and, likewise, K'{Z1, . .., &, )/ (kera;)
satisfy the universal property of completed tensor products. To do this, consider a
commutative diagram of type

o]

Tn, Aq
®1
a1
o (%
Tai+ny — Tny4n,/(kerag, kerap) ----- - D
®2
02
(2]
Ty, > A,
where o; is induced by the inclusion T,,; < T},,4n,, I = 1,2, and where & is

the canonical projection. Concerning the right part of the diagram, D is a complete
normed K-algebra and the ¢;: A; —— D, i = 1,2, are homomorphisms that are
bounded by constants y;,y, > 0. Using Proposition 7 and interpreting 7, 4+,, as
the completed tensor product T}, R T,,, there exists a canonical homomorphism
of K-algebras T, ,4+,, — D that is bounded by y;y, and that, apparently, will
factor through the quotient 7}, +,,/(ker o, keroz) via a unique homomorphism of
K-algebras
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(p:Tn,+n2/(kera1,kera2) — D

making the above diagram commutative. Let us equip now the affinoid K-algebra
Ty, +n,/ (kera, kerap) with its residue norm via &. Then, by the definition of
residue norms, we see that the maps o, and o0, are contractive since the canonical
inclusions of T, into T, +,, preserve GauBl norms. Furthermore, by the definition of
residue norms again, ¢ is bounded by Yy, since the same is true for the composition
@o@; one may also use the fact that for every f € T}, 1,/ (ker ay, ker ay) there is an
inverse image f € Ty, 4, satisfying | f| = | f], cf.3.1/5. Altogether we conclude
that T, 4,/ (ker oy, ker ) along with the contractions oy, 0, satisfy the universal
property of a completed tensor product A; ® ¢ A,. Thus, we are done with the first
part of the assertion. The completed tensor products of type K’ ® x A; are dealt with
similarly. O

Proposition 9. Leto:S —— Raswellas 11: R —— A; and 15: R —— A, be
homomorphisms of affinoid K -algebras. Then there is a canonical homomorphism
of normed K-algebras A, ®s Ay — A ®g Ay, and the latter is an epimorphism.

More specifically, consider residue norms on R, S, Ay, and A,, and assume that
o and the 1; are contractive. Then the norm on A @ r A, coincides with the residue
norm derived from the norm on A; ®g As.

Proof. We proceed similarly as in the proof of Proposition 8 and consider a
commutative diagram of type

Al — Al
, @1
(281 o1
A
~ o ~
A1 ®s A Ay ®r Ay --Y- D
@2
a5 02
where D is a complete normed R-algebra and the ¢;: A, — D, i = 1,2,

are homomorphisms of R-algebras that are bounded by constants y;,y, > 0.
Furthermore, ¢ is the unique homomorphism of R-algebras, bounded by y;y», that
is derived from the universal property of A; ® g A,. It follows that g o« is the unique
homomorphism of S-algebras derived from the universal property of 4; Qs A,; it
is bounded by y;y» as well. Now consider the factorization

O{IAl ®S A2 —_— (Al ®S Az)/kera — Al ®R A2

where kera is a closed ideal in A; ®g A, since « is contractive and, hence,
continuous. Thus, proceeding in the manner of 3.1/5 (i) and (ii), we can equip



248 Appendix B

the quotient (4, ®s A,)/kera with the residue norm derived from the norm
on A; Qs As. Clearly, the homomorphisms o] and o, factor through contractive
homomorphisms of R-algebras &;: 4; — (A} ®s A»)/kera, i = 1,2, and it is
easily seen that (4, ®g A,)/ ker a along with &, and &, satisfy the universal property
of the completed tensor product A4, ®g Ay. Thus, we are done. a

Now the Proof of Theorem 6 can be carried out without problems. We assume
that 7;: R A; and 15: R — A, are contractive homomorphisms of
affinoid K-algebras, the latter being equipped with suitable residue norms. Then
the completed tensor product A; ® ¢ A, is an affinoid K-algebra by Proposition 8
and so is the completed tensor product A; ® g A», since it is a quotient of 4| ® x A,
by Proposition 9.

Finally, we want to mention the following generalization of the first part of
Proposition 8:

Proposition 10. Let 71: R —— A and 1,: R —— A, be homomorphisms of
affinoid K -algebras, and consider ideals ay C A, as well as ay C A,. Furthermore,
fix residue norms on R, Ay, and A, such that t| and t, are contractive, and provide
the quotients Ai/a; and A,/a, with the residue norms derived from the given
residue norms on A| and A, via the canonical projections o;: A; — A;/a;. Then

a1 ® oy A ®p Ay — (A1/a;) ®r (A2/az)

is surjective and its kernel is generated by the images of a; and a, in A, ®r As.
This way oy @ ap gives rise to an isomorphism of R-algebras

(A1 ®r A2) [ (a1, a2) —2» (A1/a1) ®r (A2/ @),

which is isometric if we consider on (A, ®g A,)/ (a1, az) the residue norm derived
from the completed tensor product norm on A1 Qg A,.

Proof. Use the same arguments as in the proof of Proposition 8. O
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