# Rigid Geometry and Applications

Kazuhiro Fujiwara & Fumiharu Kato

## Talk Plan

- Aim:
  - To give a survey on foundation (based on recent developments).
  - To show how to use it.
- Schedule:
  - I (Mon. 13): What is Rigid Geometry?
  - II (Tue. 14):
    - Birational Geometry from Zariski's Viewpoint
    - Birational Approach to Rigid Geometry
  - III (Wed. 15): Applications How to use it.

# What is Rigid Geometry?



Real - Complex analytic geometry

Rigid analytic geometry

 $\mathbb{C}$  vs.  $\mathbb{C}_p$ 

#### Similarities

| C                                                                 | $\mathbb{C}_p$                                     |
|-------------------------------------------------------------------|----------------------------------------------------|
| Algebraically closed                                              | Algebraically closed                               |
| Complete with respect to the absolute value norm $  \  _{\infty}$ | Complete with respect to the p-adic norm $  \  _p$ |

## Analytic Method: Uniformization

$$\mathbb{C} \longrightarrow \mathbb{C}/\Lambda$$

$$\Lambda = \mathbb{Z} + \mathbb{Z} \cdot \tau$$

$$\tau \in \mathbb{H} = \{ z \in \mathbb{C} \mid \operatorname{Im} z > 0 \}$$

#### Jacobi's uniformization

$$\mathbb{C}^{\times} \longrightarrow \mathbb{C}^{\times}/q^{\mathbb{Z}} = \mathbb{C}/\Lambda$$

$$q = e^{2\pi\sqrt{-1}\tau}$$

#### Tate's uniformization

 $\mathbb{C}_p$ 

$$\mathbb{C}_p^{\times} \longrightarrow \mathbb{C}_p^{\times}/q^{\mathbb{Z}}$$

$$q \in \mathbb{C}_p^{\times}, \quad |q|_p < 1$$

## Tate Curve

• Embedding onto a cubic curve



•  $|j(E)|_p > 1 \iff \exists q |q|_p < 1$  such that  $E \cong \mathbb{C}_p^{\times}/q^{\mathbb{Z}}$ .

# Why do we need analytic methods?



## Complex Analysis

### Rigid Analysis

$$E(\mathbb{C}) \cong \mathbb{C}/\Lambda$$

$$E(\mathbb{Q}_p) \cong \mathbb{Q}_p^{\times}/q^{\mathbb{Z}}$$

#### Nagell-Lutz Theorem.

K: algebraic number field,

E/K: an elliptic curve.

 $\Longrightarrow E(K)_{tor}$  is a finite set.

### Notation

 $(K, | \ |)$ : complete non-archimedean valued field with non-trivial valuation  $| \ |$ .

- | |:  $K \to \mathbb{R}_{\geq 0}$ : multiplicative valuation of ht. 1, i.e.,
- $(1) |x| = 0 \Longleftrightarrow x = 0.$
- (2) |xy| = |x||y|.
- $(3) |x + y| \le \max\{|x|, |y|\}.$
- | : non-trivial  $\iff |K^{\times}| \neq \{1\}$ .

# Tate's Rigid Analytic Geometry

|                   | Algebraic Geometry /k                              | Rigid Geometry /K                                                              |
|-------------------|----------------------------------------------------|--------------------------------------------------------------------------------|
| Function algebra  | Finitely generated algebra <i>A/k</i>              | Topologically finitely generated algebra <i>A/K</i> (called: Affinoid algebra) |
| Points (Naive)    | Maximal ideals of <i>A</i> (with Zariski topology) | Maximal ideals of <i>A</i> (with Admissible topology)                          |
| Building<br>Block | Affine variety (Spm $A$ , $O_X$ )                  | Affinoid (Spm $A$ , $O_X$ )                                                    |



- There's no a priori reason why one should take maximal ideals as points.
   (Depends on approaches; there are three others.)
- In Tate's approach, one has to introduce the admissible topology as a Grothendieck topology.

