Math 265, Midterm 2

Name: \qquad

This exam consists of 7 pages including this front page.

Ground Rules

1. No calculator is allowed.
2. Show your work for every problem unless otherwise stated.

Score		
1	16	
2	16	
3	16	
4	18	
5	16	
6	18	
Total	100	

Notations: \mathbb{R} denotes the set of real number; \mathbb{C} denotes the set of complex numbers. $\mathbb{R}^{m \times n}$ denotes the set of $m \times n$-matrices with entries in $\mathbb{R} ; \mathbb{R}^{n}=\mathbb{R}^{n \times 1}$ denotes the set of n-column vectors; Similar notations for matrices of complex numbers $\mathbb{C} ; \mathbb{P}_{n}[t]$ denotes the set of polynomials with coefficients in \mathbb{R} and the most degree n, that is,

$$
\mathbb{P}_{n}[t]=\left\{f(t)=a_{n} t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0}, \quad a_{i} \in \mathbb{R}, \forall i\right\}
$$

1. The following are true/false questions. You don't have to justify your answers. Just write down either T or F in the table below. A, B, C, X, b are always matrices here. (2 points each)
(a) If a matrix A has r linearly dependent rows then it has also r linearly independent columns.
(b) Let A be 4×5-matrix with rank 4 then the linear system $A X=b$ always has infinity many solutions for any $b \in \mathbb{R}^{4}$.
(c) If A is similar to B then A and B share the same eigenvectors.
(d) Let v_{1} and v_{2} be eigenvectors with eigenvalues 0 and 1 respectively then v_{1} and v_{2} must be linearly independent.
(e) Let $A \in \mathbb{C}^{n \times n}$ be a complex matrix. Then $v \in \mathbb{C}^{n}$ is an eigenvector of A if and only if the complex conjugation \bar{v} is.
(f) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation. Then T sends a parallelogram in \mathbb{R}^{2} to a parallelogram in \mathbb{R}^{2} with the same area.
(g) Let k_{i} be the multiplicity of an eigenvalue λ_{i} of A. If A is not diagonalizable then one of $k_{i} \geq 2$.
(h) Let V be a vector space with basis \mathcal{B} and $\operatorname{dim} V=n$. Then $w_{1}, \ldots, w_{n} \in$ V is a basis of V if and only if $\left[w_{1}\right]_{\mathcal{B}}, \ldots,\left[w_{n}\right]_{\mathcal{B}}$ spans \mathbb{R}^{n}.

	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Answer	F	T	F	T	F	F	T	T

2. Quick Questions, A, B, C, X, b are always matrices here:
(a) Suppose that $A=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$ with one eigenvalue $1+i$. Compute A^{k}. (6 points)
Solutions: We easily see that A has an eigenvector $\left[\begin{array}{c}1 \\ -i\end{array}\right]$ with the eigenvalue $1+i$. Since A is a real matrix, A also has an eigenvector $\left[\begin{array}{l}1 \\ i\end{array}\right]$ with the eigenvalue $1-i$. Thus A is is diagonalizable $A=$ $P\left[\begin{array}{cc}1+i & 0 \\ 0 & 1-i\end{array}\right] P^{-1}$ with $P=\left[\begin{array}{cc}1 & 1 \\ -i & i\end{array}\right]$. Then
$A^{k}=P\left[\begin{array}{cc}(1+i)^{k} & 0 \\ 0 & (1-i)^{k}\end{array}\right] P^{-1}=\left[\begin{array}{cc}1 & 1 \\ -i & i\end{array}\right]\left[\begin{array}{cc}(1+i)^{k} & 0 \\ 0 & (1-i)^{k}\end{array}\right] \frac{1}{2 i}\left[\begin{array}{cc}i & -1 \\ i & 1\end{array}\right]$.
(b) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation with the standard matrix $\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$. Given another basis $\mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right\}$ of \mathbb{R}^{2}. Find matrix
$[T]_{\mathcal{B}}$ of T relative to basis \mathcal{B}. (5 points)

Solutions: $[T]_{\mathcal{B}}=P^{-1}\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right] P$ with $P=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$. Since $P^{-1}=$ $\frac{1}{2}\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]$. We have $[T]_{\mathcal{B}}=\frac{1}{2}\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]\left[\begin{array}{cc}1 & 2 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]=\left[\begin{array}{cc}2 & 1 \\ -1 & 0\end{array}\right]$.
(c) Find a basis of the following subspace of $\mathbb{R}^{2 \times 2}$: Here A^{T} means transpose of A. (5 points)

$$
W=\left\{\left.A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \right\rvert\, A^{T}=A\right\} .
$$

Solutions: $A^{T}=\left[\begin{array}{ll}a & c \\ b & d\end{array}\right]$. Therefore $A^{T}=A$ is equivalent to $b=c$. So

$$
W=\left\{A=\left[\begin{array}{ll}
a & b \\
b & d
\end{array}\right] a, b, d \text { are arbitrary }\right\} .
$$

