Math 353, Midterm 1

Name:	

This exam consists of 9 pages including this front page.

Ground Rules

- 1. No calculator is allowed.
- 2. Show your work for every problem unless otherwise stated.
- 3. You may use one 3 by 5 index card, both sides.

Score							
1	15						
2	20						
3	15						
4	15						
5	20						
6	15						
Total	100						

Notations: \mathbb{R} denotes the set of real number; F is always a field, for example, $F = \mathbb{R}$; $M_{m \times n}(F)$ denotes the set of $m \times n$ -matrices with entries in F; $F^n = M_{n \times 1}(F)$ denotes the set of n-column vectors; $P_n(F)$ denotes the set of polynomials with coefficients in F and the most degree n, that is,

$$P_n(F) = \{ f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0, \ a_i \in F, \ \forall i \}.$$

Given $A \in M_{m \times n}(F)$, then the linear transformation $L_A : F^n \to F^m$ is defined via $L_A(x) = Ax$ for any $x \in F^n$.

- 1. The following are true/false questions. You don't have to justify your answers. Just write down either T or F in the table below. (3 points each)
 - (a) Let W_1, W_2 be subspaces of a vector space V, then $W_1 \cup W_2$ is a subspace of V.
 - (b) Let $T: V \to W$ be a linear transformation then

$$\operatorname{nullity}(T) + \operatorname{rank}(T) = \dim W.$$

- (c) Let $U, T: V \to V$ be two linear transformations from V to V. Then UT is an isomorphism if and only if both U and T are isomorphisms.
- (d) Let $A \in M_{n \times n}(F)$ be a square matrix. Consider the linear transformation $L_A : F^n \to F^n$ via $L_A(x) = Ax$. Then for any basis β of F^n , we have $[L_A]_{\beta} = A$.
- (e) If rows of a matrix A are linearly independent then so are the columns.

	(a)	(b)	(c)	(d)	(e)
Answer	F	F	Т	F	F

- 2. Multiple Choice. (4 points each)
 - (i) Which of the following vector space is isomorphic to $P_3(F)$ (which is the space of polynomials at most degree 3)?
 - (a) The column space of an invertible 3×3 -matrix A.
 - (b) The subspace W of $M_{2\times 2}(F)$ defined by

$$W := \{ A \in M_{2 \times 2}(F) | A^T = A \}.$$

- (c) The space $\mathcal{L}(F^2) := \{\text{all linear transformations } T : F^2 \to F^2\}.$
- (d) The subspace of W of F_5 defined by

$$W = \{(a_1, a_2, a_3, a_4, a_5) \in F_5 | a_1 + a_2 = 0, \ a_3 = 2a_4\}$$

(e) None of the above.

The correct answer is (C)

- (ii) Suppose that A is an $m \times n$ matrix with entries in \mathbb{R} . Which of the following statement is NOT correct?
 - (a) $\operatorname{rank}(A) = \dim \operatorname{Col}(A)$ and where $\operatorname{Col}(A)$ denotes the column space of A.
 - (b) rank(A) = rank(AE) for any $n \times n$ -invertible matrix E.
 - (c) $\operatorname{rank}(A) = \dim \operatorname{Row}(A)$ and where $\operatorname{Row}(A)$ denotes the row space of A.
 - (d) $rank(A) = min\{m, n\}.$
 - (e) If rank(A) < n then columns of A are linearly dependent.

The correct answer is (D)

- (iii) Suppose V is a vector space over F with $\dim V = 5$. Which of the following statement is NOT correct.
 - (a) Any set of 6 vectors in V spans V.
 - (b) Any set of 6 vectors in V is linearly dependent.
 - (c) V is isomorphic to F^5 .
 - (d) If a set S of vectors in V is linearly independent then there are at most 5 vectors in S.
 - (e) Suppose $S = \{v_1, v_2, v_3, v_4, v_5\}$ spans V then S is a basis of V.

The correct answer is (a)

(iv) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation so that $T \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$ and

$$T \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix}$$
. Which of the following statement is FALSE?

- (a) T is one-to-one.
- (b) Such a linear transformation T is unique.
- (c) The standard matrix representing T (i.e., the matrix representing T for the standard bases of \mathbb{R}^2 and \mathbb{R}^3) is $\begin{pmatrix} 1 & -1 & 2 \\ 2 & -2 & 4 \end{pmatrix}$.
- (d) rank(T) = 2.

