Math 353, Midterm 1

Name:

This exam consists of 9 pages including this front page.

Ground Rules

1. No calculator is allowed.
2. Show your work for every problem unless otherwise stated.
3. You may use one 3 by 5 index card, both sides.

Score		
1	15	
2	20	
3	15	
4	15	
5	20	
6	15	
Total	100	

Notations: \mathbb{R} denotes the set of real number; F is always a field, for example, $F=$ $\mathbb{R} ; M_{m \times n}(F)$ denotes the set of $m \times n$-matrices with entries in $F ; F^{n}=M_{n \times 1}(F)$ denotes the set of n-column vectors; $P_{n}(F)$ denotes the set of polynomials with coefficients in F and the most degree n, that is,

$$
P_{n}(F)=\left\{f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}, \quad a_{i} \in F, \forall i\right\} .
$$

Given $A \in M_{m \times n}(F)$, then the linear transformation $L_{A}: F^{n} \rightarrow F^{m}$ is defined via $L_{A}(x)=A x$ for any $x \in F^{n}$.

1. The following are true/false questions. You don't have to justify your answers. Just write down either T or F in the table below. (3 points each)
(a) Let W_{1}, W_{2} be subspaces of a vector space V, then $W_{1} \cup W_{2}$ is a subspace of V.
(b) Let $T: V \rightarrow W$ be a linear transformation then

$$
\operatorname{nullity}(T)+\operatorname{rank}(T)=\operatorname{dim} W
$$

(c) Let $U, T: V \rightarrow V$ be two linear transformations from V to V. Then $U T$ is an isomorphism if and only if both U and T are isomorphisms.
(d) Let $A \in M_{n \times n}(F)$ be a square matrix. Consider the linear transformation $L_{A}: F^{n} \rightarrow F^{n}$ via $L_{A}(x)=A x$. Then for any basis β of F^{n}, we have $\left[L_{A}\right]_{\beta}=A$.
(e) If rows of a matrix A are linearly independent then so are the columns.

	(a)	(b)	(c)	(d)	(e)
Answer	F	F	T	F	F

2. Multiple Choice. (4 points each)
(i) Which of the following vector space is isomorphic to $P_{3}(F)$ (which is the space of polynomials at most degree 3)?
(a) The column space of an invertible 3×3-matrix A.
(b) The subspace W of $M_{2 \times 2}(F)$ defined by

$$
W:=\left\{A \in M_{2 \times 2}(F) \mid A^{T}=A\right\} .
$$

(c) The space $\mathcal{L}\left(F^{2}\right):=\left\{\right.$ all linear transformations $\left.T: F^{2} \rightarrow F^{2}\right\}$.
(d) The subspace of W of F_{5} defined by

$$
W=\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right) \in F_{5} \mid a_{1}+a_{2}=0, a_{3}=2 a_{4}\right\}
$$

(e) None of the above.

The correct answer is (C)
(ii) Suppose that A is an $m \times n$ matrix with entries in \mathbb{R}. Which of the following statement is NOT correct?
(a) $\operatorname{rank}(A)=\operatorname{dim} \operatorname{Col}(A)$ and where $\operatorname{Col}(A)$ denotes the column space of A.
(b) $\operatorname{rank}(A)=\operatorname{rank}(A E)$ for any $n \times n$-invertible matrix E.
(c) $\operatorname{rank}(A)=\operatorname{dim} \operatorname{Row}(A)$ and where $\operatorname{Row}(A)$ denotes the row space of A.
(d) $\operatorname{rank}(A)=\min \{m, n\}$.
(e) If $\operatorname{rank}(A)<n$ then columns of A are linearly dependent.

The correct answer is (D)
(iii) Suppose V is a vector space over F with $\operatorname{dim} V=5$. Which of the following statement is NOT correct.
(a) Any set of 6 vectors in V spans V.
(b) Any set of 6 vectors in V is linearly dependent.
(c) V is isomorphic to F^{5}.
(d) If a set S of vectors in V is linearly independent then there are at most 5 vectors in S.
(e) Suppose $S=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ spans V then S is a basis of V.

The correct answer is (a)
(iv) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear transformation so that $T\binom{1}{1}=\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right)$ and $T\binom{2}{3}=\left(\begin{array}{c}1 \\ -1 \\ 4\end{array}\right)$. Which of the following statement is FALSE?
(a) T is one-to-one.
(b) Such a linear transformation T is unique.
(c) The standard matrix representing T (i.e., the matrix representing T for the standard bases of \mathbb{R}^{2} and $\left.\mathbb{R}^{3}\right)$ is $\left(\begin{array}{lll}1 & -1 & 2 \\ 2 & -2 & 4\end{array}\right)$.
(d) $\operatorname{rank}(T)=2$.
(e) $T\binom{-1}{-2}=\left(\begin{array}{c}0 \\ 1 \\ -2\end{array}\right)$.

