Math 353 Practice Final Exam

This exam consists of 12 pages including this front page.

Ground Rules

- 1. No calculator is allowed.
- 2. Show your work for every problem unless otherwise stated.

Score					
1	16				
2	24				
3	10				
4	10				
5	10				
6	10				
7	10				
8	10				
Total	100				

Notations: \mathbb{R} denotes the set of real number; F is always a field, for example, $F = \mathbb{R}$; $M_{m \times n}(F)$ denotes the set of $m \times n$ -matrices with entries in F; $F^n = M_{n \times 1}(F)$ denotes the set of n-column vectors; $P_n(F)$ denotes the set of polynomials with coefficients in F and the most degree n, that is,

$$P_n(F) = \{ f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0, \ a_i \in F, \ \forall i \}.$$

V is always a finite dimensional vector space over F and T is always a linear operator $T:V\to V$. A^* always denote complex conjugate and transpose of A. For an eigenvalue λ of A, E_{λ} denotes the λ -eigenspace.

- 1. The following are true/false questions. You don't have to justify your answers. Just write down either T or F in the table below. (2 points each)
 - (a) There is a matrix A with an eigenvalue λ such that the multiplicity of λ is 5 and dim $E_{\lambda} = 4$.
 - (b) Let V be a inner product space with α an ordered basis and $T: V \to V$ a linear operator. If $A = [T]_{\alpha}$ then $A^* = [T^*]_{\alpha}$.
 - (c) For an matrix A with all real entries, then all eigenvalues of A are real numbers.
 - (d) Let $A \in M_{n \times n}(\mathbb{C})$ be a square matrix. The rank of A is the same as the number of *nonzero* eigenvalues.
 - (e) Suppose $W = \text{Span}\{v_1, \dots, v_n\}$. Then $u \in W^{\perp}$ if and only if u and v_i are orthogonal for all $i = 1, \dots, n$.
 - (f) Let A is be an invertible matrix . Then singular values of A are the same as eigenvalues of A.
 - (g) If A is a square matrix then $B = A A^*$ is normal.
 - (h) If A is unitary then $det(A) = \pm 1$.

	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Answer	Т	F	F	F	Т	F	Т	F

2. Multiple Choice. (3 points each)

- (i) Let A be an $m \times n$ -matrix. Consider the system of linear equations AX = b, which of the following statement is always true:
 - (a) Suppose m > n then rank of augmented matrix (A|b) can not larger than m.
 - (b) Suppose $m \le n$ then $(A^*A)X = A^*b$ always has a unique solution.
 - (c) Suppose A has full rank then AX = b always has a solution.
 - (d) If AX = b has a solution then AX = 0 has unique solution.
 - (e) If AX = b has a unique solution then A has to be invertible.

The correct answer is (a).

(ii) Let $v_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \\ 1 \end{pmatrix}$, $v_2 = \begin{pmatrix} 2 \\ 3 \\ -2 \\ 2 \end{pmatrix}$. Which vectors from e_1, e_2, e_3, e_4 should

be added to v_1 , v_2 to form a basis of \mathbb{R}^4 ?

- (a) e_1, e_2
- (b) e_2, e_3
- (c) e_2, e_4
- (d) e_1, e_4
- (e) such vectors do not exists.

The correct answer is (d).

- (iii) Let V be the real vector space of continuous function over [-1,1] with the inner product $\langle f,g\rangle=\int_{-1}^1 f(x)g(x)dx$. Which of the following set is orthonormal?
 - (a) $1, x, x^2$
 - (b) $1, e^x$
 - (c) $1, x, x^2 \frac{1}{3}$
 - (d) $\sin x, \cos x$

(e) $\frac{1}{\sqrt{2}}$, $\frac{\sqrt{3}x}{\sqrt{2}}$.

The correct answer is (e).

