Math 265, Midterm 2

Name: _____

This exam consists of 7 pages including this front page.

Ground Rules

- 1. No calculator is allowed.
- 2. Show your work for every problem unless otherwise stated.

Score						
1	16					
2	16					
3	16					
4	18					
5	16					
6	18					
Total	100					

Notations: \mathbb{R} denotes the set of real number; \mathbb{C} denotes the set of complex numbers. $\mathbb{R}^{m \times n}$ denotes the set of $m \times n$ -matrices with entries in \mathbb{R} ; $\mathbb{R}^n = \mathbb{R}^{n \times 1}$ denotes the set of *n*-column vectors; Similar notations for matrices of complex numbers \mathbb{C} ; $\mathbb{P}_n[t]$ denotes the set of polynomials with coefficients in \mathbb{R} and the most degree *n*, that is,

$$\mathbb{P}_n[t] = \{ f(t) = a_n t^n + a_{n-1} t^{n-1} + \dots + a_1 t + a_0, \ a_i \in \mathbb{R}, \ \forall i \}.$$

- 1. The following are true/false questions. You don't have to justify your answers. Just write down either T or F in the table below. A, B, C, X, b are always matrices here. (2 points each)
 - (a) If a matrix A has r linearly dependent rows then it has also r linearly independent columns.
 - (b) Let A be 4×5 -matrix with rank 4 then the linear system AX = b always has infinity many solutions for any $b \in \mathbb{R}^4$.
 - (c) If A is similar to B then A and B share the same eigenvectors.
 - (d) Let v_1 and v_2 be eigenvectors with eigenvalues 0 and 1 respectively then v_1 and v_2 must be linearly independent.
 - (e) Let $A \in \mathbb{C}^{n \times n}$ be a complex matrix. Then $v \in \mathbb{C}^n$ is an eigenvector of A if and only if the complex conjugation \bar{v} is.
 - (f) Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation. Then T sends a parallelogram in \mathbb{R}^2 to a parallelogram in \mathbb{R}^2 with the same area.
 - (g) Let k_i be the multiplicity of an eigenvalue λ_i of A. If A is not diagonalizable then one of $k_i \geq 2$.
 - (h) Let V be a vector space with basis \mathcal{B} and dim V = n. Then $w_1, \ldots, w_n \in V$ is a basis of V if and only if $[w_1]_{\mathcal{B}}, \ldots, [w_n]_{\mathcal{B}}$ spans \mathbb{R}^n .

	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Answer	F	Т	F	Т	F	F	Т	Т

- **2.** Quick Questions, A, B, C, X, b are always matrices here:
 - (a) Suppose that $A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ with one eigenvalue 1 + i. Compute A^k . (6) points) Solutions: We easily see that A has an eigenvector $\begin{vmatrix} 1 \\ -i \end{vmatrix}$ with the eigenvalue 1 + i. Since A is a real matrix, A also has an eigenvector $\begin{vmatrix} 1 \\ i \end{vmatrix}$ with the eigenvalue 1 - i. Thus A is is diagonalizable A = $P\begin{bmatrix} 1+i & 0\\ 0 & 1-i \end{bmatrix} P^{-1}$ with $P = \begin{bmatrix} 1 & 1\\ -i & i \end{bmatrix}$. Then $A^{k} = P \begin{bmatrix} (1+i)^{k} & 0\\ 0 & (1-i)^{k} \end{bmatrix} P^{-1} = \begin{bmatrix} 1 & 1\\ -i & i \end{bmatrix} \begin{bmatrix} (1+i)^{k} & 0\\ 0 & (1-i)^{k} \end{bmatrix} \frac{1}{2i} \begin{bmatrix} i & -1\\ i & 1 \end{bmatrix}.$

(b) Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation with the standard matrix $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$. Given another basis $\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\}$ of \mathbb{R}^2 . Find matrix $[T]_{\mathcal{B}}$ of T relative to basis \mathcal{B} . (5 points)

Solutions:
$$[T]_{\mathcal{B}} = P^{-1} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} P$$
 with $P = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$. Since $P^{-1} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$. We have $[T]_{\mathcal{B}} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ -1 & 0 \end{bmatrix}$.

(c) Find a basis of the following subspace of $\mathbb{R}^{2\times 2}$: Here A^T means transpose of A. (5 points)

$$W = \left\{ A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} | A^T = A \right\}.$$

Solutions: $A^T = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$. Therefore $A^T = A$ is equivalent to b = c. So $W = \left\{ A = \begin{bmatrix} a & b \\ b & d \end{bmatrix} \ a, b, d \text{ are arbitrary} \right\}.$

Since

$$\begin{bmatrix} a & b \\ b & d \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix},$$
$$0 \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 \end{bmatrix}$$

we see that $\begin{vmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix}$, $\begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix}$, $\begin{vmatrix} 0 & 0 \\ 0 & 1 \end{vmatrix}$ forms a basis of W.

