
Math 265, Practice Midterm 2

Name:

This exam consists of 7 pages including this front page.

Ground Rules

1. No calculator is allowed.

2. Show your work for every problem unless otherwise stated.

Score

1 16

2 16

3 16

4 20

5 16

6 16

Total 100
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1. The following are true/false questions. You don’t have to justify your an-
swers. Just write down either T or F in the table below. A, B, C, X, b are
always matrices here.

(a) If rows of A are linearly dependent so are columns.

(b) Let V be a vector space with basis B and dimV = n. Then v1, . . . , vm ∈
V is a basis of V if and only if [v1]B, . . . , [vm]B is a basis of Rn.

(c) If A has an eigenvalue 0 then A is not invertible.

(d) A is diagonalizable if and only if all eigenvalues of A are distinct.

(e) Let A be a 3× 5-matrix then Nul(A) has positive dimension.

(f) Let ki be the multiplicity of an eigenvalue λi of A. If ki ≥ 2 then A is
not diagonalizable.

(g) Let T : Rn → Rn be a linear transformation, B basis of Rn and A the
standard matrix of T . Then A is similar to [T ]B.

(h) Let A ∈ Rn×n be a real matrix. If a + bi is an eigenvalue of A so is
a− bi.

(a) (b) (c) (d) (e) (f) (g) (h)

Answer F T T F T F T T
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2. Quick Questions, A, B, C, X, b are always matrices here:

(a) Suppose that A =

[
2 1
1 2

]
with eigenvalues 3, 1. Compute Ak.

Solutions: A is diagonalizable A = P

[
3 0
0 1

]
P−1 with P =

[
1 1
1 −1

]
.

Then Ak = P

[
3k 0
0 1

]
P−1 =

[
1 1
1 −1

] [
3k 0
0 1

]
− 1

2

[
−1 −1
−1 1

]

(b) Let T : R2 → R2 with the standard matrix

[
2 3
1 4

]
. Let S be a parallel-

ogram with area 2. Compute the area of T (S).

Solutions: The determinate of the standard matrix is 5. So Area

T (S) = 5 Area of S = 10.

(c) Find a basis of row space of A =

−3 6 −1 1 −7
1 −2 2 3 −1
2 −4 5 8 −4


Solutions: An echelon form ofA is

1 −2 2 3 −1
0 0 5 10 −10
0 0 0 0 0

 So,
(
1 −2 2 3 −1

)
,

(0 0 5 10 − 10) forms a basis of row space of A.
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3. Let consider the following subset V ⊂ R2×2.

V =

{[
x y
z w

]
|x+ 2z = 0, −y + w = 0

}
(a) Show that V is a subspace of R2×2.

Proof : Given A1 =

[
x1 y1

z1 w1

]
∈ V , A2 :=

[
x2 y2

z2 w2

]
∈ V and c ∈ R. We

have

A1 + A2 =

[
x1 + x2 y1 + y2

z1 + z2 w1 + w2

]
, cA1 =

[
cx1 cy1

cz1 cw1

]
.

It is clear that we have (x1 + x2) + 2(z1 + z2) = 0 and −(y1 + y2) +
(w1 + w2) = 0. So A1 + A2 is in V . Also (cx1) + 2(cz1) = 0 and
−(cy1) + (cw1) = 0. So cA1 ∈ V . Hence V is close under addition and
scalar multiplication. Hence V is a subspace of R2×2.

(b) Find a basis of V .

Solutions: It we identify R2×2 with R4 via

[
x y
z w

]
7→


x
y
z
w

 . Then V is

just the space

V =



x
y
z
w

 |x+ 2z = 0, −y + w = 0


Namely, V is just the null space 0f

[
1 0 2 0
0 −1 0 1

]
, which we can find a

basis of this null space: 
−2
0
1
0

 ,


0
1
0
1

 .
So

[
−2 0
1 0

]
,

[
0 1
0 1

]
is a basis of V .

(c) Find the dimension of V .

Solutions: As explained as the above, dimV = 2.
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4. Let

A =

2 a 1
0 2 −1
0 0 3


(a) Determine all values of a such that A is diagonalizable.

Solutions:The characteristic polynomial ofA is fA(t) =

∣∣∣∣∣∣
2− t a 1

0 2− t −1
0 0 3− t

∣∣∣∣∣∣ =

−(t− 2)2(t− 3). So we get eigenvalues λ1 = 2 with multiplicity k1 = 2,
λ2 = 3 with multiplicity k2 = 1.

