Math 265, Midterm 1

February 18th, 2019

Name: \qquad

This exam consists of 8 pages including this front page.

Ground Rules

1. No calculator is allowed.
2. Show your work for every problem unless otherwise stated.

Score		
1	16	
2	16	
3	10	
4	15	
5	15	
6	13	
7	15	
Total	100	

1. The following are true/false questions. You don't have to justify your answers. Just write down either \mathbf{T} or \mathbf{F} in the table below. A, B, C, X, b are always matrices here (2 points each).
(a) $A A^{T}$ is a square matrix.
(b) If $A B=A C$ and A is invertible then $B=C$.
(c) If a system of linear equations has 2 solutions then it has infinitely many solutions.
(d) Let A be a 3×5-matrix then the dimension of the null space $\operatorname{Nul}(A)$ could be 0 .
(e) If $A^{3}=0$ then A^{-1} does not exist.
(f) Let A be an $n \times n$ matrix. If columns of A are linear dependent then $\operatorname{det}(A)=0$
(g) There is only one basis $\left\{v_{1}, \ldots, v_{n}\right\}$ in \mathbb{R}^{n}, that is, the standard basis $\left\{e_{1}, \ldots, e_{n}\right\}$.
(h) Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation. Then T is onto if and only if T is one-to-one.

	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Answer	T	T	T	F	T	T	F	T

2. Quick Questions (no details of explanation needed), A, B, C, X, b are always matrices here (4 points each):
(a) Suppose A is a 4×4-matrix and $\operatorname{det}(A)=3$ then $\operatorname{det}(2 A)=$?

Solutions: $\quad \operatorname{det}(2 A)=2^{4} \operatorname{det}(A)=2^{4} \cdot 3=48$
(b) Suppose that $A^{2}=A \cdot \operatorname{det}(A)=$?

Solutions: We have $\operatorname{det}(A)^{2}=\operatorname{det}(A)$. So $\operatorname{det}(A)=0$ or $\operatorname{det}(A)=1$.
(c) Let $A=\left[\begin{array}{cc}1 & 1 \\ 0 & -2 \\ 1 & -1\end{array}\right]$ and $B=\left[\begin{array}{cc}0 & 1 \\ 1 & 1 \\ 2 & -1\end{array}\right]$. Is $A^{T} B-2 I_{2}$ invertible? If so, find $\left(A^{T} B-2 I_{2}\right)^{-1}$.

Solutions: $A^{T} B-2 I_{2}=\left(\begin{array}{cc}2 & 0 \\ -4 & 0\end{array}\right)-\left(\begin{array}{cc}2 & 0 \\ 0 & 2\end{array}\right)=\left(\begin{array}{cc}0 & 0 \\ -4 & -2\end{array}\right)$. The determinant $A^{T} B-2 I_{2}$ is 0 . So it is not invertible.
(d) Let \mathbb{Z} be the set of integers and $V=\left\{\left.\left[\begin{array}{l}x \\ y\end{array}\right] \right\rvert\, x, y \in \mathbb{Z}\right\}$ be a subset of \mathbb{R}^{2}. Is V a subspace of \mathbb{R}^{2} ? Why?

Solutions: No, V is not a subspace of \mathbb{R}^{2} because it is not closed under scalar multiplication. For example, Let $r=\frac{1}{2}$, and $\left[\begin{array}{l}1 \\ 0\end{array}\right] \in V$. But

$$
\frac{1}{2}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
\frac{1}{2} \\
1
\end{array}\right]
$$

is not in V.
3. Find an equation relating a, b, c so that the following linear system is consistent for any values of a, b, c that satisfy that equation (10 points):

$$
\begin{aligned}
x+2 y-3 z & =a \\
2 x+3 y+3 z & =b \\
5 x+9 y-6 z & =c
\end{aligned}
$$

Solutions:

The augmented matrix of the above system is

$$
\left(\begin{array}{cccc}
1 & 2 & -3 & a \\
2 & 3 & 3 & b \\
5 & 9 & -6 & c
\end{array}\right)
$$

Then we get the echelon form:

$$
\left(\begin{array}{cccc}
1 & 2 & -3 & a \\
0 & -1 & 9 & b-2 a \\
0 & 0 & 0 & c-b-3 a
\end{array}\right)
$$

Hence the system has solution if and only if $c-b-3 a=0$.
4. (a) Consider the matrix

$$
A=\left[\begin{array}{cccc}
-2 & 7 & 6 & 8 \\
0 & 0 & 3 & 0 \\
0 & a & 2 & 1 \\
0 & 9 & 2 & a
\end{array}\right]
$$

Find a so that A is invertible (8 points).

