Math 265, Midterm 1

February 18th, 2019

Name: _____

This exam consists of 8 pages including this front page.

Ground Rules

- 1. No calculator is allowed.
- 2. Show your work for every problem unless otherwise stated.

Score						
1	16					
2	16					
3	10					
4	15					
5	15					
6	13					
7	15					
Total	100					

- 1. The following are true/false questions. You don't have to justify your answers. Just write down either \mathbf{T} or \mathbf{F} in the table below. A, B, C, X, b are always matrices here (2 points each).
 - (a) AA^T is a square matrix.
 - (b) If AB = AC and A is invertible then B = C.
 - (c) If a system of linear equations has 2 solutions then it has infinitely many solutions.
 - (d) Let A be a 3×5 -matrix then the dimension of the null space Nul(A) could be 0.
 - (e) If $A^3 = 0$ then A^{-1} does not exist.
 - (f) Let A be an $n \times n$ matrix. If columns of A are linear dependent then det(A) = 0
 - (g) There is only one basis $\{v_1, \ldots, v_n\}$ in \mathbb{R}^n , that is, the standard basis $\{e_1, \ldots, e_n\}$.
 - (h) Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation. Then T is onto if and only if T is one-to-one.

	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Answer	Т	Т	Т	F	Т	Т	F	Т

- 2. Quick Questions (no details of explanation needed), A, B, C, X, b are always matrices here (4 points each):
 - (a) Suppose A is a 4×4 -matrix and $\det(A) = 3$ then $\det(2A) = ?$

Solutions: $det(2A) = 2^4 det(A) = 2^4 \cdot 3 = 48$

(b) Suppose that $A^2 = A$. det(A) = ?

Solutions: We have $det(A)^2 = det(A)$. So det(A) = 0 or det(A) = 1.

(c) Let
$$A = \begin{bmatrix} 1 & 1 \\ 0 & -2 \\ 1 & -1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 2 & -1 \end{bmatrix}$. Is $A^T B - 2I_2$ invertible? If so, find $(A^T B - 2I_2)^{-1}$.

Solutions: $A^T B - 2I_2 = \begin{pmatrix} 2 & 0 \\ -4 & 0 \end{pmatrix} - \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ -4 & -2 \end{pmatrix}$. The determinant $A^T B - 2I_2$ is 0. So it is not invertible.

(d) Let \mathbb{Z} be the set of integers and $V = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \mid x, y \in \mathbb{Z} \right\}$ be a subset of \mathbb{R}^2 . Is V a subspace of \mathbb{R}^2 ? Why?

Solutions: No, V is not a subspace of \mathbb{R}^2 because it is not closed under scalar multiplication. For example, Let $r = \frac{1}{2}$, and $\begin{bmatrix} 1 \\ 0 \end{bmatrix} \in V$. But

$$\frac{1}{2} \begin{bmatrix} 1\\0 \end{bmatrix} = \begin{bmatrix} \frac{1}{2}\\1 \end{bmatrix}$$

is not in V.

3. Find an equation relating a, b, c so that the following linear system is consistent for any values of a, b, c that satisfy that equation (10 points):

$$x + 2y - 3z = a$$

$$2x + 3y + 3z = b$$

$$5x + 9y - 6z = c$$

Solutions:

The augmented matrix of the above system is

$$\begin{pmatrix} 1 & 2 & -3 & a \\ 2 & 3 & 3 & b \\ 5 & 9 & -6 & c \end{pmatrix}.$$

Then we get the echelon form:

$$\begin{pmatrix} 1 & 2 & -3 & a \\ 0 & -1 & 9 & b - 2a \\ 0 & 0 & 0 & c - b - 3a \end{pmatrix}.$$

Hence the system has solution if and only if c - b - 3a = 0.

4. (a) Consider the matrix

$$A = \begin{bmatrix} -2 & 7 & 6 & 8\\ 0 & 0 & 3 & 0\\ 0 & a & 2 & 1\\ 0 & 9 & 2 & a \end{bmatrix}.$$

Find a so that A is invertible (8 points).

Solutions: By cofactor's formula on the first column, we get

$$\det(A) = -2 \begin{vmatrix} 0 & 3 & 0 \\ a & 2 & 1 \\ 9 & 2 & a \end{vmatrix}.$$

Use the cofactor formula again to the first row. We get

$$\det(A) = (-2)(-3) \begin{vmatrix} a & 1 \\ 9 & a \end{vmatrix} = 6(a^2 - 9).$$

Since A is invertible if and only if $det(A) \neq 0$, we conclude that

$$6(a^2 - 9) \neq 0$$

which is equivalent to $a \neq \pm 3$.