The correct answer is (C)
(v) Let $A \in M_{n \times n}(F)$ be a square matrix. Which of the following statement is NOT equivalent to the statement that A is invertible.
(a) The linear transformation $L_{A}: F^{n} \rightarrow F^{n}$ given by $L_{A}(x)=A x$ is an isomorphism.
(b) $\operatorname{rank}(A)=n$
(c) L_{A} sends any linearly dependent set of F^{n} to linearly dependent set in F^{n}.
(d) A is a product of elementary matrices.
(e) Rows of A are linearly independent.

The correct answer is (c)
3. Let $V=M_{2 \times 2}(\mathbb{R})$ and $v_{1}=\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right), v_{2}=\left(\begin{array}{cc}0 & 1 \\ 2 & -1\end{array}\right)$, $v_{3}=\left(\begin{array}{ll}1 & 2 \\ 3 & 1\end{array}\right)$.
(a) Show that v_{1}, v_{2}, v_{3} are linearly independent. (7 points)
(b) Find v_{4} so that $S=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ forms a basis of V. (8 points)

Solutions:

(a) Consider equation $x_{1} v_{1}+x_{2} v_{2}+x_{3} v_{3}=0$. Then we have the following system of linear equations

$$
\left(\begin{array}{ccc}
1 & 0 & 1 \\
1 & 1 & 2 \\
0 & 2 & 3 \\
0 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

Using elementary (row) operations to simplify the above system, we have

$$
\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

So it is clear the system only has solution $x_{1}=x_{2}=x_{3}=0$. So v_{1}, v_{2}, v_{3} are linearly independent.
(b) Suppose that $v_{4}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and consider the equation $x_{1} v_{1}+x_{2} v_{2}+$ $x_{3} v_{3}+x_{3} v_{4}=0$. We get the equation

$$
\left(\begin{array}{cccc}
1 & 0 & 1 & a \\
1 & 1 & 2 & b \\
0 & 2 & 3 & c \\
0 & -1 & 1 & d
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

Using elementary (row) operations to simplify the above system, we have

$$
\left(\begin{array}{cccc}
1 & 0 & 1 & a \\
0 & 1 & 1 & b-a \\
0 & 0 & 1 & c-2(b-a) \\
0 & 0 & 0 & d-2 c+5(b-a)
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

So it is clear that the system only has zero solution if an only if

$$
d-2 c+5(b-a) \neq 0
$$

For example, $v_{4}=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$.
4. Let $T: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ be a linear transformation given by $T(f(x))=f^{\prime}(x)$.
(a) Find the standard matrix representing T, that is, the matrix representing T for the standard basis $\left\{1, x, x^{2}\right\}$. (5 points)
(b) Find nullity of T and the rank of T. (5 points)
(c) Given a basis $\beta=\left\{1-x, 1+x, x^{2}+x\right\}$. Find matrix $[T]_{\beta}$. (5 points)

Solutions:

(a) We have

$$
T\left(1, x, x^{2}\right)=\left(0,1,2 x^{2}\right)=\left(1, x, x^{2}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right)
$$

So the standard matrix of T is $\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0\end{array}\right)$.
(b) It is clear that the range $R(T)$ of T is spanned by $T(1), T(x)$, and $T\left(x^{2}\right)$. Since 1 and $2 x$ are linearly independent, they forms of basis of $R(T)$ and hence $\operatorname{dim}_{\mathbb{R}} R(T)=\operatorname{rank}(T)=2$. By dimension theorem, the nullity of T is $\operatorname{dim}_{\mathbb{R}} P_{2}(\mathbb{R})-\operatorname{rank}(T)=3-2=1$.
(c) Let $\alpha=\left\{1, x, x^{2}\right\}$ be the standard basis and $Q=\left[I_{P_{2}(\mathbb{R})}\right]_{\alpha}^{\beta}$. Since $\left(1-x, 1+x, x^{2}+x\right)=\left(1, x x^{2}\right)\left(\begin{array}{ccc}1 & 1 & 0 \\ -1 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$ So we conclude that $Q=\left(\begin{array}{ccc}1 & 1 & 0 \\ -1 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$.
and

$$
[T]_{\beta}=\left(\begin{array}{ccc}
1 & 1 & 0 \\
-1 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)^{-1}\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 0 \\
-1 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
-\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2} & \frac{3}{2} \\
0 & 0 & 0
\end{array}\right)
$$

5. Let $A \in M_{m \times n}(F)$ be an $m \times n$-matrix. If $\operatorname{rank}(A)=\min \{m, n\}$ then A is called a full rank matrix. Recall that the linear transformation $L_{A}: F^{n} \rightarrow F^{m}$ is defined by $L_{A}(x)=A x$.
(a) Suppose $m \leq n$. Show that A is a full rank matrix if and only rows of A are linearly independent. (5 points)
(b) Suppose $m \leq n$. Show that if A is a full rank matrix then L_{A} is onto. (5 points)
(c) Suppose $m \geq n$. Show that A is a full rank matrix if and only if columns of A are linearly independent. (5 points)
(d) Suppose $m \geq n$. Show that if A is a full rank matrix then L_{A} is one-toone. (5 points)

