## Math 265, Practice Midterm 2

Name: $\qquad$

This exam consists of 7 pages including this front page.

## Ground Rules

1. No calculator is allowed.
2. Show your work for every problem unless otherwise stated.

| Score |  |  |
| ---: | :---: | :--- |
| 1 | 16 |  |
| 2 | 16 |  |
| 3 | 16 |  |
| 4 | 20 |  |
| 5 | 16 |  |
| 6 | 16 |  |
| Total | 100 |  |

1. The following are true/false questions. You don't have to justify your answers. Just write down either T or F in the table below. $A, B, C, X, b$ are always matrices here.
(a) If rows of $A$ are linearly dependent so are columns.
(b) Let $V$ be a vector space with basis $\mathcal{B}$ and $\operatorname{dim} V=n$. Then $v_{1}, \ldots, v_{m} \in$ $V$ is a basis of $V$ if and only if $\left[v_{1}\right]_{\mathcal{B}}, \ldots,\left[v_{m}\right]_{\mathcal{B}}$ is a basis of $\mathbb{R}^{n}$.
(c) If $A$ has an eigenvalue 0 then $A$ is not invertible.
(d) $A$ is diagonalizable if and only if all eigenvalues of $A$ are distinct.
(e) Let $A$ be a $3 \times 5$-matrix then $\operatorname{Nul}(\mathrm{A})$ has positive dimension.
(f) Let $k_{i}$ be the multiplicity of an eigenvalue $\lambda_{i}$ of $A$. If $k_{i} \geq 2$ then $A$ is not diagonalizable.
(g) Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation, $\mathcal{B}$ basis of $\mathbb{R}^{n}$ and $A$ the standard matrix of $T$. Then $A$ is similar to $[T]_{\mathcal{B}}$.
(h) Let $A \in \mathbb{R}^{n \times n}$ be a real matrix. If $a+b i$ is an eigenvalue of $A$ so is $a-b i$.

|  | (a) | (b) | (c) | (d) | (e) | (f) | (g) | (h) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Answer | F | T | T | F | T | F | T | T |

2. Quick Questions, $A, B, C, X, b$ are always matrices here:
(a) Suppose that $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$ with eigenvalues 3,1 . Compute $A^{k}$. Solutions: $A$ is diagonalizable $A=P\left[\begin{array}{ll}3 & 0 \\ 0 & 1\end{array}\right] P^{-1}$ with $P=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$. Then $A^{k}=P\left[\begin{array}{cc}3^{k} & 0 \\ 0 & 1\end{array}\right] P^{-1}=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]\left[\begin{array}{cc}3^{k} & 0 \\ 0 & 1\end{array}\right]-\frac{1}{2}\left[\begin{array}{cc}-1 & -1 \\ -1 & 1\end{array}\right]$
(b) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ with the standard matrix $\left[\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right]$. Let $S$ be a parallelogram with area 2. Compute the area of $T(S)$.
Solutions: The determinate of the standard matrix is 5. So Area $T(S)=5$ Area of $S=10$.
(c) Find a basis of row space of $A=\left(\begin{array}{ccccc}-3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4\end{array}\right)$

Solutions: An echelon form of $A$ is $\left(\begin{array}{ccccc}1 & -2 & 2 & 3 & -1 \\ 0 & 0 & 5 & 10 & -10 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$ So, $\left(\begin{array}{lllll}1 & -2 & 2 & 3 & -1\end{array}\right)$, (00510-10) forms a basis of row space of $A$.
3. Let consider the following subset $V \subset \mathbb{R}^{2 \times 2}$.

$$
V=\left\{\left.\left[\begin{array}{cc}
x & y \\
z & w
\end{array}\right] \right\rvert\, x+2 z=0,-y+w=0\right\}
$$

(a) Show that $V$ is a subspace of $\mathbb{R}^{2 \times 2}$.

Proof: Given $A_{1}=\left[\begin{array}{cc}x_{1} & y_{1} \\ z_{1} & w_{1}\end{array}\right] \in V, A_{2}:=\left[\begin{array}{cc}x_{2} & y_{2} \\ z_{2} & w_{2}\end{array}\right] \in V$ and $c \in \mathbb{R}$. We have

$$
A_{1}+A_{2}=\left[\begin{array}{cc}
x_{1}+x_{2} & y_{1}+y_{2} \\
z_{1}+z_{2} & w_{1}+w_{2}
\end{array}\right], \quad c A_{1}=\left[\begin{array}{cc}
c x_{1} & c y_{1} \\
c z_{1} & c w_{1}
\end{array}\right] .
$$

It is clear that we have $\left(x_{1}+x_{2}\right)+2\left(z_{1}+z_{2}\right)=0$ and $-\left(y_{1}+y_{2}\right)+$ $\left(w_{1}+w_{2}\right)=0$. So $A_{1}+A_{2}$ is in $V$. Also $\left(c x_{1}\right)+2\left(c z_{1}\right)=0$ and $-\left(c y_{1}\right)+\left(c w_{1}\right)=0$. So $c A_{1} \in V$. Hence $V$ is close under addition and scalar multiplication. Hence $V$ is a subspace of $\mathbb{R}^{2 \times 2}$.
(b) Find a basis of $V$.

