Math 353 Practice Final Exam

Name: __

This exam consists of 12 pages including this front page.

Ground Rules

1. No calculator is allowed.

2. Show your work for every problem unless otherwise stated.

<table>
<thead>
<tr>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>
Notations: \(\mathbb{R} \) denotes the set of real number; \(F \) is always a field, for example, \(F = \mathbb{R} \); \(M_{m \times n}(F) \) denotes the set of \(m \times n \)-matrices with entries in \(F \); \(F^n = M_{n \times 1}(F) \) denotes the set of \(n \)-column vectors; \(P_n(F) \) denotes the set of polynomials with coefficients in \(F \) and the most degree \(n \), that is,

\[
P_n(F) = \{ f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0, \ a_i \in F, \ \forall i \}.
\]

\(V \) is always a finite dimensional vector space over \(F \) and \(T \) is always a linear operator \(T : V \to V \). \(A^* \) always denote complex conjugate and transpose of \(A \). For an eigenvalue \(\lambda \) of \(A \), \(E_\lambda \) denotes the \(\lambda \)-eigenspace.

1. The following are true/false questions. You don’t have to justify your answers. Just write down either T or F in the table below. (2 points each)

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
<th>(e)</th>
<th>(f)</th>
<th>(g)</th>
<th>(h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Answer</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

(a) There is a matrix \(A \) with an eigenvalue \(\lambda \) such that the multiplicity of \(\lambda \) is 5 and \(\dim E_\lambda = 4 \).

(b) Let \(V \) be an inner product space with \(\alpha \) an ordered basis and \(T : V \to V \) a linear operator. If \(A = [T]_\alpha \) then \(A^* = [T^*]_\alpha \).

(c) For an matrix \(A \) with all real entries, then all eigenvalues of \(A \) are real numbers.

(d) Let \(A \in M_{n \times n}(\mathbb{C}) \) be a square matrix. The rank of \(A \) is the same as the number of nonzero eigenvalues.

(e) Suppose \(W = \text{Span}\{v_1, \ldots, v_n\} \). Then \(u \in W^\perp \) if and only if \(u \) and \(v_i \) are orthogonal for all \(i = 1, \ldots, n \).

(f) Let \(A \) be an invertible matrix. Then singular values of \(A \) are the same as eigenvalues of \(A \).

(g) If \(A \) is a square matrix then \(B = A - A^* \) is normal.

(h) If \(A \) is unitary then \(\det(A) = \pm 1 \).
2. Multiple Choice. (3 points each)

(i) Let A be an $m \times n$-matrix. Consider the system of linear equations $AX = b$, which of the following statement is always true:

(a) Suppose $m > n$ then rank of augmented matrix $(A|b)$ can not larger than m.
(b) Suppose $m \leq n$ then $(A^*A)X = A^*b$ always has a unique solution.
(c) Suppose A has full rank then $AX = b$ always has a solution.
(d) If $AX = b$ has a solution then $AX = 0$ has unique solution.
(e) If $AX = b$ has a unique solution then A has to be invertible.

The correct answer is (a).

(ii) Let $v_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \\ 1 \end{pmatrix}$, $v_2 = \begin{pmatrix} 2 \\ 3 \\ -2 \\ 2 \end{pmatrix}$. Which vectors from e_1, e_2, e_3, e_4 should be added to v_1, v_2 to form a basis of \mathbb{R}^4?

(a) e_1, e_2
(b) e_2, e_3
(c) e_2, e_4
(d) e_1, e_4
(e) such vectors do not exists.

The correct answer is (d).

(iii) Let V be the real vector space of continuous function over $[-1, 1]$ with the inner product $\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx$. Which of the following set is orthonormal?

(a) $1, x, x^2$
(b) $1, e^x$
(c) $1, x, x^2 - \frac{1}{3}$
(d) $\sin x, \cos x$
The correct answer is (e).