(b) Compute A^{-1} , where

$$A = \begin{bmatrix} 2 & 2 & 5 \\ 1 & 0 & 2 \\ 0 & 1 & 1 \end{bmatrix}$$

(7 points)

Solution:

$$A^{-1} = \begin{bmatrix} 2 & -3 & -4 \\ 1 & -2 & -1 \\ -1 & 2 & 2 \end{bmatrix}$$

5. Solve the following linear system using Cramer's rule (15 points).

$$2x_1 + 3x_2 - x_3 = -5$$

$$x_1 + 2x_3 = 0$$

$$x_1 + 2x_2 + 3x_3 = 1$$

Solutions: By Cramer's rule.

$$|A| = \begin{vmatrix} 2 & 3 & -1 \\ 1 & 0 & 2 \\ 1 & 2 & 3 \end{vmatrix} = -13$$
$$|A_1| = \begin{vmatrix} -5 & 3 & -1 \\ 0 & 0 & 2 \\ 1 & 2 & 3 \end{vmatrix} = 26$$
$$|A_2| = \begin{vmatrix} 2 & -5 & -1 \\ 1 & 0 & 2 \\ 1 & 1 & 3 \end{vmatrix} = 0$$
$$|A_3| = \begin{vmatrix} 2 & 3 & -5 \\ 1 & 0 & 0 \\ 1 & 2 & 1 \end{vmatrix} = -13$$

 So

$$x_1 = \frac{|A_1|}{|A|} = -2, \ x_2 = \frac{|A_2|}{|A|} = 0, \ x_3 = \frac{|A_3|}{|A|} = 1.$$

6. Let
$$A = \begin{pmatrix} 1 & 2 & -1 & 1 \\ 1 & 2 & 0 & -1 \\ 2 & 4 & -1 & 0 \end{pmatrix}$$
.

wi

(a) Find a basis for the column space of A (5 points).

Solutions: We compute the reduced echelon form of A is

$$\begin{pmatrix} 1 & 2 & 0 & -1 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

The 1st 3rd columns of the reduced echelon form have the leading ones. So the first two columns $\begin{pmatrix} 1\\1\\2 \end{pmatrix}$, $\begin{pmatrix} -1\\0\\-1 \end{pmatrix}$ of A forms a basis of the column space of A.

(b) Find a basis for the null space of A (5 points).

Solutions: From the reduced echelon form, we get equations $x_1 + 2x_2 - 2x_2$ $x_4 = 0$ and $x_3 - 2x_4 = 0$. Therefore, we have $x_1 = -2x_2 + x_4$ and $x_3 = 2x_4$. Hence, any vector in N(A) can be written as

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -2x_2 + x_4 \\ x_2 \\ 2x_4 \\ x_4 \end{pmatrix} = x_2 \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 1 \\ 0 \\ 2 \\ 1 \end{pmatrix}$$
with x_2 , x_4 free parameters. So $\begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ 2 \\ 1 \end{pmatrix}$ forms a basis of the null space.

(c) Verify the equality $rank(A) + \dim Nul(A) = n$ (3 points). Solutions: We have rank(A) = 2 and dim Nul(A) = 2 from the above. So

$$rank(A) + \dim Nul(A) = 2 + 2 = 4 = n.$$

7. Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation. Suppose that

$$T\begin{pmatrix} 1\\1 \end{pmatrix} = \begin{bmatrix} 1\\0\\3 \end{bmatrix}$$
 and $T\begin{pmatrix} -1\\1 \end{pmatrix} = \begin{bmatrix} -1\\2\\1 \end{bmatrix}$.

(a) Find the standard matrix of T (5 points).

Solutions: We easily find that
$$\begin{bmatrix} 1\\0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1\\1 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} -1\\1 \end{bmatrix}$$
 and $\begin{bmatrix} 0\\1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1\\1 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} -1\\1 \end{bmatrix}$. So
$$T(\begin{bmatrix} 1\\0 \end{bmatrix}) = \frac{1}{2}T(\begin{bmatrix} 1\\1 \end{bmatrix}) + \frac{1}{2}T(\begin{bmatrix} 1\\-1 \end{bmatrix}) = \begin{bmatrix} 1\\-1\\1 \end{bmatrix}$$
. and

$$T\begin{pmatrix} 0\\1 \end{pmatrix} = \frac{1}{2}T\begin{pmatrix} 1\\1 \end{pmatrix} - \frac{1}{2}T\begin{pmatrix} 1\\-1 \end{pmatrix} = \begin{bmatrix} 0\\1\\2 \end{bmatrix}.$$

Therefore the standard matrix of T is given by

$$(T(e_1), T(e_2)) = \begin{bmatrix} 1 & 0 \\ -1 & 1 \\ 1 & 2 \end{bmatrix}$$

(b) Is T onto? explain (5 points).

Solutions: The echelon form of the standard matrix is $\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$. Since there is a zero row in the echelon form, T is not onto.

(c) Is T one-to-one? explain (5 points).

Solutions: Since the echelon form has pivots on each column, T is indeed one-to-one.