Solutions: It we identify $\mathbb{R}^{2 \times 2}$ with $\mathbb{R}^{4}$ via $\left[\begin{array}{cc}x & y \\ z & w\end{array}\right] \mapsto\left[\begin{array}{c}x \\ y \\ z \\ w\end{array}\right]$. Then $V$ is just the space

$$
V=\left\{\left.\left[\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right] \right\rvert\, x+2 z=0,-y+w=0\right\}
$$

Namely, $V$ is just the null space of $\left[\begin{array}{cccc}1 & 0 & 2 & 0 \\ 0 & -1 & 0 & 1\end{array}\right]$, which we can find a basis of this null space:

$$
\left[\begin{array}{c}
-2 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right] .
$$

So $\left[\begin{array}{cc}-2 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right]$ is a basis of $V$.
(c) Find the dimension of $V$.

Solutions: As explained as the above, $\operatorname{dim} V=2$.
4. Let

$$
A=\left(\begin{array}{ccc}
2 & a & 1 \\
0 & 2 & -1 \\
0 & 0 & 3
\end{array}\right)
$$

(a) Determine all values of $a$ such that $A$ is diagonalizable.

Solutions:The characteristic polynomial of $A$ is $f_{A}(t)=\left|\begin{array}{ccc}2-t & a & 1 \\ 0 & 2-t & -1 \\ 0 & 0 & 3-t\end{array}\right|=$
$-(t-2)^{2}(t-3)$. So we get eigenvalues $\lambda_{1}=2$ with multiplicity $k_{1}=2$,
$\lambda_{2}=3$ with multiplicity $k_{2}=1$.
For $\lambda_{1}=2$, we solve $\left(A-2 I_{3}\right) X=0$ to find a basis of eigenspace $E_{2}$.
Note that $A-2 I_{3}=\left(\begin{array}{ccc}0 & a & 1 \\ 0 & 0 & -1 \\ 0 & 0 & 1\end{array}\right)$. We see that $\operatorname{rank}\left(A-2 I_{3}\right)=2$ when
$a \neq 0$ and is 1 when $a=0$. So when $a \neq 0, \operatorname{dim} E_{2}=3-2=1<k_{1}=2$
which implies that $A$ is not diagonalizable.
Now if $a=0$ then $\operatorname{dim} E_{2}=2=k_{2}$. For $\lambda_{2}=3$, we have $A-3 I_{3}=$ $\left(\begin{array}{ccc}-1 & 0 & 1 \\ 0 & -1 & -1 \\ 0 & 0 & 0\end{array}\right)$. We easily calculate that $E_{3}$ is dimensional 1 spanned by $\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)$. So $\operatorname{dim} E_{3}=1=k_{2}$. Thus only when $a=0$ then $A$ is diagonalizable.
(b) When $a$ is diagonalizable. Diagonalize $A$.

Solutions: When $a=0$, we find basis of $E_{2}$ by solving $\left(A-2 I_{3}\right) X=0$ :

$$
\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) .
$$

Therefore, $A=P \Lambda P^{-1}$ with

$$
P=\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right) \text { and } \Lambda=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right)
$$

5. Let $\mathbb{P}_{2}[t]=\left\{f(t)=a_{2} t^{2}+a_{1} t+a_{0}\right\}$ be the space of polynomials with maximal degree 2. Define the following map $T: \mathbb{P}_{2}[t] \rightarrow \mathbb{R}^{2}$ via $T(f)=\left[\begin{array}{c}f(-1) \\ f(1)\end{array}\right]$.
(a) Show $T$ is a linear transformation.