(iv) Let

\[
A = \begin{pmatrix}
0 & 0 & 0 & a \\
-1 & 0 & 0 & b \\
0 & -1 & 0 & c \\
0 & 0 & -1 & d
\end{pmatrix}
\]

Suppose 0 is an eigenvalue of \(A \) with multiplicity 2. Then which of the following statement is correct?

(a) \(a = 0, b \neq 0 \)
(b) \(a = b = 0 \) and \(c \neq 0 \)
(c) \(a = c = 0 \) but \(b \neq 0 \).
(d) \(a = d = 0 \) but \(b \neq 0 \).
(e) \(b = c = 0 \) but \(a \neq 0 \).

The correct answer is (b).

(v) Suppose \(T : V \to V \) be a linear operator with characteristic polynomial \(f(t) = t^3 - t \). Which of the following statement is always correct?

(a) \(T \) is an isomorphism.
(b) \(T \) can not be diagonalizable.
(c) For any \(v \in V \), \(T^2(v) = T(v) \).
(d) Such \(T \) is unique.
(e) It is possible that \(T \) is a unitary operator.

The correct answer is (c).

(vi) Which of the following statement is NOT equivalent that \(A \in M_{n \times n}(\mathbb{C}) \) is invertible?

(a) Columns of \(A \) are linearly independent.
(b) A is normal.
(c) All eigenvalues of A are nonzero.
(d) A has n positive singular values.
(e) The linear system $AX = b$ has unique solution.

The correct answer is (b).

(vii) Let $\lambda \in \mathbb{C}$ and $m > 1$. Consider the following $m \times m$-matrix $J_\lambda = \begin{pmatrix} \lambda & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & \lambda & 1 \\ 0 & 0 & \cdots & \lambda \end{pmatrix}$ Which of the following statement is correct?

(a) A is a normal matrix.
(b) A is diagonalizable.
(c) $\dim E_\lambda > 1$
(d) $\lim_{m \to \infty} A^m$ always exists for any λ.
(e) A is not a unitary matrix.

The correct answer is (e).

(viii) Consider the linear system $\begin{pmatrix} 1 & 2 \\ 1 & -1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$. Consider the least square solution $\begin{pmatrix} \hat{x} \\ \hat{y} \end{pmatrix}$ of the above system then $\hat{y} =$

(a) $\frac{1}{5}(\frac{3}{2}a - \frac{3}{2}b - \frac{c}{2} + \frac{d}{2})$.
(b) $\frac{a}{2} + \frac{b}{2} + \frac{c}{2} + \frac{d}{2}$.
(c) $(\frac{3}{2}a - \frac{3}{2}b - \frac{c}{2} + \frac{d}{2})$.
(d) $2a - b + d$.
(e) None of the above answers are correct.

The correct answer is (a).
3. Let $A = \begin{pmatrix} 0.6 & 0.4 & 0 \\ 0.4 & 0.2 & 0.4 \\ 0 & 0.4 & 0.6 \end{pmatrix}$.

(a) Is A a regular transition matrix? explain. (5 points)

(b) Find $\lim_{m \to \infty} A^m$. (5 points)

Solutions:

(a) It is clear that A is a transition matrix because summation of each column is 1 and all entries are non-negative. It is easy to see that each entry of A^2 is positive. So A is regular.

(b) Since A is a regular transition matrix, we know 1 is an eigenvalue. Solve $(A - I)X = \vec{0}$, we find a eigenvector $X = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$. By dividing 3, $\frac{1}{3} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ is the eigenvector of A with eigenvalue 1 and it is also a probability vector. So

$$\lim_{m \to \infty} A^m = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$
4. Compute singular value decomposition of \(A = \begin{pmatrix} 1 & -1 & 1 \\ 1 & -1 & 1 \end{pmatrix} \). (10 points)

Solutions: To obtain the SVD of \(A \), we first decompose \(A^*A \).