Since

$$
\left[\begin{array}{ll}
a & b \\
b & d
\end{array}\right]=a\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+b\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]+d\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right],
$$

we see that $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$ forms a basis of W.
3. Let $\mathbb{R}_{5}:=\left\{\left.\left(\begin{array}{lllll}a_{1} & a_{2} & a_{3} & a_{4} & a_{5}\end{array}\right) \right\rvert\, a_{i} \in \mathbb{R}\right\}$ be the space of row vectors. Consider the following set of row vectors

$$
v_{1}=\left(\begin{array}{ll}
1 & 0
\end{array}-210\right), v_{2}=\left(\begin{array}{llll}
-1 & 1 & 2
\end{array}\right), v_{3}=\left(\begin{array}{lll}
1 & 1 & -4
\end{array}\right)
$$

(a) Find a basis of $\operatorname{Span}\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\} \subset \mathbb{R}_{5}$. (6 points) Solutions: Consider the matrix $A=\left[\begin{array}{ccccc}1 & 0 & -2 & 1 & 0 \\ -1 & 1 & 0 & 2 & 1 \\ 1 & 1 & -4 & 4 & 1\end{array}\right]$. To find a basis of $\operatorname{Span}\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\}$, it suffices to find a basis of row space of A. An echelon form of A is $\left[\begin{array}{ccccc}1 & 0 & -2 & 1 & 0 \\ 0 & 1 & -2 & 3 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$. As nonzero rows of echelon form forms a basis of $\operatorname{Row}(A)$, we get a basis of $\operatorname{Span}\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\}$:

$$
(10-210), \quad(01-231)
$$

(b) Is $\left\{v_{1}, v_{2}, v_{3}\right\}$ linearly independent? Explain. (4 points)

Solutions: If v_{1}, v_{2}, v_{3} is linearly independent then v_{1}, v_{2}, v_{3} forms another basis of $\operatorname{Row}(\mathrm{A})$. This means that $\operatorname{rank}(\mathrm{A})$ would be 3 . But the above calculation show that A has rank 2 . So v_{1}, v_{2}, v_{3} is linearly dependent.
(c) Is $w=\left(\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}\right)$ in $\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}\right\}$? Explain. (6 points)

Solutions: Consider matrix $A^{\prime}=\left[\begin{array}{ccccc}1 & 0 & -2 & 1 & 0 \\ -1 & 1 & 0 & 2 & 1 \\ 1 & 1 & -4 & 4 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}\right]$ which add row w to A. Note that w is in $\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}\right\}$ if and only if $\operatorname{Row}\left(\mathrm{A}^{\prime}\right)=$ $\operatorname{Row}(\mathrm{A})$, and this is equivalent to that $\operatorname{rank}(A)=\operatorname{rank}\left(A^{\prime}\right)$. But we can easily calculate that A^{\prime} has rank 3 (by computing echelon form of A^{\prime}), not $2=\operatorname{rank}(\mathrm{A})$. So w is not in $\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}\right\}$.
4. Let

$$
A=\left[\begin{array}{lll}
2 & 0 & 0 \\
b & 2 & a \\
3 & 0 & 3
\end{array}\right]
$$

(a) Find equations of a and b so that if a, b satisfies the equation then A is diagonalizable. (10 points)
Solutions:The characteristic polynomial of A is $f_{A}(t)=\left|\begin{array}{ccc}2-t & 0 & 0 \\ b & 2-t & a \\ 3 & 0 & 3-t\end{array}\right|=$ $-(t-2)^{2}(t-3)$. So we get eigenvalues $\lambda_{1}=2$ with multiplicity $k_{1}=2$, $\lambda_{2}=3$ with multiplicity $k_{2}=1$.
For $\lambda_{1}=2$, we solve $\left(A-2 I_{3}\right) X=0$ to find a basis of eigenspace E_{2}.
Note that $A-2 I_{3}=\left(\begin{array}{lll}0 & 0 & 0 \\ b & 0 & a \\ 3 & 0 & 1\end{array}\right)$, which has echelon form $\left(\begin{array}{ccc}1 & 0 & \frac{1}{3} \\ 0 & 0 & a-\frac{b}{3} \\ 0 & 0 & 0\end{array}\right)$.
Now we have two situations of $\operatorname{rank}\left(A-2 I_{3}\right)$: Case 1: $a-\frac{b}{3} \neq 0$, then $\operatorname{rank}\left(A-2 I_{3}\right)=2$ and consequently $\operatorname{dim} E_{2}=3-2=1<k_{1}=2$. And hence A is not diagonalizable.
Case 2: $a-\frac{b}{3}=0$, then $\operatorname{rank}\left(A-2 I_{3}\right)=1$ and consequently $\operatorname{dim} E_{2}=$ $3-1=2=k_{1}=2$.
For $\lambda_{2}=3$, we have $A-3 I_{3}=\left(\begin{array}{ccc}-1 & 0 & 0 \\ b & -1 & a \\ 3 & 0 & 0\end{array}\right)$. We easily calculate that E_{3} is dimensional 1 spanned by $\left(\begin{array}{l}0 \\ a \\ 1\end{array}\right)$. So $\operatorname{dim} E_{3}=1=k_{2}$.
In summary, only when $b=3 a$ then A is diagonalizable.
(b) When A is diagonalizable. Diagonalize A. (8 points)