Proof: Given $f(t), g(t) \in B P_{2}[t]$, and $c \in \mathbb{R}$,
$T(f+g)=\left[\begin{array}{c}(f+g)(-1) \\ (f+g)(1)\end{array}\right]=\left[\begin{array}{c}f(-1)+g(-1) \\ f(1)+g(1)\end{array}\right]=\left[\begin{array}{c}f(-1) \\ f(1)\end{array}\right]+\left[\begin{array}{c}g(-1) \\ g(1)\end{array}\right]=T(f)+T(g)$.
Similarly, we see that $T(c f)=\left[\begin{array}{c}(c f)(-1) \\ (c f)(1)\end{array}\right]=c\left[\begin{array}{c}f(-1) \\ f(1)\end{array}\right]=c T(f)$. So $T$ is a linear transformation.
(b) Let $\mathcal{B}$ be a standard basis of $\mathbb{P}_{2}[t]$ and $\mathcal{C}=\left\{\left[\begin{array}{c}1 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$. Find matrix $M$ of $T$ relative to basis $\mathcal{B}$ and $\mathcal{C}$.

Solutions: By definition,
$M=\left[[T(1)]_{\mathcal{C}},[T(t)]_{\mathcal{C}},\left[T\left(t^{2}\right)\right]_{\mathcal{C}}\right]=\left[\left[\begin{array}{l}1 \\ 1\end{array}\right]_{\mathcal{C}},\left[\begin{array}{c}-1 \\ 1\end{array}\right]_{\mathcal{C}},\left[\begin{array}{l}1 \\ 1\end{array}\right]_{\mathcal{C}}\right]=\left[\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 1\end{array}\right]$
(c) Let $f=t^{2}+t+1$. Find $[T(f)]_{\mathcal{c}}$.

Solutions: We know that $[T(f)]_{\mathcal{C}}=M[f]_{\mathcal{B}}$. So

$$
[T(f)]_{\mathcal{C}}=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
$$

6. Let $f(t)=a_{n} t^{n}+a_{n-1} t^{n-1}+\cdots a_{1} t+a_{0}$ be polynomial and $A \in \mathbb{R}^{m \times m}$ be an $m \times m$-matrix. Then we define

$$
f(A)=a_{n} A^{n}+a_{n-1} A^{n-1}+\cdots+a_{1} A+a_{0} I_{m}
$$

In particular, $f(A)$ is still an $m \times m$-matrix.
(a) If $A$ is similar to $B$, that is $A=P B P^{-1}$, show that $f(A)=P f(B) P^{-1}$

Proof Since $A=P B P^{-1}$, we have $A^{k}=P B^{k} P^{-1}$. Therefore

$$
\begin{aligned}
f(A) & =a_{n} A^{n}+a_{n-1} A^{n-1}+\cdots+a_{1} A+a_{0} I_{m} \\
& =a_{n} P B^{n} P^{-1}+a_{n-1} P B^{n-1} P^{-1}+\cdots+a_{1} P B P^{-1}+a_{0} P I_{n} P^{-1} \\
& =P\left(a_{n} B^{n}+a_{n-1} B^{n-1}+\cdots+a_{1} B+a_{0} I_{n}\right) P^{-1} \\
& =\operatorname{Pf}(B) P^{-1} .
\end{aligned}
$$

(b) If $A$ is diagonal matrix and $f(t)=f_{A}(t)$ is characteristic polynomial of $A$, show that $f(A)$ is a zero matrix.

Proof: Note the multiplication and addition of diagonal matrices are just multiplications and additions entry by entry. So if $A=\Lambda=$ $\left[\begin{array}{lll}\lambda_{1} & & \\ & \ddots & \\ & & \lambda_{n}\end{array}\right]$ then $f(A)=\left[\begin{array}{lll}f\left(\lambda_{1}\right) & & \\ & \ddots & \\ & & f\left(\lambda_{n}\right)\end{array}\right]$ In this case, $f(t)=$ $f_{A}(t)=\left(t-\lambda_{1}\right) \cdots\left(t-\lambda_{n}\right)$. So $f\left(\lambda_{1}\right)=\cdots f\left(\lambda_{n}\right)=0$. Hence $f(A)=0$.
(c) If $A$ diagonalizable matrix and $f(t)=f_{A}(t)$ is characteristic polynomial of $A$, show that $f(A)$ is a zero matrix.

## Proof:

Since $A$ is diagonalizable, $A=P \Lambda P^{-1}$ with $\Lambda=\left[\begin{array}{lll}\lambda_{1} & & \\ & \ddots & \\ & & \lambda_{n}\end{array}\right]$. Then by (1), we have

$$
f(A)=\operatorname{Pf}(\Lambda) P^{-1}=P\left[\begin{array}{lll}
f\left(\lambda_{1}\right) & & \\
& \ddots & \\
& & f\left(\lambda_{n}\right)
\end{array}\right] P^{-1} .
$$

Since $f(t)=f_{A}(t)=f_{\Lambda}(t)=\left(\lambda_{1}-t\right) \cdots\left(\lambda_{n}-t\right), f(A)=P 0 P^{-1}=0$.