3. Let $\mathbb{R}_5 := \{(a_1 \ a_2 \ a_3 \ a_4 \ a_5) | a_i \in \mathbb{R}\}$ be the space of row vectors. Consider the following set of row vectors

$$v_1 = (1 \ 0 \ -2 \ 1 \ 0), \ v_2 = (-1 \ 1 \ 0 \ 2 \ 1), \ v_3 = (1 \ 1 \ -4 \ 4 \ 1)$$

(a) Find a basis of $\text{Span}\{v_1, v_2, v_3\} \subset \mathbb{R}_5$. (6 points)

Solutions: Consider the matrix $A = \begin{bmatrix} 1 & 0 & -2 & 1 & 0 \\ -1 & 1 & 0 & 2 & 1 \\ 1 & 1 & -4 & 4 & 1 \end{bmatrix}$. To find a basis of Span $\{v_1, v_2, v_3\}$, it suffices to find a basis of row space of A. An echelon form of A is $\begin{bmatrix} 1 & 0 & -2 & 1 & 0 \\ 0 & 1 & -2 & 3 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. As nonzero rows of echelon form forms a basis of Row(A), we get a basis of Span $\{v_1, v_2, v_3\}$:

$$(1 \ 0 \ -2 \ 1 \ 0), \ (0 \ 1 \ -2 \ 3 \ 1)$$

(b) Is $\{v_1, v_2, v_3\}$ linearly independent? Explain. (4 points)

Solutions: If v_1, v_2, v_3 is linearly independent then v_1, v_2, v_3 forms another basis of Row(A). This means that rank(A) would be 3. But the above calculation show that A has rank 2. So v_1, v_2, v_3 is linearly dependent.

(c) Is $w = (1 \ 1 \ 1 \ 1 \ 1)$ in Span $\{v_1, v_2, v_3\}$? Explain. (6 points)

Solutions: Consider matrix
$$A' = \begin{bmatrix} 1 & 0 & -2 & 1 & 0 \\ -1 & 1 & 0 & 2 & 1 \\ 1 & 1 & -4 & 4 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$
 which add row

w to A. Note that w is in $\text{Span}\{v_1, v_2, v_3\}$ if and only if Row(A') = Row(A), and this is equivalent to that rank(A) = rank(A'). But we can easily calculate that A' has rank 3 (by computing echelon form of A'), not 2 = rank(A). So w is not in $\text{Span}\{v_1, v_2, v_3\}$.

4. Let

$$A = \begin{bmatrix} 2 & 0 & 0 \\ b & 2 & a \\ 3 & 0 & 3 \end{bmatrix}$$

(a) Find equations of a and b so that if a, b satisfies the equation then A is diagonalizable. (10 points)

Solutions: The characteristic polynomial of A is $f_A(t) = \begin{vmatrix} 2-t & 0 & 0 \\ b & 2-t & a \\ 3 & 0 & 3-t \end{vmatrix} = -(t-2)^2(t-3)$. So we get eigenvalues $\lambda_1 = 2$ with multiplicity $k_1 = 2$, $\lambda_2 = 3$ with multiplicity $k_2 = 1$. For $\lambda_1 = 2$, we solve $(A - 2I_3)X = 0$ to find a basis of eigenspace E_2 . Note that $A - 2I_3 = \begin{pmatrix} 0 & 0 & 0 \\ b & 0 & a \\ 3 & 0 & 1 \end{pmatrix}$, which has echelon form $\begin{pmatrix} 1 & 0 & \frac{1}{3} \\ 0 & 0 & a - \frac{b}{3} \\ 0 & 0 & 0 \end{pmatrix}$. Now we have two situations of rank $(A - 2I_3)$: Case 1: $a - \frac{b}{3} \neq 0$, then rank $(A - 2I_3) = 2$ and consequently dim $E_2 = 3 - 2 = 1 < k_1 = 2$. And hence A is not diagonalizable. Case 2: $a - \frac{b}{3} = 0$, then rank $(A - 2I_3) = 1$ and consequently dim $E_2 = 3 - 1 = 2 = k_1 = 2$. For $\lambda_2 = 3$, we have $A - 3I_3 = \begin{pmatrix} -1 & 0 & 0 \\ b & -1 & a \\ 3 & 0 & 0 \end{pmatrix}$. We easily calculate that E_3 is dimensional 1 spanned by $\begin{pmatrix} 0 \\ a \\ 1 \end{pmatrix}$. So dim $E_3 = 1 = k_2$. In summary, only when b = 3a then A is diagonalizable.