Solutions: When $b=3 a$, we find basis of E_{2} by solving $\left(A-2 I_{3}\right) X=0$:

$$
\left(\begin{array}{c}
1 \\
0 \\
-3
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) .
$$

Therefore, $A=P \Lambda P^{-1}$ with

$$
P=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & a \\
-3 & 0 & 1
\end{array}\right) \text { and } \Lambda=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right) .
$$

5. Let $\mathbb{P}_{2}[t]=\left\{f(t)=a_{2} t^{2}+a_{1} t+a_{0}\right\}$ be the space of polynomials with maximal degree 2 . Define the following map $T: \mathbb{P}_{2}[t] \rightarrow \mathbb{P}_{2}[t]$ via

$$
T(f(t))=f^{\prime}(t)+2 f(t) .
$$

(a) Show T is a linear transformation. (5 points)

Proof: Given $f(t), g(t) \in B P_{2}[t]$, and $c \in \mathbb{R}$,

$$
T(f+g)=(f+g)^{\prime}+2(f+g)=f^{\prime}+2 f+g^{\prime}+2 g=T(f)+T(g) .
$$

Similarly, we see that $T(c f)=(c f)^{\prime}+2(c f)=c\left(f^{\prime}+2 f\right)=c T(f)$. So T is a linear transformation.
(b) Let \mathcal{B} be a standard basis of $\mathbb{P}_{2}[t]$ and find matrix M of T relative to basis \mathcal{B}. (6 points)

Solutions: Note that $\mathcal{B}=\left\{1, t, t^{2}\right\}$ By definition,
$M=\left[[T(1)]_{\mathcal{B}},[T(t)]_{\mathcal{C}},\left[T\left(t^{2}\right)\right]_{\mathcal{B}}\right]=\left[[2]_{\mathcal{B}},[1+2 t]_{\mathcal{B}},\left[2 t+2 t^{2}\right]_{\mathcal{B}}\right]=\left[\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 2\end{array}\right]$.
(c) Find an $f \in \mathbb{P}_{2}[t]$ and $\lambda \in \mathbb{R}$ so that $[T(f)]_{\mathcal{B}}=\lambda[f]_{\mathcal{B}}$. (5 points)

Solutions: We know that $[T(f)]_{\mathcal{B}}=M[f]_{\mathcal{B}}$. Let $v=[f]_{\mathcal{B}} \in \mathbb{R}^{3}$. Then $[T(f)]_{\mathcal{B}}=\lambda[f]_{\mathcal{B}}$ is equivalent to $M v=\lambda v$. Namely, v is an eigenvector of M with eigenvalue λ. As M is an upper triangular matrix, we see eigenvalues of M is just 2 . So $\lambda=2$. Solve $\left(M-2 I_{3}\right) X=\overrightarrow{0}$, we find that $v=k\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$. So $f=k\left(1+0 \cdot t+0 \cdot t^{2}\right)=k$.
6. A matrix $A \in \mathbb{R}^{n \times n}$ is called nilpotent if $A^{m}=0$ for some $m>0$.
(a) Let $v \in \mathbb{R}^{n}$ be an eigenvector of A with eigenvalue λ. Show that v is an eigenvector of A^{m} with eigenvalue λ^{m}. (5 points)

Proof: Since $A v=\lambda v$, we have
$A^{m} v=A^{m-1}(A v)=A^{m-1}(\lambda v)=\lambda A^{m-1} v=\lambda A^{m-2}(A v)=\cdots=\lambda^{m-1} A v=\lambda^{m} v$.
As $v \neq \overrightarrow{0}, v$ is an eigenvector of A^{m} with eigenvalue λ^{m}.
(b) Show that if A is nilpotent then all eigenvalues of A are 0 . (5 points)

Proof: Let λ be an eigenvalue of A. Then (a) shows that λ^{m} is an eigenvalue of A^{m}. But $A^{m}=0$ which only has eigenvalue 0 . Thus $\lambda^{m}=0$. So $\lambda=0$.
(c) Give an example of nilpotent matrix $A \neq 0$. (3 points)

Solutions: $\quad A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$. Note that $A^{2}=0$.
(d) Show that a nilpotent matrix is not diagonalizable unless $A=0$. (5 points)

Proof: Suppose that A is diagonalizable and nilpotent. Then $A=$ $P \Lambda P^{-1}$ where Λ is a diagonal matrix with eigenvalues of A on the diagonal. But (b) shows that all eigenvalues of A are zeros. Hence $\Lambda=0$. So $A=P \Lambda P^{-1}=P 0 P^{-1}=0$. Therefore nilpotent matrix A is not diagonalizable unless $A=0$.