## Example of Affinoid Algebra

$$K\langle\langle X_1, \dots, X_n \rangle\rangle$$

$$= \left\{ \begin{array}{c|c} \sum_{\nu_1, \dots, \nu_n \ge 0} a_{\nu_1, \dots, \nu_n} T_1^{\nu_1} \cdots T_n^{\nu_n} & |a_{\nu_1, \dots, \nu_n}| \to 0 \text{ as} \\ \in K[[T_1, \dots, T_n]] & |\nu_1 + \dots + \nu_n \to \infty \end{array} \right\}$$

= The algebra of power series converging absolutely and uniformly on closed unit disk " $\mathbb{D}_{K}^{n}$ ".

## Dictionary

| Algebraic Geometry $/k = \overline{k}$ | Rigid Geometry/ $K = \overline{K}$                |
|----------------------------------------|---------------------------------------------------|
| $k[X_1,\ldots,X_n]$                    | $K\langle\langle X_1,\ldots,X_n\rangle\rangle$    |
| $k^n$                                  | $(z_1, \dots, z_n) \in K^n$<br>with $ z_i  \le 1$ |
| $\mathbb{A}^n_k$ Affine space          | $\mathbb{D}^n_K$ Closed unit polydisk             |

#### Basic Properties

$$K\langle\langle X_1,\ldots,X_n\rangle\rangle$$
:

• Banach algebra with Gauss norm

$$\|\sum_{\nu_1,\dots,\nu_n\geq 0} a_{\nu_1,\dots,\nu_n} T_1^{\nu_1} \cdots T_n^{\nu_n}\| = \sup |a_{\nu_1,\dots,\nu_n}|.$$

 Noetherian and every ideal is closed (w.r.t. the subspace topology).

• Structure of general affinoid algebras:

$$A = K\langle\langle X_1, \ldots, X_n \rangle\rangle/I$$

Banach algebra by the induced norm

# Wobbly Topology

- Spm  $A = \{ \mathfrak{m} \subset A \mid \text{maximal ideal} \}$ .
  - $-x \in \operatorname{Spm} A, f \in A \rightsquigarrow |f(x)| := |f \mod x|.$
  - Topology having an open basis

$${R(f,g)}_{f,g\in A}$$

where

$$R(f,g) = \{x \in \text{Spm } A \mid |f(x)| \le |g(x)|\}.$$

Note: 
$$R(f,g) = \operatorname{Spm} A \langle \langle \frac{f}{g} \rangle \rangle$$
  
=  $\operatorname{Spm} A \langle \langle X \rangle \rangle / (gX - f)$ .

#### Difficulties

- Spm A is not quasi-compact (w.r.t. the wobbly topology).
- $R(f,g) \mapsto A\langle\langle \frac{f}{g} \rangle\rangle$  is not a sheaf.
- → Want to "rigidify" the topology:

The name "RIGID" comes from this.

Tate (1961): Realization of asing Grothendieck topology.

## Admissible Topology

- Grothendieck topology
  - Weaker than wobbly topology.
  - Strongest topology which makes R(f, g) quasi-compact.
- Gives rise to "affinoids" Building Block.
- General rigid space: By "patching affinoids" w.r.t. admissible topology.

## Definition of Admissible Site

- $\mathfrak{A}_K$  = the category of affinoid K-algebras.
- $\{A_i\}_{i\in I}$  (finite collection) covers A
  - $\iff \begin{cases} \text{(a) Each } A_i \text{ is \'etale over } A. \\ \text{(b) Spm } A_i \to \text{Spm } A\text{: injective map.} \\ \text{(c) Spm } A = \bigcup_{i \in I} \text{Spm } A_i. \end{cases}$

# Admissible vs. Wobbly





Admissible land

Wobbly land

## Examples.

#### Annulus

$$\{z \in K \mid |a| \le |z| \le |b|\}$$

#### Affinoid with

Corresponding affinoid algebra 
$$= K\langle\!\langle \frac{a}{z}, \frac{z}{b} \rangle\!\rangle$$
$$= K\langle\!\langle X, Y \rangle\!\rangle / (XY - \frac{a}{b}).$$

Hence, quasi-compact.