We first have \(A^*A = 2 \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix} \). It is not hard to calculate the characteristic polynomial is \(f(t) = -t^2(t-6) \). For \(\lambda_1 = 6 \), we easily compute that the eigenspace has a basis \(v_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \). For \(\lambda_2 = 0 \), the eigenspace is defined by equation \(x - y + z = 0 \). So we get two basis \(v_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \) and \(v_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \). But \(v_2 \) and \(v_3 \) are not orthogonal. By Gram-Schmidt as in the next problem, we can replace \(v_3 \) by \(\begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix} \). By replacing \(v_i \) by \(v_i/\|v_i\| \). We obtained orthonormal eigenvectors as basis, and hence

\[
V = (v_1, v_2, v_3) = \left(\frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \frac{1}{\sqrt{6}} \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix} \right)
\]

Therefore \(A^*A = V \Lambda V^* \) where \(\Lambda \) has \(6, 0, 0 \) on the main diagonal. So the singular value only has \(\sigma_1 = \sqrt{6} \).

Now \(u_1 = \frac{1}{\sigma_1} Av_1 = \left(\frac{1}{1} \right) \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \). Now it suffices to select \(u_2 \) such that \(u_1, u_2 \) forms an orthonormal basis of \(\mathbb{R}^2 \). We can select \(u_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \). Finally, we get a SVD of \(A \):

\[
A = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} \sqrt{6} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} V^*.
\]
5. Let $W \subset \mathbb{R}^3$ be the subspace spanned by $w = (1, 1, 1)$. Let W^\perp be the orthogonal complement of W. Let $v = (1, 0, 1)$.

1. Find an orthonormal basis of W^\perp. (4 points)
2. Find the projection of v to W^\perp. (3 points)
3. Find the $\min_{w \in W^\perp} ||w - v||$. (3 points)

Solutions: It is easy to check that $W^\perp := \{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} | x + y + z + 0 \}$. We can pick two basis vector of W^\perp to be $v_2 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ and $v_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$. But v_1 and v_2 is not orthogonal. By Gram-Schmidt, we set $w_1 = v_1$ and

$$w_2 = v_2 - \frac{\langle v_2, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}.$$

Replace w_i by $w_i/||w_i||$, we obtain an orthonormal basis of W^\perp: $u_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$, $u_2 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$.

Now we can use the formula of projection

$$\text{Proj}_{W^\perp} v = \frac{\langle v, u_1 \rangle}{\langle u_1, u_1 \rangle} u_1 + \frac{\langle v, u_2 \rangle}{\langle u_2, u_2 \rangle} u_2$$

So the projection is

$$0 \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$

Then

$$\min_{w \in W^\perp} ||w - v|| = ||v - \text{Proj}_{W^\perp} v|| = ||\frac{2}{3} \begin{pmatrix} 1 \\ 1 \end{pmatrix}|| = \frac{2}{\sqrt{3}}.$$
6. Let \(A \) be an \(n \times n \)-matrix with real entries. Suppose \(A \) is skew-symmetric, that is, \(A^T = -A \).

(a) Show that if \(n \) is odd then \(\det(A) = 0 \) (3 points)

(b) Show that \(A \) is always diagonalizable. (3 points)

(c) Show that eigenvalues of \(A \) are either 0 or purely imaginary, that is, \(\lambda = bi \) for \(b \in \mathbb{R} \). (4 points)

proof

(a) Since \(A^T = -A \), we have \(\det(A^T) = \det(-A) = (-1)^n \det(A) \). Note that \(n \) is odd, \((-1)^n = -1 \). So \(\det(A) = \det(A^T) = -\det(A) \). That is, \(\det(A) = 0 \).

(b) Since \(A \) is real matrix and \(A^T = -A \), we have \(A^*A = A^TA = -AA = A(-A) = AA^* \). That is \(A \) is normal. So \(A \) is diagonalizable.