Solutions:By cofactor's formula on the first column, we get

$$
\operatorname{det}(A)=-2\left|\begin{array}{lll}
0 & 3 & 0 \\
a & 2 & 1 \\
9 & 2 & a
\end{array}\right|
$$

Use the cofactor formula again to the first row. We get

$$
\operatorname{det}(A)=(-2)(-3)\left|\begin{array}{ll}
a & 1 \\
9 & a
\end{array}\right|=6\left(a^{2}-9\right)
$$

Since A is invertible if and only if $\operatorname{det}(A) \neq 0$, we conclude that

$$
6\left(a^{2}-9\right) \neq 0
$$

which is equivalent to $a \neq \pm 3$.
(b) Compute A^{-1}, where

$$
A=\left[\begin{array}{lll}
2 & 2 & 5 \\
1 & 0 & 2 \\
0 & 1 & 1
\end{array}\right]
$$

(7 points)

Solution:

$$
A^{-1}=\left[\begin{array}{ccc}
2 & -3 & -4 \\
1 & -2 & -1 \\
-1 & 2 & 2
\end{array}\right]
$$

5. Solve the following linear system using Cramer's rule (15 points).

$$
\begin{array}{rll}
2 x_{1}+3 x_{2}-x_{3} & =-5 \\
x_{1}+2 x_{3} & =0 \\
x_{1}+2 x_{2}+3 x_{3} & =1
\end{array}
$$

Solutions: By Cramer's rule.

$$
\begin{aligned}
& |A|=\left|\begin{array}{ccc}
2 & 3 & -1 \\
1 & 0 & 2 \\
1 & 2 & 3
\end{array}\right|=-13 \\
& \left|A_{1}\right|=\left|\begin{array}{ccc}
-5 & 3 & -1 \\
0 & 0 & 2 \\
1 & 2 & 3
\end{array}\right|=26 \\
& \left|A_{2}\right|=\left|\begin{array}{ccc}
2 & -5 & -1 \\
1 & 0 & 2 \\
1 & 1 & 3
\end{array}\right|=0 \\
& \left|A_{3}\right|=\left|\begin{array}{ccc}
2 & 3 & -5 \\
1 & 0 & 0 \\
1 & 2 & 1
\end{array}\right|=-13
\end{aligned}
$$

So

$$
x_{1}=\frac{\left|A_{1}\right|}{|A|}=-2, x_{2}=\frac{\left|A_{2}\right|}{|A|}=0, x_{3}=\frac{\left|A_{3}\right|}{|A|}=1 .
$$

6. Let $A=\left(\begin{array}{cccc}1 & 2 & -1 & 1 \\ 1 & 2 & 0 & -1 \\ 2 & 4 & -1 & 0\end{array}\right)$.
(a) Find a basis for the column space of A (5 points).

Solutions: We compute the reduced echelon form of A is

$$
\left(\begin{array}{cccc}
1 & 2 & 0 & -1 \\
0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

The 1st 3rd columns of the reduced echelon form have the leading ones. So the first two columns $\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right),\left(\begin{array}{c}-1 \\ 0 \\ -1\end{array}\right)$ of A forms a basis of the column space of A.
(b) Find a basis for the null space of A (5 points).

Solutions: From the reduced echelon form, we get equations $x_{1}+2 x_{2}-$ $x_{4}=0$ and $x_{3}-2 x_{4}=0$. Therefore, we have $x_{1}=-2 x_{2}+x_{4}$ and $x_{3}=2 x_{4}$. Hence, any vector in $N(A)$ can be written as

$$
\begin{aligned}
& \left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
-2 x_{2}+x_{4} \\
x_{2} \\
2 x_{4} \\
x_{4}
\end{array}\right)=x_{2}\left(\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{l}
1 \\
0 \\
2 \\
1
\end{array}\right) \\
& \text { free parameters. So }\left(\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
2 \\
1
\end{array}\right) \text { forms a basis of the null }
\end{aligned}
$$ space.

(c) Verify the equality $\operatorname{rank}(A)+\operatorname{dim} \operatorname{Nul}(A)=n$ (3 points).

Solutions: We have $\operatorname{rank}(A)=2$ and $\operatorname{dim} \operatorname{Nul}(A)=2$ from the above. So

$$
\operatorname{rank}(A)+\operatorname{dim} \operatorname{Nul}(A)=2+2=4=n
$$

7. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear transformation. Suppose that

$$
T\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
0 \\
3
\end{array}\right] \text { and } T\left(\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right]
$$

(a) Find the standard matrix of T (5 points).

Solutions: We easily find that $\left[\begin{array}{l}1 \\ 0\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}1 \\ 1\end{array}\right]-\frac{1}{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}1 \\ 1\end{array}\right]+$ $\frac{1}{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right]$. So

$$
T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\frac{1}{2} T\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)+\frac{1}{2} T\left(\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\right)=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

and

$$
T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\frac{1}{2} T\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)-\frac{1}{2} T\left(\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]
$$

Therefore the standard matrix of T is given by

$$
\left(T\left(e_{1}\right), T\left(e_{2}\right)\right)=\left[\begin{array}{cc}
1 & 0 \\
-1 & 1 \\
1 & 2
\end{array}\right]
$$

(b) Is T onto? explain (5 points).

Solutions: The echelon form of the standard matrix is $\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]$. Since there is a zero row in the echelon form, T is not onto.
(c) Is T one-to-one? explain (5 points).

Solutions: Since the echelon form has pivots on each column, T is indeed one-to-one.

