A ball with mass 2 kg is thrown upward with initial velocity 100 m/s from the ground. Assume the air resistance is 0.2|v|. For simplicity, just assume that \(g = 10 \).

(1) Find the velocity \(v(t) \) when the ball goes up.

\[m \frac{dv}{dt} = -mg - 0.2|v| \]

with initial value \(v(0) = 100 \). Since \(v > 0 \) when the ball goes up, we have \(|v| = -v \). So we get \(v' = -g - 0.2v/m \). Consider the formula for equation \(y' = ay - b \) with \(y(0) = y_0 \) is

\[y = \frac{b}{a} + (y_0 - \frac{b}{a})e^{at}. \]

We get \(a = -0.1 \) and \(b = 10 \) here. Then

\[v(t) = -100 + (100 + 100)e^{-0.1t} = -100 + 200e^{-0.1t}. \]

(2) Find the maximal height that ball reaches.

\[\text{Solutions:} \] Let \(t_0 \) be the time that ball stops to arise. Hence \(v(t_0) = 0 \). That is, \(0 = -100 + 200e^{-0.1t} \). We solve \(t_0 = -10 \ln (1/2) = 10 \ln 2 \). The maximal height the distance that ball travel at time \(t = t_0 \). Then

\[x(t_0) = \int_0^{t_0} (-100t + 200e^{-0.1t})dt = -100t_0 + 2000(1 - e^{-0.1t_0}) = 1000(1 - \ln 2). \]

(3) Find the velocity \(v(t) \) when the ball goes down.

\[\text{Solutions:} \] Since the air resistance is upwards, we have \(mv' = -mg + 0.2|v| \). But \(v \) is always negative and then \(|v| = -v \). So we still get the equation \(mv' = -mg - 0.2v \). Hence we get the same equation as the before. So we get \(v(t) = -100 + 200e^{-0.1t} \).

If you start time \(t = 0 \) for the time the ball start to fall. We get the answer

\[v(t) = -100 + 200e^{-0.1(t+t_0)}. \]