#### Affine line

Realization as the limit of closed disks

$$K = \bigcup_{n \ge 1} \mathbb{D}(0, |a|^{-n}|)$$

$$|a| < 1$$
,  $\mathbb{D}(0, r) = \{z \in K \mid |z| \le r\}$ 



$$\mathbb{A}_{K}^{1,\mathrm{an}} = \varinjlim_{n \ge 1} \operatorname{Spm} K \langle \langle a^{n} z \rangle \rangle$$

Not quasi-compact

## Multiplicative group $\mathbb{G}_m$

$$K^{\times} = \bigcup_{n \ge 1} \{ z \in K \mid |a|^n \le |z| \le |a|^{-n} \}$$

$$= \bigcup_{n \in \mathbb{Z}} \{ z \in K \mid |a|^{n+1} \le |z| \le |a|^n \}$$

$$|a| < 1$$



Not quasi-compact

Tate curve 
$$\mathbb{G}_m/q^{\mathbb{Z}}$$
  $(|q| < 1)$ 

Take  $a \in K$  with  $|a|^k = |q| \ (k \ge 2)$ .

$$\mathbb{G}_{m,K}^{\mathrm{an}} = \bigcup_{n \in \mathbb{Z}} A_n$$

$$A_n = \operatorname{Spm} K\langle\!\langle \frac{a^{n+1}}{z}, \frac{z}{a^n} \rangle\!\rangle$$

q maps  $A_n$  isomorphically onto  $A_{n+k}$ .

 $\rightsquigarrow \mathbb{G}_{m,K}^{\mathrm{an}}/q^{\mathbb{Z}}$  as the union of k annuli.

Hence, quasi-compact.

# $\mathbb{C}$ vs. $\mathbb{C}_p$ (continued)

Differences

 $\mathbb{C}$   $\mathbb{C}_p$   $\nexists$  integer ring  $\exists$  integer ring

Similar for Affinoid algebras

Can take (non-canonically) "models" of affinoids

## Affinoid case

- V: a-adically complete valuation ring of ht. 1
- K = Frac(V) (with a-adic norm | |).

A: topologically finitely generated flat V-algebra  $\rightsquigarrow A_K = A \otimes_V K$ : affinoid algebra /K.

#### Example

#### Two models of $K\langle\!\langle X \rangle\!\rangle$



# Zariski Top. vs. Adm. Top.

Conversely,

Gerritzen-Grauert Theorem ⇒ Enough to recover the admissible topology

# Raynaud's viewpoint

Geometry of models

Rigid analytic geometry

Geometry of Formal Schemes

Theorems in rigid analytic geometry / DVR ← EGA III

Start from X/V: formal scheme of finite type

- $\rightarrow X = X_K$ : rigid analytic space/K (Raynaud Generic fiber)
  - ullet Quasi-compact admissible open subset:  $U_K$ ,

$$U \subseteq X'$$
 adm. blow-up  $X$ 

• Point set

$$\mathcal{X}(K) = \{\text{sections Spf } V \to X\}.$$
 $U_K(K) = \{\text{sections which factors through } U\}.$ 

• When  $U = \operatorname{Spf} A \leadsto \Gamma(U_K, \mathcal{O}_X) = A_K$ .

## Raynaud's Theorem

Coherent formal schemes of finite type /VAdmissible Blow-up

Admissible X X X XRaynaud generic fiber

Footnote: Coherent = quasi-compact and quasi-separated

#### Comments

- RHS: defined a priori by "patching affinoids", which turns out to be equivalent to "birational patching" in LHS.
- For the proof:
  - Existence of formal birational patching.
  - Comparing topologies: Gerritzen-Grauert Theorem.
- Significance: Shift from "analysis" to "geometry".

## Example: Tate curve

$$\mathbb{G}_{m,K}^{\text{an}} = \bigcup_{n \in \mathbb{Z}} A_n$$

$$A_n = \operatorname{Spm} K \langle \langle \frac{a^{n+1}}{z}, \frac{z}{a^n} \rangle \rangle$$

$$= \operatorname{Spm} K \langle \langle X, Y \rangle \rangle / (XY - a)$$

$$|a|^k = |q| \quad (k \ge 2).$$



## Our Approach

#### **General Policy:**

Rigid Geometry is a hybrid of formal geometry and birational geometry.



#### Approach:

Raynaud's approach + Zariski's classical idea