Proof:
(a) Since A is full rank, and $m \leq n$, we have $\operatorname{rank}(A)=\min \{m, n\}=m$. So $\operatorname{rank}(A)=\operatorname{dim} \operatorname{Row}(A)=m$. Since the row space $\operatorname{Row}(A)$ is spanned by all rows of A and A has exactly m rows, this implies that all rows of A must be a basis of $\operatorname{Row}(A)$. Hence all rows of A are linearly independent. Conversely, if rows of A are linearly independent, then they forms a basis of $\operatorname{Row}(A)$. So $\operatorname{rank}(A)=\operatorname{dim} \operatorname{Row}(A)=m$, and A is of full rank.
(b) By definition $\operatorname{rank}(A)=\operatorname{dim} R\left(L_{A}\right)$. So $\operatorname{dim} R\left(L_{A}\right)=m$ as A is full rank and $m \leq n$. Since $R\left(L_{A}\right) \subset F^{m}$, and $\operatorname{dim} R\left(L_{A}\right)=\operatorname{dim} F^{m}=m$, we conclude that $R\left(L_{A}\right)=F^{m}$. Therefore, L_{A} is onto.
(c) Since A is full rank, and $m \geq n$, we have $\operatorname{rank}(A)=\min \{m, n\}=$ n. So $\operatorname{rank}(A)=\operatorname{dim} \operatorname{Col}(A)=n$. Since the column space $\operatorname{Col}(A)$ is spanned by all columns of A and A has exactly n columns, this implies that all columns of A must be a basis of $\operatorname{Col}(A)$. Hence all columns of A are linearly independent. Conversely, if columns of A are linearly independent, then they forms a basis of $\operatorname{Col}(A) . \operatorname{Sorank}(A)=$ $\operatorname{dim} \operatorname{Col}(A)=n$, and A is of full rank.
(d) If A is full rank, and $m \geq n$ then we have $\operatorname{rank}(A)=\min \{m, n\}=n$. By dimension theorem, $\operatorname{dim} N\left(L_{A}\right)+\operatorname{rank}\left(L_{A}\right)=n . \quad$ So $\operatorname{rank}(A)=$ $\operatorname{rank}\left(L_{A}\right)=n$ implies that $\operatorname{dim}\left(N\left(L_{A}\right)\right)=0$. So L_{A} is one-to-one.
6. Let V, W be vector spaces over a field F and $T: V \rightarrow W$ a linear transformation. Let $v_{1}, \ldots, v_{n} \in V$ be vectors in V.
(a) Suppose that T is one-to-one and $\left\{v_{1}, \ldots, v_{n}\right\}$ are linearly independent. Show that $\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}$ are also linearly independent. (5 points)
(b) Suppose that T is onto and $\left\{v_{1}, \ldots, v_{n}\right\}$ spans V. Show that $\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}$ spans W. (5 points)
(c) Suppose that T is an isomorphism and $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of V. Show that $\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}$ is a basis of W. (5 points)

Proof:

(a) Consider equation of vectors $x_{1} T\left(v_{1}\right)+\cdots+x_{n} T\left(v_{n}\right)=\overrightarrow{0}$. Since T is linear, we have

$$
T\left(x_{1} v_{1}+\cdots+x_{n} v_{n}\right)=x_{1} T\left(v_{1}\right)+\cdots+x_{n} T\left(v_{n}\right)=\overrightarrow{0}
$$

Since T is one-to-one, $N(T)=\{\overrightarrow{0}\}$, we have $x_{1} v_{1}+\cdots+x_{n} v_{n}=\overrightarrow{0}$. But v_{1}, \ldots, v_{n} is linearly independent, this forces $x_{1}=\cdots=x_{n}=0$. So $T\left(v_{1}\right), \ldots, T\left(v_{n}\right)$ is linearly independent.
(b) It suffices to show that for any $w \in W, w$ is linear combination of $T\left(v_{1}\right), \ldots, T\left(v_{n}\right)$. Since T is onto, there exists a $v \in V$ so that $w=T(v)$. Since $v_{1}, \ldots v_{n}$ spans V, there exists linear combination $c_{1} v_{1}+\cdots+$ $c_{n} v_{n}=v$ with $c_{i} \in F$. Then

$$
w=T(v)=T\left(c_{1} v_{1}+\cdots+c_{n} v_{n}\right)=c_{1} T\left(v_{1}\right)+\cdots+c_{n} T\left(v_{n}\right) .
$$

So w is linear combination of $T\left(v_{1}\right), \ldots, T\left(v_{n}\right)$ as required.
(c) Since T is an isomorphism, it is one-to-one and onto. Since $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of V, it is linearly independent and spans V. By (1) and (2) above, we see that $\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}$ is linearly independent and spans W. So $\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}$ is a basis of W.