(e)
$$T \begin{pmatrix} -1 \\ -2 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}$$
.

The correct answer is (C)

- (v) Let $A \in M_{n \times n}(F)$ be a square matrix. Which of the following statement is NOT equivalent to the statement that A is invertible.
 - (a) The linear transformation $L_A: F^n \to F^n$ given by $L_A(x) = Ax$ is an isomorphism.
 - (b) rank(A) = n
 - (c) L_A sends any linearly dependent set of F^n to linearly dependent set in F^n .
 - (d) A is a product of elementary matrices.
 - (e) Rows of A are linearly independent.

The correct answer is (c)

- **3.** Let $V = M_{2\times 2}(\mathbb{R})$ and $v_1 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$, $v_2 = \begin{pmatrix} 0 & 1 \\ 2 & -1 \end{pmatrix}$, $v_3 = \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$.
 - (a) Show that v_1, v_2, v_3 are linearly independent. (7 points)
 - (b) Find v_4 so that $S = \{v_1, v_2, v_3, v_4\}$ forms a basis of V. (8 points)

Solutions:

(a) Consider equation $x_1v_1 + x_2v_2 + x_3v_3 = 0$. Then we have the following system of linear equations

$$\begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \\ 0 & 2 & 3 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Using elementary (row) operations to simplify the above system, we have

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

So it is clear the system only has solution $x_1 = x_2 = x_3 = 0$. So v_1, v_2, v_3 are linearly independent.

(b) Suppose that $v_4 = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and consider the equation $x_1v_1 + x_2v_2 + x_3v_3 + x_3v_4 = 0$. We get the equation

$$\begin{pmatrix} 1 & 0 & 1 & a \\ 1 & 1 & 2 & b \\ 0 & 2 & 3 & c \\ 0 & -1 & 1 & d \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Using elementary (row) operations to simplify the above system, we have

$$\begin{pmatrix} 1 & 0 & 1 & a \\ 0 & 1 & 1 & b-a \\ 0 & 0 & 1 & c-2(b-a) \\ 0 & 0 & 0 & d-2c+5(b-a) \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

So it is clear that the system only has zero solution if an only if

$$d - 2c + 5(b - a) \neq 0.$$

For example, $v_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.

4. Let $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ be a linear transformation given by T(f(x)) = f'(x).

- (a) Find the standard matrix representing T, that is, the matrix representing T for the standard basis $\{1, x, x^2\}$. (5 points)
- (b) Find nullity of T and the rank of T. (5 points)
- (c) Given a basis $\beta = \{1 x, 1 + x, x^2 + x\}$. Find matrix $[T]_{\beta}$. (5 points)

Solutions:

(a) We have

$$T(1, x, x^2) = (0, 1, 2x^2) = (1, x, x^2) \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

So the standard matrix of T is $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$.

- (b) It is clear that the range R(T) of T is spanned by T(1), T(x), and $T(x^2)$. Since 1 and 2x are linearly independent, they forms of basis of R(T) and hence $\dim_{\mathbb{R}} R(T) = \operatorname{rank}(T) = 2$. By dimension theorem, the nullity of T is $\dim_{\mathbb{R}} P_2(\mathbb{R}) \operatorname{rank}(T) = 3 2 = 1$.
- (c) Let $\alpha = \{1, x, x^2\}$ be the standard basis and $Q = [I_{P_2(\mathbb{R})}]_{\alpha}^{\beta}$. Since $(1-x, 1+x, x^2+x) = (1, x x^2) \begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ So we conclude that

$$Q = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

and

$$[T]_{\beta} = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & \frac{3}{2} \\ 0 & 0 & 0 \end{pmatrix}$$

- **5.** Let $A \in M_{m \times n}(F)$ be an $m \times n$ -matrix. If $\operatorname{rank}(A) = \min\{m, n\}$ then A is called a *full rank matrix*. Recall that the linear transformation $L_A : F^n \to F^m$ is defined by $L_A(x) = Ax$.
 - (a) Suppose $m \leq n$. Show that A is a full rank matrix if and only rows of A are linearly independent. (5 points)
 - (b) Suppose $m \leq n$. Show that if A is a full rank matrix then L_A is onto. (5 points)
 - (c) Suppose $m \geq n$. Show that A is a full rank matrix if and only if columns of A are linearly independent. (5 points)
 - (d) Suppose $m \geq n$. Show that if A is a full rank matrix then L_A is one-to-one. (5 points)