(iv) Let

$$A = \begin{pmatrix} 0 & 0 & 0 & a \\ -1 & 0 & 0 & b \\ 0 & -1 & 0 & c \\ 0 & 0 & -1 & d \end{pmatrix}$$

Suppose 0 is an eigenvalue of A with multiplicity 2. Then which of the following statement is correct?

- (a) $a = 0, b \neq 0$
- (b) a = b = 0 and $c \neq 0$
- (c) a = c = 0 but $b \neq 0$.
- (d) a = d = 0 but $b \neq 0$.
- (e) b = c = 0 but $a \neq 0$.

The correct answer is (b).

- (v) Suppose $T: V \to V$ be a linear operator with characteristic polynomial $f(t) = t^3 t$. Which of the following statement is always correct?
 - (a) T is an isomorphism.
 - (b) T can not be diagonalizable.
 - (c) For any $v \in V$, $T^3(v) = T(v)$.
 - (d) Such T is unique.
 - (e) It is possible that T is a unitary operator.

The correct answer is (c).

- (vi) Which of the following statement is NOT equivalent that $A \in M_{n \times n}(\mathbb{C})$ is invertible?
 - (a) Columns of A are linearly independent.

- (b) A is normal.
- (c) All eigenvalues of A are nonzero.
- (d) A has n positive singular values.
- (e) The linear system AX = b has unique solution.

The correct answer is (b).

(vii) Let $\lambda \in \mathbb{C}$ and m > 1. Consider the following $m \times m$ -matrix $J_{\lambda} =$ $\begin{pmatrix} \lambda & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & \lambda & 1 \\ 0 & 0 & \cdots & \lambda \end{pmatrix}$ Which of the following statement is correct?

$$\begin{pmatrix} \lambda & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & \lambda & 1 \\ 0 & 0 & \cdots & \lambda \end{pmatrix} W$$

- (a) A is a normal matrix.
- (b) A is diagonalizable.
- (c) dim $E_{\lambda} > 1$
- (d) $\lim_{m\to\infty} A^m$ always exists for any λ .
- (e) A is not a unitary matrix.

The correct answer is (e).

(viii) Consider the linear system $\begin{pmatrix} 1 & 2 \\ 1 & -1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}.$ Consider the least

5

square solution $\begin{pmatrix} \hat{x} \\ \hat{y} \end{pmatrix}$ of the above system then $\hat{y} =$

- (a) $\frac{1}{5}(\frac{3}{2}a \frac{3}{2}b \frac{c}{2} + \frac{d}{2}).$ (b) $\frac{a}{2} + \frac{b}{2} + \frac{c}{2} + \frac{d}{2}.$ (c) $(\frac{3}{2}a \frac{3}{2}b \frac{c}{2} + \frac{d}{2})..$

- (d) 2a b + d.
- (e) None of the above answers are correct.

The correct answer is (a).

3. Let
$$A = \begin{pmatrix} 0.6 & 0.4 & 0 \\ 0.4 & 0.2 & 0.4 \\ 0 & 0.4 & 0.6 \end{pmatrix}$$
.

- (a) Is A a regular transition matrix? explain. (5 points)
- (b) Find $\lim_{m\to\infty} A^m$. (5 points)

Solutions:

- (a) It is clear that A is a transition matrix because summation of each column is 1 and all entries are non-negative. It is easy to see that each entry of A^2 is positive. So A is regular.
- (b) Since A is a regular transition matrix, we know 1 is an eigenvalue. Solve

$$(A-I)X=\vec{0}$$
, we find a eigenvector $X=\begin{pmatrix}1\\1\\1\end{pmatrix}$. By dividing 3, $\frac{1}{3}\begin{pmatrix}1\\1\\1\end{pmatrix}$

is the eigenvector of A with eigenvalue 1 and it is also a probability vector. So

$$\lim_{m \to \infty} A^m = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

4. Compute singular value decomposition of $A = \begin{pmatrix} 1 & -1 & 1 \\ 1 & -1 & 1 \end{pmatrix}$. (10 points)

Solutions: To obtain the SVD of A, we first decompose A^*A .

