Math 353, Practice Midterm 1

Name: \qquad

This exam consists of 8 pages including this front page.

Ground Rules

1. You may take 3 by 5 cards two sides as note.
2. No calculator is allowed.
3. Show your work for every problem unless otherwise stated.

Score		
1	10	
2	15	
3	15	
4	20	
5	20	
6	20	
Total	100	

1. The following are true/false questions. You don't have to justify your answers. Just write down either T or F in the table below. A, B, C, X, b are always matrices here.
(a) Let W_{1}, W_{2} be subspaces of a vector space V, then $W_{1} \cap W_{2}$ is a subspace of V.
(b) Let V be a vector space of dimension n. Then any set of m vectors with $m<n$ is linearly independent.
(c) Let $T: V \rightarrow W$ be a linear transformation of vector spaces V and W. If $S \subset V$ is a basis of V, then $T(S)$ spans $R(T)$.
(d) Let β be a basis of V and $T: V \rightarrow V$ a linear transformation. Write $A=[T]_{\beta}$. Then T is an isomorphism if and only if $N(A)=\{0\}$.
(e) Let $A \in M_{n \times n}(F)$ be a square matrix. Then the linear transformation $L_{A}: F^{n} \rightarrow F^{n}$ is an isomorphism if and only if A is invertible.

	(a)	(b)	(c)	(d)	(e)
Answer	T	F	T	T	T

2. Multiple Choice, A, B, C, X, b are always matrices here:
(i) Which of the following statement is correct.
(a) Any set of 4 vectors in F^{4} is a basis of F^{4}
(b) Any set of 4 vectors in F^{3} is linearly dependent.
(c) Any set of 2 vectors in F^{3} is linearly independent.
(d) Any set of 5 vectors in F^{4} must span F^{4}
(e) Any linearly independent subset of F^{3} is a basis of F^{3}

The correct answer is (b).
(ii) Which of the given subsets of \mathbb{R}_{3} is a subspace?
(a) The set of all vectors of the form (a, b, c) such that $2 a+b=c$
(b) The set of all vectors of the form (a, b, c) such that $a+b<c$
(c) The set of all vectors of the form (a, b, c) such that $2 a+b=1$
(d) The set of unit sphere.
(e) The set of all vectors of the form $\left(a, a^{2}, a^{3}\right)$.

The correct answer is (a).
(iii) Which of the following map is a linear transformation
(a) $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ by $L\left(\left(\begin{array}{l}x \\ y \\ z\end{array}\right)\right)=\binom{x+y}{y+1}$.
(b) $T: P_{3}(\mathbb{R}) \rightarrow \mathbb{R}$ by $T(f(x))=\int_{0}^{1} f(x)^{2} d x$
(c) $S: P_{3}(\mathbb{R}) \rightarrow \mathbb{R}$ by $S(f(x))=f^{\prime}(3)+2$.
(d) $L: M_{2 \times 2}(F) \rightarrow M_{2 \times 2}(F)$ by $L(X)=A X A$ where $A=\left(\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right)$.
(e) $L: \mathbb{R} \rightarrow \mathbb{R}$ by $L(x)=e^{x}$.

The correct answer is (d).
(iv) Let $T: V \rightarrow W$ be a linear transformation. Assume that $\operatorname{dim} V=$ $\operatorname{dim} W=n$ and let $\alpha \subset V$ and $\beta \subset W$ be bases. Then which of the following statement is NOT equivalent to that T is an isomorphism
(a) T is one-to-one.
(b) T is onto.
(c) The matrix $[T]_{\alpha}^{\beta}$ is invertible.
(d) T sends any linearly independent set of V to linearly independent set in W.
(e) T sends any linearly dependent set of V to linearly dependent set in W.

The correct answer is (e).
(v) Let A be a 3×5-matrix of real numbers and $A \neq 0$. Which of the following statement is FALSE?
(a) L_{A} define by $L_{A}(x)=A x$ is a linear transformation from \mathbb{R}^{3} to \mathbb{R}^{5}.
(b) $\operatorname{rank}(A) \leq 3$
(c) If α and β are the standard bases for \mathbb{R}^{5} and \mathbb{R}^{3} respectively then $\left[L_{A}\right]_{\alpha}^{\beta}=A$.
(d) $\operatorname{Nullity}(A) \geq 2$.
(e) L_{A} can not be one-to-one.