For λ1 = 2, we solve (A − 2I3)X = 0 to find a basis of eigenspace E2.

Note that A−2I3 =

0 a 1
0 0 −1
0 0 1

. We see that rank(A−2I3) = 2 when

a 6= 0 and is 1 when a = 0. So when a 6= 0, dimE2 = 3−2 = 1 < k1 = 2
which implies that A is not diagonalizable.

Now if a = 0 then dimE2 = 2 = k2. For λ2 = 3, we have A − 3I3 =−1 0 1
0 −1 −1
0 0 0

. We easily calculate that E3 is dimensional 1 spanned

by

 1
−1
1

. So dimE3 = 1 = k2. Thus only when a = 0 then A is

diagonalizable.

(b) When a is diagonalizable. Diagonalize A.

Solutions: When a = 0, we find basis of E2 by solving (A− 2I3)X = 0:1
0
0

 ,

0
1
0

 .

Therefore, A = PΛP−1 with

P =

1 0 1
0 1 −1
0 0 1

 and Λ =

2 0 0
0 2 0
0 0 3
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5. Let P2[t] = {f(t) = a2t
2+a1t+a0} be the space of polynomials with maximal

degree 2. Define the following map T : P2[t]→ R2 via T (f) =

[
f(−1)
f(1)

]
.

(a) Show T is a linear transformation.

Proof: Given f(t), g(t) ∈ BP2[t], and c ∈ R,

T (f+g) =

[
(f + g)(−1)
(f + g)(1)

]
=

[
f(−1) + g(−1)
f(1) + g(1)

]
=

[
f(−1)
f(1)

]
+

[
g(−1)
g(1)

]
= T (f)+T (g).

Similarly, we see that T (cf) =

[
(cf)(−1)
(cf)(1)

]
= c

[
f(−1)
f(1)

]
= cT (f). So T

is a linear transformation.

(b) Let B be a standard basis of P2[t] and C =

{[
1
−1

]
,

[
1
1

]}
. Find matrix

M of T relative to basis B and C.

Solutions: By definition,

M =
[
[T (1)]C, [T (t)]C, [T (t2)]C

]
=

[[
1
1

]
C
,

[
−1
1

]
C
,

[
1
1

]
C

]
=

[
0 −1 0
1 0 1

]
(c) Let f = t2 + t+ 1. Find [T (f)]C.

Solutions: We know that [T (f)]C = M [f ]B. So

[T (f)]C =

[
0 −1 0
1 0 1

]1
1
1

 =

[
−1
2

]
.
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6. Let f(t) = ant
n + an−1t

n−1 + · · · a1t + a0 be polynomial and A ∈ Rm×m be
an m×m-matrix. Then we define

f(A) = anA
n + an−1A

n−1 + · · ·+ a1A+ a0Im.

In particular, f(A) is still an m×m-matrix.

(a) If A is similar to B, that is A = PBP−1, show that f(A) = Pf(B)P−1

Proof Since A = PBP−1, we have Ak = PBkP−1. Therefore

f(A) = anA
n + an−1A

n−1 + · · ·+ a1A+ a0Im

= anPB
nP−1 + an−1PB

n−1P−1 + · · ·+ a1PBP
−1 + a0PInP

−1

= P (anB
n + an−1B

n−1 + · · ·+ a1B + a0In)P−1

= Pf(B)P−1.

(b) If A is diagonal matrix and f(t) = fA(t) is characteristic polynomial of
A, show that f(A) is a zero matrix.

Proof: Note the multiplication and addition of diagonal matrices are
just multiplications and additions entry by entry. So if A = Λ =λ1

. . .

λn

 then f(A) =

f(λ1)
. . .

f(λn)

 In this case, f(t) =

fA(t) = (t−λ1) · · · (t−λn). So f(λ1) = · · · f(λn) = 0. Hence f(A) = 0.

(c) If A diagonalizable matrix and f(t) = fA(t) is characteristic polynomial
of A, show that f(A) is a zero matrix.

Proof:

Since A is diagonalizable, A = PΛP−1 with Λ =

λ1

. . .

λn

. Then

by (1), we have

f(A) = Pf(Λ)P−1 = P

f(λ1)
. . .

f(λn)

P−1.

Since f(t) = fA(t) = fΛ(t) = (λ1 − t) · · · (λn − t), f(A) = P0P−1 = 0.
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