We first have $A^*A = 2\begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}$. It is not hard to calculate the characteristic polynomial is $f(t) = -t^2(t-6)$. For $\lambda_1 = 6$, we easily compute that the eigenspace has a basis $v_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$. For $\lambda_2 = 0$, the eigenspace

is defined by equation x - y + z = 0. So we get two basis $v_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ and

 $v_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$. But v_2 and v_3 are not orthogonal. By Gram-Schmidt as in the

next problem, we can replace v_3 by $\begin{pmatrix} -1\\1\\2 \end{pmatrix}$. By replacing v_i by $v_i/||v_i||$. We obtained orthonormal eigenvectors as basis, and hence

$$V = (v_1, v_2, v_3) = \left(\frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \frac{1}{\sqrt{6}} \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}\right)$$

Therefore $A^*A = V\Lambda V^*$ where Λ has 6,0,0 on the main diagonal. So the singular value only has $\sigma_1 = \sqrt{6}$.

Now $u_1 = \frac{1}{\sigma_1} A v_1 = \begin{pmatrix} 1 & -1 & 1 \\ 1 & -1 & 1 \end{pmatrix} \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Now it suffices to

select u_2 such that u_1, u_2 forms an orthonormal basis of \mathbb{R}^2 . We can select $u_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. Finally, we get a SVD of A:

$$A = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} \sqrt{6} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} V^*.$$

- **5.** Let $W \subset \mathbb{R}_3$ be the subapace spanned by w = (1, 1, 1). Let W^{\perp} be the orthogonal complement of W. Let v = (1, 0, 1).
 - 1. Find an orthonormal basis of W^{\perp} . (4 points)
 - 2. Find the projection of v to W^{\perp} . (3 points)
 - 3. Find the $\min_{w \in W^{\perp}} ||w v||$. (3 points)

Solutions: It is easy to check that $W^{\perp} := \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} | x + y + z + 0 \right\}$. We can pick two basis vector of W^{\perp} to be $v_2 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ and $v_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$. But v_1 and v_2 is not orthogonal. By Gram-Schmidt, we set $w_1 = v_1$ and

$$w_2 = v_2 - \frac{\langle v_2, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ -1 \\ \frac{1}{2} \end{pmatrix}.$$

Replace w_i by $w_i/\|w_i\|$, we obtain an orthonormal basis of W^{\perp} : $u_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$, $u_2 = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$.

Now we can use the formula of projection

$$\operatorname{Proj}_{W^{\perp}} v = \frac{\langle v, u_1 \rangle}{\langle u_1, u_1 \rangle} u_1 + \frac{\langle v, u_2 \rangle}{\langle u_2, u_2 \rangle} u_2$$

So the projection is

$$0 \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$

Then

$$\min_{w \in W^{\perp}} \|w - v\| = \|v - \operatorname{Proj}_{W^{\perp}} v\| = \|\frac{2}{3} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}\| = \frac{2}{\sqrt{3}}.$$

- **6.** Let A be an $n \times n$ -matrix with real entries. Suppose A is skew-symmetric, that is, $A^T = -A$.
 - (a) Show that if n is odd then det(A) = 0 (3 points)
 - (b) Show that A is always diagonalizable. (3 points)
 - (c) Show that eigenvalues of A are either 0 or purely imaginary, that is, $\lambda = bi$ for $b \in \mathbb{R}$. (4 points)

proof

- (a) Since $A^T = -A$, we have $\det(A^T) = \det(-A) = (-1)^n \det(A)$. Note that n is odd, $(-1)^n = -1$. So $\det(A) = \det(A^T) = -\det(A)$. That is, $\det(A) = 0$.
- (b) Since A is real matrix and $A^T = -A$, we have $A^*A = A^TA = -AA = A(-A) = AA^*$. That is A is normal. So A is diagonalizable.
- (c) Since A is normal, A admits spectral decomposition $A = U\Lambda U^*$ where U is a unitary matrix and Λ is a diagonal matrix with eigenvalue λ_i on the main diagonal. Since A is real matrix, we have $A^T = A^* = (U\Lambda U^*)^* = (U^*)^*\Lambda^*U^* = U\Lambda^*U^*$. But $A^T = -A = -U\Lambda U^*$. So $U\Lambda^*U^* = -U\Lambda U^*$. Since U is invertible, we have $\Lambda^* = -\Lambda$. That is, $\bar{\lambda}_i = \lambda_i$ for all i. Then λ_i is either 0 or imaginary.

