Math 265, Practice Midterm 1

Name: \qquad

This exam consists of 8 pages including this front page.

Ground Rules

1. No calculator is allowed.
2. Show your work for every problem unless otherwise stated.

Score		
1	16	
2	16	
3	15	
4	15	
5	15	
6	10	
7	13	
Total	100	

1. The following are true/false questions. You don't have to justify your answers. Just write down either T or F in the table below. A, B, C, X, b are always matrices here.
(a) If A^{2} makes sense then A is a square matrix.
(b) A system of linear equations can not have exactly 2 solutions.
(c) If $A B=A C$ and $A \neq 0$ then $B=C$.
(d) Let W be a subspace of \mathbb{R}^{n}. If $v \in W$ then $-v \in W$.
(e) $\operatorname{det}(2 A)=2 \operatorname{det}(A)$.
(f) A square matrix A is invertible if and only if $A X=b$ has at most one solution.
(g) Let $v_{1}, \ldots, v_{m} \in \mathbb{R}^{n}$. If $m \leq n$ then v_{1}, \ldots, v_{m} is always linearly independent.
(h) Let $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is linear transformation. Then if v_{1}, \ldots, v_{m} is a basis of R^{m} then $T\left(v_{1}\right), \ldots, T\left(v_{m}\right)$ is a basis of \mathbb{R}^{n}.

	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Answer	T	T	F	T	F	T	F	F

2. Quick Questions, A, B, C, X, b are always matrices here:
(a) Suppose that $\operatorname{det}(A)=\operatorname{det}\left(A^{-1}\right)$. Find $\operatorname{det}(A)$.

Solutions: Since $\operatorname{det}(A)=\operatorname{det}(A)^{-1}, \operatorname{det}(A)^{2}=1$. So $\operatorname{det}(A)= \pm 1$.
(b) Suppose $A X=2 X$ and $A^{3} X=a X$. Then $a=$?

Solutions: $a=8$
(c) Let

$$
A=\left[\begin{array}{ccc}
1 & 0 & -1 \\
2 & -3 & 1
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ccc}
0 & -2 & 1 \\
1 & 2 & -2
\end{array}\right] .
$$

Compute $2 I_{2}-A B^{T}$.
Solutions: $2 I_{2}-A B^{T}=\left[\begin{array}{cc}3 & -3 \\ -7 & 8\end{array}\right]$
(d) Let $V=\left\{\left.\binom{a}{b} \right\rvert\, a b=0\right\}$. Is V a subspace of \mathbb{R}^{2} ? why?

Solutions: No. V is not closed under addition. For example, $u=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $v=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ are in V. But $u+v=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is not in V.
3. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation. Suppose that

$$
T\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
3
\end{array}\right], T\left(\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\right)=\left[\begin{array}{l}
3 \\
1
\end{array}\right] .
$$

(a) Find the standard matrix for T.

We easily find that $\left[\begin{array}{l}1 \\ 0\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}1 \\ 1\end{array}\right]+\frac{1}{2}\left[\begin{array}{c}1 \\ -1\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 0\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}1 \\ 1\end{array}\right]-\frac{1}{2}\left[\begin{array}{c}1 \\ -1\end{array}\right]$.
So

$$
T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\frac{1}{2} T\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)+\frac{1}{2} T\left(\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
2
\end{array}\right]
$$

and

$$
T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\frac{1}{2} T\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)-\frac{1}{2} T\left(\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\right)=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Therefore the standard matrix of T is given by

$$
\left(T\left(e_{1}\right), T\left(e_{2}\right)\right)=\left[\begin{array}{cc}
2 & -1 \\
2 & 1
\end{array}\right]
$$

(b) Is T onto? Explain.

Solutions: The standard matrix of T is invertible because it has determinate $4 \neq 0$. So T is onto and one-to-one.
(c) Is T one-to-one? Explain.
4. Consider the following linear system

$$
\left(\begin{array}{ccc}
1 & 1 & 0 \\
1 & 2 & 1 \\
1 & 1 & a^{2}-4
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
2 \\
7 \\
a
\end{array}\right)
$$

(a) Determine all values of a such that the system has no solution.

Solutions: The augmented matrix of the above system is

$$
\left(\begin{array}{cccc}
1 & 1 & 0 & 2 \\
1 & 2 & 1 & 7 \\
1 & 1 & a^{2}-4 & a
\end{array}\right) .
$$

Then we get the echelon form:

$$
\left(\begin{array}{cccc}
1 & 1 & 0 & 2 \\
0 & 1 & 0 & 5 \\
0 & 0 & a^{2}-4 & a-2
\end{array}\right)
$$

Then the system has no solution if and only if $a^{2}-4=0$ and $a-2 \neq 0$. So $a=-2$
(b) Determine all values of a such that the system has infinitely many solutions.