(c) Since \(A \) is normal, \(A \) admits spectral decomposition \(A = U\Lambda U^* \) where \(U \) is a unitary matrix and \(\Lambda \) is a diagonal matrix with eigenvalue \(\lambda_i \) on the main diagonal. Since \(A \) is real matrix, we have \(A^T = A^* = (U\Lambda U^*)^* = (U^*)^*\Lambda^*U^* = U\Lambda^*U^* \). But \(A^T = -A = -U\Lambda U^* \). So \(U\Lambda^*U^* = -U\Lambda U^* \). Since \(U \) is invertible, we have \(\Lambda^* = -\Lambda \). That is, \(\lambda_i = \lambda_i \) for all \(i \). Then \(\lambda_i \) is either 0 or imaginary.
7. Suppose A and B are square matrices and $AB = BA$.

(a) If v is an eigenvector of A with eigenvalue λ then Bv is in λ-eigenspace of A. (5 points)

(b) Suppose that all eigenvalues of A are distinct. Show that there exists an invertible matrix S so that $A = S\Lambda_1 S^{-1}$ and $B = S\Lambda_2 S^{-1}$ with Λ_1, Λ_2 being diagonal matrices. (5 points)

Proof:

(a) Let E_λ be the eigenspace of A with the eigenvalue λ. Since $v \in E_\lambda$ then $Av = \lambda v$ and

$$A(Bv) = (BAv) = B\lambda v = \lambda Bv.$$

Therefore, $Bv \in E_\lambda$.

(b) Since eigenvalues of A are distinct, A is diagonalizable. So there exists an invertible matrix S such that $A = S\Lambda_1 S^{-1}$ where Λ_1 is a diagonal matrix with distinct eigenvalues λ_i in the main diagonal. Since $AB = BA$, we have $SA_1 S^{-1} B = BSA_1 S^{-1}$. Note that S is invertible, this is equivalent to that $\Lambda_1(S^{-1}BS) = (S^{-1}BS)\Lambda_1$. Now we claim that $C = S^{-1}BS = (c_{ij})$ is necessarily a diagonal matrix. In fact $\Lambda_1 C$ is equivalent to times λ_i to the i-th row of C, where CA_1 is equivalent to times λ_j to j-th column of C. Then $\Lambda_1 C = CA_1$ means that $\lambda_i c_{ij} = \lambda_j c_{ij}$. Since all λ_i are distinct, we conclude that $c_{ij} = 0$ unless $i = j$. That is $S^{-1}BS = C = \Lambda_2$ is a diagonal matrix. So $B = S\Lambda_2 S^{-1}$.
8. Let \(A \in M_{m \times n}(\mathbb{C}) \). Show the following:

1. \(\text{rank}(AA^*) = \text{rank}(A) \). (5 points)
2. If \(\lambda \) is an eigenvalue of \(AA^* \) then \(\lambda \geq 0 \). (5 points)

Proof:

By singular value decomposition, \(A = U\Sigma V^* \) where \(U \) and \(V \) are unitary matrices, and \(\Sigma \) has singular values \(\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0 \) on the main diagonal, and \(r = \text{rank}(A) \). Then

\[
AA^* = U\Sigma V^*(U\Sigma V^*)^* = U\Sigma V^*\Sigma V^*U^* = U\Sigma \Sigma^* U^*.
\]

It is easy to check that \(\Lambda := \Sigma \Sigma^* \) is an \(m \times m \)-matrix with \(\sigma_i^2 \) on the main diagonal for \(i = 1, \ldots, r \). In particular, \(AA^* \) is similar to \(\Lambda := \Sigma \Sigma^* \) and hence and they share the same eigenvalues and the same rank (note that \(U \) is invertible so \(\text{rank}(AA^*) = \text{rank}(U \Lambda U^*) = \text{rank}(\Lambda) \)). Hence \(AA^* \)'s eigenvalues \(\lambda_i \) are either \(\sigma_i^2 \) or 0. Hence \(\lambda_i \geq 0 \). Since \(\sigma_i^2 > 0 \) has exact \(r = \text{rank}(A) \) many on the main diagonal of \(\Lambda \), \(\text{rank}(AA^*) = \text{rank}(\Lambda) = r = \text{rank}(A) \).