- **7.** Suppose A and B are square matrices and AB = BA.
 - (a) If v is an eigenvector of A with eigenvalue λ then Bv is in λ -eigenspace of A. (5 points)
 - (b) Suppose that all eigenvalues of A are distinct. Show that there exists an invertible matrix S so that $A = S\Lambda_1 S^{-1}$ and $B = S\Lambda_2 S^{-1}$ with Λ_1, Λ_2 being diagonal matrices. (5 points)

Proof:

(a) Let E_{λ} be the eigenspace of A with the eigenvalue λ . Since $v \in E_{\lambda}$ then $Av = \lambda v$ and

$$A(Bv) = (BAv) = B\lambda v = \lambda Bv.$$

Therefore, $Bv \in E_{\lambda}$.

(b) Since eigenvalues of A are distinct, A is diagonalizable. So there exists an invertible matrix S such that $A = S\Lambda_1 S^{-1}$ where Λ_1 is a diagonal matrix with distinct eigenvalues λ_i in the main diagonal. Since AB = BA, we have $S\Lambda_1 S^{-1}B = BS\Lambda_1 S^{-1}$. Note that S is invertible, this is equivalent to that $\Lambda_1(S^{-1}BS) = (S^{-1}BS)\Lambda_1$. Now we claim that $C = S^{-1}BS = (c_{ij})$ is necessarily a diagonal matrix. In fact $\Lambda_1 C$ is equivalent to times λ_i to the i-th row of C, where $C\Lambda_1$ is equivalent to times λ_j to j-th column of C. Then $\Lambda_1 C = C\Lambda_1$ means that $\lambda_i c_{ij} = \lambda_j c_{ij}$. Since all λ_i are distinct, we conclude that $c_{ij} = 0$ unless i = j. That is $S^{-1}BS = C = \Lambda_2$ is a diagonal matrix. So $B = S\Lambda_2 S^{-1}$.

- **8.** Let $A \in M_{m \times n}(\mathbb{C})$. Show the following:
 - 1. $rank(AA^*) = rank(A)$. (5 points)
 - 2. If λ is an eigenvalue of AA^* then $\lambda \geq 0$. (5 points).

Proof:

By singular value decomposition, $A = U\Sigma V^*$ where U and V are unitary matrices, and Σ has singular values $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$ on the main diagonal, and $r = \operatorname{rank}(A)$. Then

$$AA^* = U\Sigma V^* (U\Sigma V^*)^* = U\Sigma V^* V\Sigma^* U^* = U\Sigma \Sigma^* U^*.$$

It is easy to check that $\Lambda := \Sigma \Sigma^*$ is an $m \times m$ -matrix with σ_i^2 on the main diagonal for $i=1,\ldots,r$. In particular, AA^* is similar to $\Lambda := \Sigma \Sigma^*$ and hence and they share the same eigenvalues and the same rank (note that U is invertible so $\operatorname{rank}(AA^*) = \operatorname{rank}(U\Lambda U^*) = \operatorname{rank}(\Lambda)$). Hence AA^* 's eigenvalues λ_i are either σ_i^2 or 0. Hence $\lambda_i \geq 0$. Since $\sigma_i^2 > 0$ has exact $r = \operatorname{rank}(A)$ many on the main diagonal of Λ , $\operatorname{rank}(AA^*) = \operatorname{rank}(\Lambda) = r = \operatorname{rank}(A)$.