The correct answer is (a).
3. Let $p_{1}=1+x, p_{2}=x+2 x^{2}-x^{3}, p_{3}=1+2 x+2 x^{2}-x^{3}, p_{4}=1+2 x+3 x^{2}+x^{3}$ be polynomials in $P_{3}(\mathbb{R})$. Find a basis for $\operatorname{Span}\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\} \subset P_{3}(\mathbb{R})$.

Solutions: Consider equation of vectors $a_{1} p_{1}+a_{2} p_{2}+a_{3} p_{3}+a_{4} p_{4}=0$ with a_{i} being unknowns. compare the coefficients of each degree, we arrive the following system of linear equations

$$
\left(\begin{array}{cccc}
1 & 0 & 1 & 1 \\
1 & 1 & 2 & 2 \\
0 & 2 & 2 & 3 \\
0 & -1 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

Use elementary operation to simplify the equation, we arrive

$$
\left(\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

Then the equation has a solution $a_{4}=0, a_{1}=1, a_{2}=1, a_{3}=-1$ So it is clear that p_{1}, p_{2}, p_{3} are linear dependent. If we remove p_{3} or equivalently set $a_{3}=0$. We see that this forces $a_{1}=a_{2}=a_{4}=0$. So p_{1}, p_{2}, p_{4} are linearly independent and hence a basis for $\operatorname{Span}\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$.
4. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation such that $T\binom{1}{1}=\binom{2}{1}$ and $T\binom{1}{2}=\binom{2}{1}$.
(a) Find $T\binom{2}{1}$.
(b) Find the standard matrix representing T.
(c) Find nullity of T and the rank of T.
(d) Given a basis $\beta=\left\{\binom{2}{1},\binom{1}{0}\right\}$. Find matrix $[T]_{\beta}$.

Solutions:
(a) Solve equation $\binom{2}{1}=x\binom{1}{1}+y\binom{1}{2}$. We see $x=3, y=-1$. Then

$$
T\binom{2}{1}=3 T\binom{1}{1}-T\binom{1}{2}=\binom{4}{2}
$$

(b) We find $\binom{1}{0}=2\binom{1}{1}-\binom{1}{2}$ and $\binom{0}{1}=-\binom{1}{1}+\binom{1}{2}$. So similarly as the above, we have

$$
T\binom{1}{0}=\binom{2}{1}, \quad T\binom{0}{1}=\binom{0}{0} .
$$

So the standard matrix representing T is just $A=\left(\begin{array}{ll}2 & 0 \\ 1 & 0\end{array}\right)$.
(c) Since rows in A ar just multiple to each other, row space of A only has 1 linearly dependent vector. So $\operatorname{rank}(A)=\operatorname{rank}(T)=1$ and the nullity of T is $2-\operatorname{rank}(A)=1$.
(d) Let $Q=\left(\begin{array}{ll}2 & 1 \\ 1 & 0\end{array}\right)$. Then $[T]_{\beta}=Q^{-1} A Q=\left(\begin{array}{ll}2 & 1 \\ 4 & 2\end{array}\right)$.
5. Let $v_{1}, \ldots, v_{n} \in F^{n}$ and $A=\left(v_{1}, \ldots, v_{n}\right)$ be the $n \times n$-matrix. Show that $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of F^{n} if and only if A is an invertible matrix via the following steps:
(a) Show that there exists a linear transformation $T: F^{n} \rightarrow F^{n}$ so that $T\left(e_{i}\right)=v_{i}$ for all i. Here $\alpha:=\left\{e_{1}, \ldots, e_{n}\right\}$ is the standard basis of F^{n}.
(b) Show that $[T]_{\alpha}=A$.
(c) Show that if $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of F^{n} then there exists a linear transformation $U: F^{n} \rightarrow F^{n}$ so that $U\left(v_{i}\right)=e_{i}$ for all i
(d) Show that $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of F^{n} if and only if A is an invertible matrix.