(b) When A is diagonalizable. Diagonalize A. (8 points)

Solutions: When b = 3a, we find basis of E_2 by solving $(A - 2I_3)X = 0$:

$$\begin{pmatrix} 1\\0\\-3 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}$$

Therefore, $A = P\Lambda P^{-1}$ with

$$P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & a \\ -3 & 0 & 1 \end{pmatrix} \text{ and } \Lambda = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$

5. Let $\mathbb{P}_2[t] = \{f(t) = a_2t^2 + a_1t + a_0\}$ be the space of polynomials with maximal degree 2. Define the following map $T : \mathbb{P}_2[t] \to \mathbb{P}_2[t]$ via

$$T(f(t)) = f'(t) + 2f(t).$$

(a) Show T is a linear transformation. (5 points)

Proof: Given f(t), $g(t) \in BP_2[t]$, and $c \in \mathbb{R}$,

$$T(f+g) = (f+g)' + 2(f+g) = f' + 2f + g' + 2g = T(f) + T(g).$$

Similarly, we see that T(cf) = (cf)' + 2(cf) = c(f' + 2f) = cT(f). So T is a linear transformation.

(b) Let \mathcal{B} be a standard basis of $\mathbb{P}_2[t]$ and find matrix M of T relative to basis \mathcal{B} . (6 points)

Solutions: Note that $\mathcal{B} = \{1, t, t^2\}$ By definition,

$$M = \left[[T(1)]_{\mathcal{B}}, [T(t)]_{\mathcal{C}}, [T(t^2)]_{\mathcal{B}} \right] = \left[[2]_{\mathcal{B}}, \ [1+2t]_{\mathcal{B}}, \ [2t+2t^2]_{\mathcal{B}} \right] = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 2 \end{bmatrix}$$

(c) Find an $f \in \mathbb{P}_2[t]$ and $\lambda \in \mathbb{R}$ so that $[T(f)]_{\mathcal{B}} = \lambda[f]_{\mathcal{B}}$. (5 points) Solutions: We know that $[T(f)]_{\mathcal{B}} = M[f]_{\mathcal{B}}$. Let $v = [f]_{\mathcal{B}} \in \mathbb{R}^3$. Then $[T(f)]_{\mathcal{B}} = \lambda[f]_{\mathcal{B}}$ is equivalent to $Mv = \lambda v$. Namely, v is an eigenvector of M with eigenvalue λ . As M is an upper triangular matrix, we see eigenvalues of M is just 2. So $\lambda = 2$. Solve $(M - 2I_3)X = \vec{0}$, we find that $v = k \begin{bmatrix} 1\\0\\0 \end{bmatrix}$. So $f = k(1 + 0 \cdot t + 0 \cdot t^2) = k$.

- **6.** A matrix $A \in \mathbb{R}^{n \times n}$ is called *nilpotent* if $A^m = 0$ for some m > 0.
 - (a) Let $v \in \mathbb{R}^n$ be an eigenvector of A with eigenvalue λ . Show that v is an eigenvector of A^m with eigenvalue λ^m . (5 points)

Proof: Since $Av = \lambda v$, we have

$$A^{m}v = A^{m-1}(Av) = A^{m-1}(\lambda v) = \lambda A^{m-1}v = \lambda A^{m-2}(Av) = \dots = \lambda^{m-1}Av = \lambda^{m}v.$$

As $v \neq \vec{0}$, v is an eigenvector of A^m with eigenvalue λ^m .

(b) Show that if A is nilpotent then all eigenvalues of A are 0. (5 points)

Proof: Let λ be an eigenvalue of A. Then (a) shows that λ^m is an eigenvalue of A^m . But $A^m = 0$ which only has eigenvalue 0. Thus $\lambda^m = 0$. So $\lambda = 0$.

(c) Give an example of nilpotent matrix $A \neq 0$. (3 points)

Solutions: $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. Note that $A^2 = 0$.

(d) Show that a nilpotent matrix is *not* diagonalizable unless A = 0. (5 points)

Proof: Suppose that A is diagonalizable and nilpotent. Then $A = P\Lambda P^{-1}$ where Λ is a diagonal matrix with eigenvalues of A on the diagonal. But (b) shows that all eigenvalues of A are zeros. Hence $\Lambda = 0$. So $A = P\Lambda P^{-1} = P0P^{-1} = 0$. Therefore nilpotent matrix A is not diagonalizable unless A = 0.