Proof:

- (a) Since A is full rank, and $m \leq n$, we have $\operatorname{rank}(A) = \min\{m, n\} = m$. So $\operatorname{rank}(A) = \dim \operatorname{Row}(A) = m$. Since the row space $\operatorname{Row}(A)$ is spanned by all rows of A and A has exactly m rows, this implies that all rows of A must be a basis of $\operatorname{Row}(A)$. Hence all rows of A are linearly independent. Conversely, if rows of A are linearly independent, then they forms a basis of $\operatorname{Row}(A)$. So $\operatorname{rank}(A) = \dim \operatorname{Row}(A) = m$, and A is of full rank.
- (b) By definition $\operatorname{rank}(A) = \dim R(L_A)$. So $\dim R(L_A) = m$ as A is full rank and $m \leq n$. Since $R(L_A) \subset F^m$, and $\dim R(L_A) = \dim F^m = m$, we conclude that $R(L_A) = F^m$. Therefore, L_A is onto.
- (c) Since A is full rank, and $m \ge n$, we have $\operatorname{rank}(A) = \min\{m, n\} = n$. So $\operatorname{rank}(A) = \dim \operatorname{Col}(A) = n$. Since the column space $\operatorname{Col}(A)$ is spanned by all columns of A and A has exactly n columns, this implies that all columns of A must be a basis of $\operatorname{Col}(A)$. Hence all columns of A are linearly independent. Conversely, if columns of A are linearly independent, then they forms a basis of $\operatorname{Col}(A)$. So $\operatorname{rank}(A) = \dim \operatorname{Col}(A) = n$, and A is of full rank.
- (d) If A is full rank, and $m \ge n$ then we have $\operatorname{rank}(A) = \min\{m, n\} = n$. By dimension theorem, $\dim N(L_A) + \operatorname{rank}(L_A) = n$. So $\operatorname{rank}(A) = \operatorname{rank}(L_A) = n$ implies that $\dim(N(L_A)) = 0$. So L_A is one-to-one.

- **6.** Let V, W be vector spaces over a field F and $T: V \to W$ a linear transformation. Let $v_1, \ldots, v_n \in V$ be vectors in V.
 - (a) Suppose that T is one-to-one and $\{v_1, \ldots, v_n\}$ are linearly independent. Show that $\{T(v_1), \ldots, T(v_n)\}$ are also linearly independent. (5 points)
 - (b) Suppose that T is onto and $\{v_1, \ldots, v_n\}$ spans V. Show that $\{T(v_1), \ldots, T(v_n)\}$ spans W. (5 points)
 - (c) Suppose that T is an isomorphism and $\{v_1, \ldots, v_n\}$ is a basis of V. Show that $\{T(v_1), \ldots, T(v_n)\}$ is a basis of W. (5 points)

Proof:

(a) Consider equation of vectors $x_1T(v_1) + \cdots + x_nT(v_n) = \vec{0}$. Since T is linear, we have

$$T(x_1v_1 + \dots + x_nv_n) = x_1T(v_1) + \dots + x_nT(v_n) = \vec{0}$$

Since T is one-to-one, $N(T) = \{\vec{0}\}$, we have $x_1v_1 + \cdots + x_nv_n = \vec{0}$. But v_1, \ldots, v_n is linearly independent, this forces $x_1 = \cdots = x_n = 0$. So $T(v_1), \ldots, T(v_n)$ is linearly independent.

(b) It suffices to show that for any $w \in W$, w is linear combination of $T(v_1), \ldots, T(v_n)$. Since T is onto, there exists a $v \in V$ so that w = T(v). Since v_1, \ldots, v_n spans V, there exists linear combination $c_1v_1 + \cdots + c_nv_n = v$ with $c_i \in F$. Then

$$w = T(v) = T(c_1v_1 + \dots + c_nv_n) = c_1T(v_1) + \dots + c_nT(v_n).$$

So w is linear combination of $T(v_1), \ldots, T(v_n)$ as required.

(c) Since T is an isomorphism, it is one-to-one and onto. Since $\{v_1, \ldots, v_n\}$ is a basis of V, it is linearly independent and spans V. By (1) and (2) above, we see that $\{T(v_1), \ldots, T(v_n)\}$ is linearly independent and spans W. So $\{T(v_1), \ldots, T(v_n)\}$ is a basis of W.