Proof:

(a) Since $\left\{e_{1}, \ldots, e_{n}\right\}$ is the standard basis of F^{n}. By Theorem 2.6, there exists unique linear transformation $T: F^{n} \rightarrow F^{n}$ such that $T\left(e_{i}\right)=v_{i}$ for all $i=1, \ldots, n$.
(b) Since α is the standard basis of F^{n}, we always have $v=[v]_{\alpha}$ for any $v \in F^{n}$. So

$$
[T]_{\alpha}=\left(\left[T\left(e_{1}\right)\right]_{\alpha}, \ldots,\left[T\left(e_{n}\right)\right]_{\alpha}\right)=\left(\left[v_{1}\right]_{\alpha}, \ldots,\left[v_{n}\right]_{\alpha}\right)=\left(v_{1}, \ldots, v_{n}\right)=A
$$

(c) If v_{1}, \ldots, v_{n} is a basis of F^{n} then we can applies Theorem 2.6 to $\left\{v_{i}\right\}$ and $\left\{e_{i}\right\}$ again, which implies that there exists a unique linear transformation $U: F^{n} \rightarrow F^{n}$ so that $U\left(v_{i}\right)=e_{i}$ for all $i=1, \ldots, n$.
(d) Applies Theorem 2.18 to T, we see T is an isomorphism if and only if $A=[T]_{\alpha}$ is invertible. Now if v_{1}, \ldots, v_{n} is a basis, then (c) constructed a linear transformation $U: F^{n} \rightarrow F^{n}$. Note that $U T\left(e_{i}\right)=I_{F^{n}}\left(e_{i}\right)$ for all i. Using Theorem 2.6 again, $U T$ is necessarily $I_{F^{n}}$. Similarly, we see that $T U=I_{F^{n}}$. So T is invertible and hence $A=[T]_{\alpha}$ is invertible. Conversely, if A is invertible then T is invertible, which means it is one-to-one and onto. In particular, by Theorem 2.2, $\left\{v_{i}=T\left(e_{i}\right), i=\right.$ $1, \ldots, n\}$ spans F^{n}. Since $\left\{v_{1}, \ldots, v_{n}\right\}$ has n vectors, this implies that $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of F^{n}.
6. Let V, W be vector spaces over field F. Let $v_{1}, \ldots, v_{n} \in V$ be linearly independent vectors.
(a) Show that given $w_{1}, \ldots, w_{n} \in W$ then there exists a linear transformation $T: V \rightarrow W$ such that $T\left(v_{i}\right)=w_{i}$ for all $i=1, \ldots, n$.
(b) Could we drop the assumption of linear independence for so that the above statement is still true? why or why not?
(c) Is T necessarily unique, why or why not?

Solutions:

(a) Proof: Since v_{i} are linearly independent, then one can always extend v_{i}, say $\left\{v_{1}, \ldots, v_{n}, v_{n+1}, \ldots, v_{m}\right\}$, to be a basis of V. Now extend w_{i} to m-vectors $w_{1}, \ldots, w_{n}, w_{n+1}, \ldots, w_{m}$. For example, $w_{n+1}=\cdots=w_{m}=$ 0 . Now by Theorem 2.6, there exists a unique linear transformation $T: V \rightarrow W$ so that $T\left(v_{i}\right)=w_{i}$ for all $i=1, \ldots, m$.
(b) No. We can not drop the assumption that v_{i} are linearly independent. For example, let $V=W=\mathbb{R}, v_{1}=v_{2}=1$, but $w_{1}=0$ and $w_{2}=2$. It is not possible to define a linear transformation $T: \mathbb{R} \rightarrow \mathbb{R}$ so that $T\left(v_{i}\right)=w_{i}$.
(c) Contrary to Theorem $2.6, T$ here in general is not unique as v_{i} may not form a basis. For example, let $V=W=\mathbb{R}^{2}, v_{1}=\binom{1}{0}$ and $w_{1}=v_{1}$. We see $I_{V}\left(v_{1}\right)=w_{1}$. On the other hand, consider linear transformation $T\binom{x}{y}=\binom{x}{0}$. We still have $T\left(v_{1}\right)=w_{1}$.