Solutions: The system has infinitely many solutions if and only if $a^{2}-$ $4=a-2=0$. So $a=2$.
(c) Determine all values of a such that the system has a unique solution.

Solutions: The system has unique solution if and only if $a^{2}-4 \neq 0$. That is $a \neq \pm 2$.
5. (a) Compute

$$
\left|\begin{array}{cccc}
-2 & 0 & 0 & 0 \\
5 & 3 & 5 & 7 \\
3 & 0 & 2 & 1 \\
8 & 0 & 2 & 2
\end{array}\right| .
$$

Solution: By cofactor's formula, we get

$$
\operatorname{det}(A)=-2\left|\begin{array}{llc}
3 & 5 & 7 \\
0 & 2 & 1 \\
0 & 2 & 2
\end{array}\right|=(-2) 3\left|\begin{array}{ll}
2 & 1 \\
2 & 2
\end{array}\right|=-2 \cdot 3 \cdot 2=-12
$$

(b) Compute A^{-1}, where

$$
A=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 2 \\
2 & 1 & 5
\end{array}\right]
$$

Solution:

$$
A^{-1}=\left[\begin{array}{ccc}
-3 & -2 & 2 \\
-4 & -1 & 2 \\
2 & 1 & -1
\end{array}\right]
$$

6. Solve the following linear system using Cramer's rule.

$$
\begin{array}{rc}
-2 x_{1}+3 x_{2}-x_{3} & =1 \\
x_{1}+2 x_{2}-x_{3} & =4 \\
-2 x_{1}-x_{2}+x_{3} & =-3
\end{array}
$$

Solutions: By Cramer's rule.

$$
\begin{aligned}
& |A|=\left|\begin{array}{ccc}
-2 & 3 & -1 \\
1 & 2 & -1 \\
-2 & -1 & 1
\end{array}\right|=-2 \\
& \left|A_{1}\right|=\left|\begin{array}{ccc}
1 & 3 & -1 \\
4 & 2 & -1 \\
-3 & -1 & 1
\end{array}\right|=-4 \\
& \left|A_{2}\right|=\left|\begin{array}{ccc}
-2 & 1 & -1 \\
1 & 4 & -1 \\
-2 & -3 & 1
\end{array}\right|=-6 \\
& \left|A_{3}\right|=\left|\begin{array}{ccc}
-2 & 3 & 1 \\
1 & 2 & 4 \\
-2 & -1 & -3
\end{array}\right|=-8
\end{aligned}
$$

So

$$
x_{1}=\frac{\left|A_{1}\right|}{|A|}=2, x_{2}=\frac{\left|A_{2}\right|}{|A|}=3, x_{3}=\frac{\left|A_{3}\right|}{|A|}=4 .
$$

7. Let $A=\left(\begin{array}{ccccc}-3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4\end{array}\right)$
(a) Find a basis of column space of A.

Solutions The reduced echelon form of A is

$$
\left(\begin{array}{ccccc}
1 & -2 & 0 & -1 & 3 \\
0 & 0 & 1 & 2 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Since it has pivots in first and third column, we conclude that first and third column of A, that is, $\left[\begin{array}{c}-3 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{c}-1 \\ 2 \\ 5\end{array}\right]$ is a basis of $\operatorname{Col}(A)$
(b) Find a basis of the null space of A.

Solution: From reduced echelon form of A, we can solve $A X=\overrightarrow{0}$. We have $x_{1}=2 x_{2}+x_{4}-3 x_{5}$ and $x_{3}=-2 x_{4}+2 x_{5}$. Hence the general solution of $A X=\overrightarrow{0}$ is

$$
X=\left[\begin{array}{c}
2 x_{2}+x_{4}-3 x_{5} \\
x_{2} \\
-2 x_{4}+2 x_{5} \\
x_{4} \\
x_{5}
\end{array}\right]=x_{2}\left[\begin{array}{l}
2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
1 \\
0 \\
-2 \\
1 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
-3 \\
0 \\
2 \\
0 \\
1
\end{array}\right] .
$$

So $\left[\begin{array}{l}2 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ 0 \\ -2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-3 \\ 0 \\ 2 \\ 0 \\ 1\end{array}\right]$ is a basis of null space.
(c) Verify dimension theorem $\operatorname{dim} \operatorname{Nul} A+\operatorname{rank} A=n$ for this matrix A.

Solutions: From (1) and (2), we the rank of A is 2 and $\operatorname{dim} \operatorname{Nul}(A)=$ 3. So we get

$$
\operatorname{dim} \operatorname{Nul} A+\operatorname{rank} A=3+2=5=n .
$$

